On the Normalizer of the Congruence Subgroup $H_0^5(I)$ of the Hecke Group H^5

Süleyman Uzun

Abstract

Let $\lambda = 2\cos\frac{\pi}{5}$ and let H^5 be the Hecke group associated to λ . In this paper, the normalizers of the congruence subgroups $H_0^5(I)$ in $PSL(2, \mathbb{Z}[\lambda])$ are studied in the case where $I = (2)^{\alpha}I'$, (2, I') = 1 and I' is a prime ideal.

Key Words: Normalizer, Congruence subgroup, Hecke group.

1. Introduction

The congruence subgroups of the Hecke group H^q (q = 3, 4, 6) and the normalizers of these groups in H^q , in $PSL(2, \mathbb{Z}[\lambda_q])$ and in $PSL(2, \mathbb{R})$ were studied by various authors (see [1], [2], [4], [5], [8], [9], [16]). The normalizers of the congruence subgroups of the Hecke group H^5 in $PSL(2, \mathbb{R})$ were given for prime ideals (see [11], [12]). In this paper, we investigate the normalizer of the congruence subgroup $H_0^5(I)$ of the Hecke group H^5 in $PSL(2, \mathbb{Z}[\lambda])$. Furthermore, in [8], it is conjectured that the normalizer of $H_0^5(I)$ in H^5 is $H_0^5((2)^{\alpha'}I')$, where $I = (2)^{\alpha}I'$ is an ideal of $\mathbb{Z}[\lambda]$, (2, I') = 1 and $\alpha' = \alpha - \min(2, [|\frac{\alpha}{2}|])$. We give a proof to the conjecture in the case where I' is a prime ideal.

We start by recalling definitions, notations, and some preliminary results of these concepts. By a Hecke group we mean a discrete subgroup of $PSL(2, \mathbb{R})$ generated by T and U_q , where T and U_q are the Möbius transformations given by $T(z) = -\frac{1}{z}$, and $U_q(z) = z + \lambda_q$. Hecke [6] showed that these groups are discrete if and only if $\lambda_q = 2 \cos \frac{\pi}{q}$

MSC: 11F06, 20H05

or $\lambda_q > 2$. This group is denoted by H^q . It is known that a presentation for H^q is

$$\langle T, U_q \rangle = \langle T, S_q \mid T^2 = S_q^q = I \rangle,$$

where $S_q = TU_q$, and so H^q is isomorphic to the free product $C_2 * C_q$.

We have the following table of the values of λ_q for small q:

q	3	4	5	6
λ_q	1	$\sqrt{2}$	$\frac{1+\sqrt{5}}{2}$	$\sqrt{3}$

The best known example is when q = 3, and H^3 is the modular group $\Gamma = PSL(2, \mathbb{Z})$ so the above can be thought of as a natural generalization of Γ . Furthermore, we have the following geometric interpretation: the modular group Γ is the triangle group $(2, 3, \infty)$ and the Hecke group H^q is the triangle group $(2, q, \infty)$.

Let $\mathbb{H} := \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ and $\widehat{\mathbb{H}} := \mathbb{H} \cup \mathbb{Q}(\lambda_q) \cup \{\infty\}$. Then the Hecke group H^q , namely a subgroup of $SL_2(\mathbb{Z}[\lambda_q])/\{\pm I\}$, acts on $\widehat{\mathbb{H}}$ by

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\wedge z=\frac{az+b}{cz+d}$$

As usual, we denote an element of H^q as a 2 × 2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ remembering to identify any such matrix with its negative.

Let I be an ideal of $\mathbb{Z}[\lambda_q]$. The principal congruence subgroup of level I is

$$H^q(I) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in H^q \mid a - 1, b, c, d - 1 \equiv 0 (\mathrm{mod}I) \right\}$$

and any subgroup Λ^q of H^q containing $H^q(I)$ is called a congruence subgroup of level I. The two most important of these are

$$H_0^q(I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H^q \mid c \equiv 0 (\text{mod}I) \right\}$$

and

$$H_1^q(I) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in H^q \mid a - 1, c, d - 1 \equiv 0 (\text{mod}I) \right\}.$$

It is easy to see that we have the inclusions $H^q(I) \leq H^q_1(I) \leq H^q_0(I) \leq H^q$ and we can also see that $H^q(I)$ is normal in H^q and $H^q_1(I)$ is normal in $H^q_0(I)$.

