On the Normalizer of the Congruence Subgroup $H_{0}^{5}(I)$ of the Hecke Group H^{5}

Süleyman Uzun

Abstract

Let $\lambda=2 \cos \frac{\pi}{5}$ and let H^{5} be the Hecke group associated to λ. In this paper, the normalizers of the congruence subgroups $H_{0}^{5}(I)$ in $P S L(2, \mathbb{Z}[\lambda])$ are studied in the case where $I=(2)^{\alpha} I^{\prime},\left(2, I^{\prime}\right)=1$ and I^{\prime} is a prime ideal.

Key Words: Normalizer, Congruence subgroup, Hecke group.

1. Introduction

The congruence subgroups of the Hecke group $H^{q}(q=3,4,6)$ and the normalizers of these groups in H^{q}, in $\operatorname{PSL}\left(2, \mathbb{Z}\left[\lambda_{q}\right]\right)$ and in $\operatorname{PSL}(2, \mathbb{R})$ were studied by various authors (see [1], [2], [4], [5], [8], [9], [16]). The normalizers of the congruence subgroups of the Hecke group H^{5} in $\operatorname{PSL}(2, \mathbb{R}$) were given for prime ideals (see [11],[12]). In this paper, we investigate the normalizer of the congruence subgroup $H_{0}^{5}(I)$ of the Hecke group H^{5} in $P S L(2, \mathbb{Z}[\lambda])$. Furthermore, in [8], it is conjectured that the normalizer of $H_{0}^{5}(I)$ in H^{5} is $H_{0}^{5}\left((2)^{\alpha^{\prime}} I^{\prime}\right)$, where $I=(2)^{\alpha} I^{\prime}$ is an ideal of $\mathbb{Z}[\lambda],\left(2, I^{\prime}\right)=1$ and $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$. We give a proof to the conjecture in the case where I^{\prime} is a prime ideal.

We start by recalling definitions, notations, and some preliminary results of these concepts. By a Hecke group we mean a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ generated by T and U_{q}, where T and U_{q} are the Möbius transformations given by $T(z)=-\frac{1}{z}$, and $U_{q}(z)=z+\lambda_{q}$. Hecke [6] showed that these groups are discrete if and only if $\lambda_{q}=2 \cos \frac{\pi}{q}$

[^0]or $\lambda_{q}>2$. This group is denoted by H^{q}. It is known that a presentation for H^{q} is
$$
\left\langle T, U_{q}\right\rangle=\left\langle T, S_{q} \mid T^{2}=S_{q}^{q}=I\right\rangle
$$
where $S_{q}=T U_{q}$, and so H^{q} is isomorphic to the free product $C_{2} * C_{q}$.
We have the following table of the values of λ_{q} for small q :

q	3	4	5	6
λ_{q}	1	$\sqrt{2}$	$\frac{1+\sqrt{5}}{2}$	$\sqrt{3}$

The best known example is when $q=3$, and H^{3} is the modular group $\Gamma=P S L(2, \mathbb{Z})$ so the above can be thought of as a natural generalization of Γ. Furthermore, we have the following geometric interpretation: the modular group Γ is the triangle group $(2,3, \infty)$ and the Hecke group H^{q} is the triangle group $(2, q, \infty)$.

Let $\mathbb{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ and $\widehat{\mathbb{H}}:=\mathbb{H} \cup \mathbb{Q}\left(\lambda_{q}\right) \cup\{\infty\}$. Then the Hecke group H^{q}, namely a subgroup of $S L_{2}\left(\mathbb{Z}\left[\lambda_{q}\right]\right) /\