Again, $H_0^q(I)$ is a natural generalization of the congruence subgroups $\Gamma_0(n)$ of Γ . It works because the elements of H^q sit naturally in the ring $\mathbb{Z}[\lambda_q]$.

Recall that H^q is commensurable with $PSL(2,\mathbb{Z})$ if and only if q = 4 and 6. The elements of such groups are completely known (see [17]).

Suppose H^q is not commensurable with $PSL(2, \mathbb{Z})$. By the result of A. Leutbecher $([14], [15]), \mathbb{Q}(\lambda) \cup \{\infty\}$ is the set of cusps of H^q if and only if q = 5. Also, 5 is the only q other than 4, 6 for which $\mathbb{Q}(\lambda)$ is a quadratic field. For all other q's, the degree is > 2. As a consequence, q = 5 is the next most workable and interesting q. Some of the classical results on the modular group can be generalized to H^5 (see [3], [9], [10], [11]).

From now on, q will be 5, so $\lambda := \lambda_5$, then $\mathbb{Z}[\lambda] = \mathbb{Z}[\lambda_5]$ and $U := U_5$, or $V = \begin{pmatrix} 1 & \lambda \\ 0 & 0 \end{pmatrix}$.

$$U = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

The main facts used in our proofs :

(a) $\mathbb{Z}[\lambda]$ is a principal ideal domain. The norm of any element $u + v\lambda$ of $\mathbb{Z}[\lambda]$ is defined by $Nor(u+v\lambda) = u^2 - v^2 + uv$. Let I be a non-zero ideal of $\mathbb{Z}[\lambda]$. For an element $a \in \mathbb{Z}[\lambda]$, we say that a and I are relatively prime if there exist elements $x \in \mathbb{Z}[\lambda]$ and $b \in I$ such that ax + b = 1, and this is denoted by (a, I) = 1.

Let $a, b \in \mathbb{Z}[\lambda]$. The element a is said to be congruent to b modulo I (denoted by $a \equiv b \pmod{I}$) if $a - b \in I$.

(b) The set of cusps of H^5 is $\mathbb{Q}(\lambda) \cup \{\infty\}$ ([14],[15]). Furthermore, if $x \in \mathbb{Q}(\lambda)$ is a cusp, x has a unique reduced form $x = \frac{a}{c}$ ([13]). By definition, this means that $a, c \in \mathbb{Z}[\lambda]$

with $c \ge 0$ and there exists $b, d \in \mathbb{Z}[\lambda]$ such that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H^5$. Clearly, (a, c) = 1 so

that if $x = \frac{a'}{c'}$ with (a', c') = 1, then $a = \mu a', c = \mu c'$ where μ is a unit in $\mathbb{Z}[\lambda]$.

(c) (Corollary 5 of [13]) $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in H^5$ if and only if $b = m\lambda, m \in \mathbb{Z}$. Similarly, $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \in H^5$ if and only if $c = n\lambda, n \in \mathbb{Z}$.

(d) (Proposition 6 of [13]) Suppose x_i , x_j are H^5 -rationals with reduced form $\frac{a_i}{c_i}$ and $\frac{b_j}{d_j}$, respectively, and suppose that $x_i < x_j$. Then the following statements are equivalent:

(i)
$$\begin{pmatrix} a_i & b_j \\ c_i & d_j \end{pmatrix} \in H^5;$$

(ii) (x_i, x_j) is an even line, that is, it is the image of the complete hyperbolic geodesic with ends at 0 and ∞ under the action of some $A \in H^5$;

(iii)
$$a_i d_j - b_j c_i = 1.$$

(e) $A \in H$ if and only if it is a finite word in the generators T and U. The word can be written as

$$A = U^{r_0} T U^{r_1} T \dots T U^{r_{n+1}} \tag{1.1}$$

where r_i are non zero integers except r_0 and r_{n+1} which may be 0. The word in turn gives rise to the matrix A. By judicious applications of the generators the word can be made unique ([18]).

(f) (Lemma 1 of [3]) If I is a non-zero ideal of $\mathbb{Z}[\lambda_5]$, then

$$[H^5: H_0^5(I)] = N(I) \prod_{P|I} \left(1 + \frac{1}{N(P)} \right),$$

where the product is over the set of all prime ideals P which divide I. Here, for a non-zero ideal I of $\mathbb{Z}[\lambda]$, N(I) denotes the absolute norm of I.

(g) (Theorem 4.5 of [7]) If K, H, G are groups with K < H < G, then [G : K] = [G : H][H : K]. If any two of these indices are finite, then so is the third.

(h) (Corollary 2 of [10]) The indices of the congruence subgroups of H^5 of level I = (2) are $[H^5: H^5(I)] = 10$, and $[H^5: H^5_1(I)] = [H^5: H^5_0(I)] = 5$.

The rest of this paper is organized as follows. In the next section, we give some results concerning congruence subgroup $H_0^5(I)$, where $I = (2)^{\alpha}$, $(\alpha = 1, 2)$ or I is a prime ideal, which will be needed later. In section 3, we find the normalizer of the congruence subgroup $H_0^5(I)$ in $PSL(2, \mathbb{Z}[\lambda])$, where $I = (2)^{\alpha}I'$, (2, I') = 1, and the proof of the conjecture in [8] for this case is given in Corollary 17.

2. Congruence subgroup $H_0^5(I)$

Lemma 1. Let the ideal $I = (2) = 2\mathbb{Z}[\lambda]$ and let $A \in H^5$. Then

$$A \in H_0^5(I) \text{ if and only if } A \equiv \pm \begin{pmatrix} 1 & r\lambda \\ 0 & 1 \end{pmatrix} (modI),$$

where r = 0, 1.

Proof. By using (g) and (h), we have that

$$[H_0^5(I): H^5(I)] = 2.$$

Then, since $U = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \notin H^5(I)$, the partition of $H_0^5(I)$ associated to the subgroup $H^5(I)$ is

$$H_0^5(I) = H^5(I) \cup UH^5(I).$$
(2.2)

Thus, for every matrix A in $H_0^5(I)$, from (2.2), there are two cases as follows.

Case 1. If $A \in H^5(I)$, then we get

$$A \equiv \pm \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) (\mathrm{mod}I).$$

Case 2. If $A \in UH^5(I)$, then we have

$$A \equiv \pm \left(\begin{array}{cc} 1 & \lambda \\ 0 & 1 \end{array}\right) (\mathrm{mod}I).$$

This completes the proof of the lemma.

Corollary 2. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $H_0^5(I)$. In this case, (i) if I = (2), then, $a - d \equiv 0 \pmod{2}$ (ii) if $I = (4) = (2)^2$, then, $a - d \equiv 0 \pmod{4}$.

Proof. (i) Since $a^2 - 1 = (a - 1)(a + 1)$, by Lemma 1, we have

$$a^2 - 1 \equiv 0 \pmod{(2)^2}.$$
 (2.3)

Since $A \in H_0^5(2)$ and ad - bc = 1, we have

$$ad \equiv 1 \pmod{2}. \tag{2.4}$$

Suppose that $a - d \equiv u \pmod{2}$ for some $u \in \mathbb{Z}[\lambda]$. Multiplying by a, one has $a^2 - ad \equiv au \pmod{2}$. In this case, since $a \not\equiv 0 \pmod{2}$, by (2.3) and (2.4), we have $u \equiv 0 \pmod{2}$. This implies that $a - d \equiv 0 \pmod{2}$.

(*ii*) Since $A \in H_0^5(4)$ and ad - bc = 1, it is clear that $ad \equiv 1 \pmod{4}$. Here, using a similar argument as in the proof of (*i*), we have $a - d \equiv 0 \pmod{4}$.

Remark 3. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $H_0^5(2)$. Then $a - d \equiv 0 \pmod{2^2}$ is not necessarily true.

Example 4. From (1.1),

$$A = UTU^{2}T = \begin{pmatrix} 1+2\lambda & -\lambda \\ 2\lambda & -1 \end{pmatrix} \in H_{0}^{5}(2).$$

Then, for the matrix A, we have $a - d = 2(1 + \lambda) \not\equiv 0 \pmod{2^2}$.

Remark 5. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $H_0^5(4)$. Then $a - d \equiv 0 \pmod{2^3}$ is not necessarily true.

Example 6. If we take
$$A = \begin{pmatrix} 1+2\lambda & -\lambda \\ 2\lambda & -1 \end{pmatrix}$$
, then, for matrices
$$A^{2} = \begin{pmatrix} 3+6\lambda & -2-2\lambda \\ 4(1+\lambda) & -1-2\lambda \end{pmatrix} \in H_{0}^{5}((2)^{2}) \text{ and } A^{4} = \begin{pmatrix} 29+48\lambda & -4(3+5\lambda) \\ 8(3+5\lambda) & -11-16\lambda \end{pmatrix}$$

 $\in H_0^5((2)^3)$, we have $a - d = 4(1 + \lambda) \not\equiv 0 \pmod{(2)^3}$ and $a - d = 4(10 + 16\lambda) \not\equiv 0 \pmod{(2)^3}$, respectively.

Remark 7. If the ideal $I \neq (2)$, then Corollary 2 (i) and (ii) are not true.

Example 8. Let I = (3). From (1.1),

$$B = UTU^4 TU^2 TUTU^{-1} T = \begin{pmatrix} 25 + 40\lambda & 10 + 17\lambda \\ 9(2 + 3\lambda) & 8 + 11\lambda \end{pmatrix} \in H_0^5(3).$$

For the matrix B, $a = 25 + 40\lambda$. Then it is easily seen that $a^2 - 1 \neq 0 \pmod{3}$. It follows that $a - d \neq 0 \pmod{3}$.

Example 9. Let $I = (2 + \lambda)$. From (1.1),

$$C = TU^{2}TU^{3}TU^{2}TU^{-2}T = \begin{pmatrix} 12 + 25\lambda & 5 + 6\lambda \\ -(2 + \lambda)^{2}(4 + 5\lambda) & -4(3 + 5\lambda) \end{pmatrix} \in H_{0}^{5}(2 + \lambda).$$

For the matrix C, $a = 12 + 25\lambda$ and $a^2 - 1 = (11 + 25\lambda)(13 + 25\lambda)$. From (a), we have $Nor(a^2 - 1) = 131.229$ and $Nor(2 + \lambda) = 5$. In this case, since $Nor(a^2 - 1) \equiv 4 \mod 5$, we obtain $a^2 - 1 \not\equiv 0 \pmod{(2 + \lambda)}$. This implies that $a - d \not\equiv 0 \pmod{(2 + \lambda)}$.

Example 10. Let $I = (4 - \lambda)$. From (1.1),

$$D = TU^7 TU^{-5} T = \begin{pmatrix} 5\lambda & 1\\ -(4-\lambda)^3(2+3\lambda) & -7\lambda \end{pmatrix} \in H_0^5(4-\lambda).$$

For the matrix D, $a = 5\lambda$. Using a similar argument as in Example(9), we have $a^2 - 1 \not\equiv 0 \pmod{(4-\lambda)}$. This implies that $a - d \not\equiv 0 \pmod{(4-\lambda)}$.

Corollary 11. $H_0^5(2) = H_1^5(2)$.

Lemma 12. Let $I = (\tau)$ be a prime ideal of $\mathbb{Z}[\lambda]$. Let p be the positive rational prime which lies below τ . Then

- (i) $(p) = (\tau)$ if and only if $H_0^5(p) = H_0^5(\tau)$. (ii) $(p) \neq (\tau)$ if and only if $H_0^5(p) \lneq H_0^5(\tau)$.
- $(\mathbf{r}, \mathbf{u}, \mathbf{r}) = (\mathbf{r}) \quad (\mathbf{r})$

Proof. (i) If $(p) = (\tau)$, then it is easily seen that $H_0^5(p) = H_0^5(\tau)$. Suppose that $H_0^5(p) = H_0^5(\tau)$. Let $x = \frac{1}{\tau} \in \mathbb{Q}(\lambda)$. By Leutbecher's Theorem ([14], [15]), x is a cusp of H^5 . By (b), the reduced form for x is of the form $\frac{c}{c\tau}$, where c is a unit in $\mathbb{Z}[\lambda]$. Thus, by (d), $H_0^5(\tau)$ contains an element of the form

$$A_c = \begin{pmatrix} c & b \\ c\tau & d \end{pmatrix}.$$
 (2.5)

In this case, since $H_0^5(p) = H_0^5(\tau)$, it follows that $\tau = c^{-1}pu$, where $u \in \mathbb{Z}[\lambda]$. Thus we have $(p) = (\tau)$.

(ii) Let $(p) \neq (\tau)$. Since $(p) \subset (\tau)$, it is clear that $H_0^5(p) < H_0^5(\tau)$. By (2.5), $A_c \notin H_0^5(p)$. This implies that $H_0^5(p) \lneq H_0^5(\tau)$. Conversely, from (2.5), we have $(p) \neq (\tau)$.

3. Upper bound for $N(H_0^5(2^{\alpha}\tau))$

Let I' be an ideal of $\mathbb{Z}[\lambda]$. Since $\mathbb{Z}[\lambda]$ is a principal ideal domain, $I' = (\tau)$ for some τ . Note that we may assume that τ is positive.

From now on, we take the ideal

$$I = (2)^{\alpha} I' = (2)^{\alpha} \cap I' = (2^{\alpha} \tau),$$
(3.6)

where (2, I') = 1 and $I' = (\tau)$ is a prime ideal. Denote by $N(H_0^5(2^{\alpha}\tau))$ the normalizer of $H_0^5(2^{\alpha}\tau)$ in $PSL(2, \mathbb{Z}[\lambda])$. Let $X = \begin{pmatrix} x & z \\ y & t \end{pmatrix} \in N(H_0^5(2^{\alpha}\tau))$, and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_0^5(2^{\alpha}\tau)$. Then, we have that

$$XAX^{-1} = \begin{pmatrix} atx - bxy - dyz + ctz & -(a-d)xz + bx^2 - cz^2 \\ (a-d)ty - by^2 + ct^2 & -ayz + byx + dxt - ctz \end{pmatrix} \in H_0^5(2^{\alpha}\tau)$$
(3.7)

$$X^{-1}AX = \begin{pmatrix} * & * \\ -(a-d)xy - by^2 + cx^2 & * \end{pmatrix} \in H_0^5(2^{\alpha}\tau).$$
(3.8)

If we take $A = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$, then,

$$XAX^{-1} = \begin{pmatrix} 1 - xy\lambda & x^2\lambda \\ -y^2\lambda & 1 + xy\lambda \end{pmatrix} \in H_0^5(2^{\alpha}\tau)$$
(3.9)

$$X^{-1}AX = \begin{pmatrix} 1+ty\lambda & t^2\lambda \\ -y^2\lambda & 1-ty\lambda \end{pmatrix} \in H_0^5(2^{\alpha}\tau).$$
(3.10)

Lemma 13. Let $X = \begin{pmatrix} x & z \\ y & t \end{pmatrix} \in N(H_0^5(2^{\alpha}\tau))$. Then $y \equiv 0 \pmod{(2^{\alpha'}\tau)},$

where $\alpha' = \alpha - \min\left(2, \left[\left|\frac{\alpha}{2}\right|\right]\right)$.

Proof. Since λ is a unit in $\mathbb{Z}[\lambda]$, by (3.9) and (3.10), then

$$y^2 \equiv 0 \pmod{(2^{\alpha} \tau)}.$$
(3.11)

Since ad - bc = 1 and xt - yz = 1, from (3.8), we have

$$(a^{2} - 1)y \equiv 0 (mod \ (2^{\alpha}\tau)). \tag{3.12}$$

Here, since $I' = (\tau)$ and (2) are prime ideals, by (3.6), (3.11) and (3.12), we obtain

$$y \equiv 0 \pmod{(2)} \tag{3.13}$$

$$(a^2 - 1)y \equiv 0 \pmod{(2)}.$$
 (3.14)

and

$$y \equiv 0 \pmod{(\tau)} \tag{3.15}$$

$$(a^2 - 1)y \equiv 0 \pmod{(\tau)}.$$
 (3.16)

By (3.13), there exists $\alpha' \in \mathbb{Z}_+$ such that

$$y \equiv 0 \pmod{(2)^{\alpha'}} \text{ and } y \not\equiv 0 \pmod{(2)^{\alpha'+1}}.$$
 (3.17)

This implies that

$$y^2 \equiv 0 \pmod{(2)^{2\alpha'}}$$
 (3.18)

For α and α' , there are two cases:

Case1. Let $\alpha < \alpha'$. Then (3.11) and (3.12) are always true.

Case2. Let $\alpha \geq \alpha'$. From (3.11) and (3.18), we obtain

$$\alpha \le 2\alpha' \Rightarrow \frac{\alpha}{2} \le \alpha' \le \alpha. \tag{3.19}$$

From (3) and (3.17), we get

$$(a^{2} - 1)y \equiv 0 \pmod{(2)^{\alpha' + 2}}.$$
(3.20)

By using (3.12) and (3.20), we have that

$$\alpha \le \alpha' + 2 \Rightarrow 0 \le \alpha - \alpha' \le 2. \tag{3.21}$$

Thus, the smallest element $\alpha' \in \mathbb{Z}_+$ which satisfies (3.19) and (3.21) must be found.

(i) For $\alpha = 1, 2$ and 3, by (3.19) and (3.21), we have that $\alpha' = 1, 1$ and 2, respectively.

(*ii*) For $\alpha \geq 4$, there exists an element $\beta \in \mathbb{N}$ such that $\alpha = \beta + 4$. In this case, by (3.19) and (3.21),

$$2 \leq \alpha' \text{ and } \beta + 2 \leq \alpha'.$$

Since α' is smallest, it follows that $\alpha' = \beta + 2$. Thus, for every $\alpha \in \mathbb{Z}_+$ such that $\alpha \geq 4$, we obtain $\alpha' = \alpha - 2$. Consequently, from (i) and (ii), we have $y \equiv 0 \pmod{(2^{\alpha'} \tau)}$, where $\alpha' = \alpha - \min\left(2, \left\lceil \left\lfloor \frac{\alpha}{2} \right\rceil \right\rceil\right)$.

This completes the proof of the lemma.

Lemma 14. (Lemma 1 of [12]) If I is a prime ideal of $\mathbb{Z}[\lambda]$, then

$$N(H_0^5(I)) = H_0^5(I).$$

Remark 15. If I is not a prime ideal of $\mathbb{Z}[\lambda]$, then Lemma 14 is not necessarily true as in the following theorem.

Theorem 16. Let the ideal $I = (2^{\alpha}\tau)$ as in (6). Then

$$N(H_0^5(2^{\alpha}\tau)) = H_0^5(2^{\alpha'}\tau)$$

where $\alpha' = \alpha - \min\left(2, \left[\left|\frac{\alpha}{2}\right|\right]\right)$.

Proof. By Corollary 2 (i) and (ii), it is clear that

$$H_0^5(2^{\alpha'}\tau) \le N(H_0^5(2^{\alpha}\tau)) \tag{3.22}$$

where $\alpha' = \alpha - \min\left(2, \left[\left|\frac{\alpha}{2}\right|\right]\right)$. Now we prove the converse inclusion, that is,

$$H_0^5(2^{\alpha'}\tau) \ge N(H_0^5(2^{\alpha}\tau))$$

where $\alpha' = \alpha - \min\left(2, \left[\left|\frac{\alpha}{2}\right|\right]\right)$. Let $X = \begin{pmatrix} x & z \\ y & t \end{pmatrix} \in N(H_0^5(2^{\alpha}\tau))$. Then, by Lemma 13 and (3.10), it is clear that

$$y \equiv 0(\mathrm{mod}(2^{\alpha'}\tau)).$$

This implies that $y = c2^{\alpha'}\tau$ for some $c \in \mathbb{Z}[\lambda]$. Suppose $c \neq 0$. Recall that $a = \frac{x}{c2^{\alpha'}\tau} \in$ $\mathbb{Q}(\lambda)$ is a cusp of H^5 as in (b). Let $a = \frac{x'}{y'}$ be the reduced form for a. Then H^5 contains an element of the form

$$Y = \left(\begin{array}{cc} x' & z' \\ y' & t' \end{array}\right).$$

Since $(x, c2^{\alpha'}\tau) = 1, y' = \mu c2^{\alpha'}\tau$ where μ is a unit of $\mathbb{Z}[\lambda]$. Hence y' is a multiple of $2^{\alpha'}\tau$. This implies that $Y \in H_0^5(2^{\alpha'}\tau) \leq N(H_0^5(2^{\alpha}\tau))$. Since $X\infty = Y\infty$, it follows that

$$Y^{-1}X = \begin{pmatrix} u & v \\ 0 & u^{-1} \end{pmatrix} \in N(H_0^5(2^{\alpha}\tau)),$$

where $u, v \in \mathbb{Z}[\lambda]$. Applying (9) and (10) to $Y^{-1}X$, we have that

$$\left(\begin{array}{cc}1 & u^2\lambda\\0 & 1\end{array}\right), \left(\begin{array}{cc}1 & u^{-2}\lambda\\0 & 1\end{array}\right)$$

are elements of $H_0^5(2^{\alpha}\tau)$. By (c), $u = \pm 1$. Multiplying $Y^{-1}X$ by -I if necessary, we may assume that u = 1 and

$$Y^{-1}X = \left(\begin{array}{cc} 1 & x + y\lambda \\ 0 & 1 \end{array}\right),$$

where $x, y \in \mathbb{Z}$. Note that

$$\left(\begin{array}{cc} 1 & y\lambda \\ 0 & 1 \end{array}\right) \in N(H_0^5(2^{\alpha}\tau)).$$

As a consequence,

$$\left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array}\right) \in N(H_0^5(2^{\alpha}\tau)).$$

Suppose that $x \neq 0$. Since $\lambda \in \mathbb{R} \setminus \mathbb{Q}$, for any $\epsilon > 0$, there exist k and l such that

$$\left(\begin{array}{cc}1 & x\\ 0 & 1\end{array}\right)^k \left(\begin{array}{cc}1 & \lambda\\ 0 & 1\end{array}\right)^l = \left(\begin{array}{cc}1 & \delta\\ 0 & 1\end{array}\right) = \sigma \in N(H_0^5(2^{\alpha}\tau)),$$

where $0 < |\delta| < \epsilon$. As a consequence,

$$\sigma \begin{pmatrix} 1 & 0 \\ 2^{\alpha}p\lambda & 1 \end{pmatrix} \sigma^{-1} = \begin{pmatrix} 1+2^{\alpha}\delta p & 2^{\alpha}\delta^2p \\ 0 & 1-2^{\alpha}\delta p \end{pmatrix} \in H_0^5(2^{\alpha}\tau),$$

where p is the positive rational prime which lies below τ . This implies that $H_0^5(2^{\alpha}\tau)$ is not discrete, giving a contradiction. Hence x = 0 and $Y^{-1}X \in H_0^5(2^{\alpha'}\tau)$. Since $Y \in H_0^5(2^{\alpha'}\tau)$, then we obtain $X \in H_0^5(2^{\alpha'}\tau)$.

Suppose y = 0. From the above argument, we have that $X \in H_0^5(2^{\alpha'}\tau)$. Consequently,

$$N(H_0^5(2^{\alpha}\tau)) \le H_0^5(2^{\alpha'}\tau),$$

where $\alpha' = \alpha - \min\left(2, \left[\left|\frac{\alpha}{2}\right|\right]\right)$.

This completes the proof of the theorem.

Corollary 17. Let $I = (2)^{\alpha}I'$ be an ideal of $\mathbb{Z}[\lambda]$, where I' is a prime ideal of $\mathbb{Z}[\lambda]$ and (2, I') = 1. Then the normalizer of $H_0^5(I)$ in H^5 is $H_0^5((2)^{\alpha'}I')$, where $\alpha' = \alpha - \min(2, [\lfloor \frac{\alpha}{2} \rfloor])$.

Proof. From Theorem 16, it is clear that

$$N(H_0^5(I)) \cap H^5 = H_0^5((2)^{\alpha'}I'),$$

where $\alpha' = \alpha - \min\left(2, \left[\left|\frac{\alpha}{2}\right|\right]\right)$.

Theorem 18. Let $I = (2)^{\alpha} I'$ be an ideal of $\mathbb{Z}[\lambda]$, and (2, I') = 1. Then

$$[H_0^5((2)^{\alpha'}I'): H_0^5((2)^{\alpha}I')] = \begin{cases} 1 , & \alpha = 1 \\ 4 , & \alpha = 2, 3 \\ 16, & \alpha \ge 4 \end{cases}$$

where $\alpha' = \alpha - \min\left(2, \left[\left|\frac{\alpha}{2}\right|\right]\right)$.

218

Proof. By using (f) and (g), we have that

$$[H_0^5((2)^{\alpha'}I'): H_0^5((2)^{\alpha}I')] = \frac{[H^5: H_0^5((2)^{\alpha}I')]}{[H^5: H_0^5((2)^{\alpha'}I')]} = \begin{cases} 1, & \alpha = 1\\ 4, & \alpha = 2, 3\\ 16, & \alpha \ge 4 \end{cases}$$

where $\alpha' = \alpha - \min\left(2, \left\lfloor \left\lfloor \frac{\alpha}{2} \right\rfloor \right)\right)$.

Acknowledgements

I would like to express my sincere gratitude to Professor Mehmet Akbaş for his immense help during the preparation of this paper.

References

- [1] Akbaş, M., Singerman, D.: The Normalizer $\Gamma(N)$ in $PSL(2,\mathbb{R})$, Glasgow Math. J. 32,317-327 (1990).
- [2] Atkin, A. O. L., Lehner, J.: Hecke operators on $\Gamma_0(m)$, Math. Ann. 185,134-160 (1970).
- [3] Chan, S.-P., Lang, M.-L., Lim, C.-H., Tan, S.-P.: The invariants of the congruence subgroups $G_5(I)$ of the Hecke group G_5 , Illinois J. of Math. 38,636-652 (1994).
- [4] Conway, J.H., Norton, S.P.: Montrous Moonshine, Bull. London Math. Soc. 11,308-339 (1979).
- [5] Conway, J.H.: Understanding Groups like $\Gamma_0(N)$, Groups, difference sets and the monester (Columbus, Ohio, 1993), Ohio State Univ. Math. Res. Inst. Publ., 4, de Gruyter, Berlin, 327-343 (1996).
- [6] Hecke, E.: Uber die Bestimmung Dirichletscher Reichen durch ihre Funktionalgleichungen, Math. Ann. 112,664-699(1936).
- [7] Hungerfort, T.W.: Algebra, Springer Verlag, Springer Verlag, New York, Heidelberg, Berlin, 1980.
- [8] Ivrissimtzis, I.P.: Congruence subgroups of Hecke groups and regular dessins, Ph.D. Thesis, University of Southampton, 1998.
- [9] Lang, M.-L.: Normalizers of the congruence subgroups of the Hecke groups G_4 and G_6 , Journal of Number Theory, 90,31-43 (2001).

219

- [10] Lang, M.-L., Lim, C.-H., Tan, S.-P.: Principal Congruence Subgroups of the Hecke Groups, Journal of Number Theory 85, 220-130 (2000).
- [11] Lang, M.-L., Tan, S.-P.: Normalizers of the congruence subgroups of the Hecke group G₅ II, Proc.Amer.Math.Soc. 127, 2271-2280 (2000).
- [12] Lang, M.-L., Tan, S.-P.: Normalizers of the congruence subgroups of the Hecke group G₅, Proc.Amer.Math.Soc. 127, 3131-3140 (1999).
- [13] Lang, M.-L., Lim, C.-H., Tan, S.-P.: Independent generators for congruence subgroups of Hecke groups, Math. Z. 220, 569-594 (1995).
- [14] Leutbecher, A.: Uber die Heckeschen Gruppen $G(\lambda)$, Abh. Math. Sem. Hambg. 31, 199-205 (1967).
- [15] Leutbecher, A.: Uber die Heckeschen Gruppen $G(\lambda)$, II, Math. Ann. 211, 63-68 (1974).
- [16] Newman, M.: The normalizer of certain Modular Subgroups, Canada J. Math. 8, 29-31 (1956).
- [17] Parson, L.A.: Generalized Kloosterman sums and the Fourier coefficients of cusp forms, Trans. Amer. Math. Soc. 217, 329-350 (1976).
- [18] Rosen, D.: The substitutions of the Hecke group $\Gamma(2\cos\frac{\pi}{5})$, Arch. Math.46, 533-538 (1986).

Received 14.11.2005

Süleyman UZUN Department of Mathematics, Faculty of Science and Arts, Karadeniz Technical University, 61080 Trabzon-TURKEY e-mail: suzunktu@yahoo.com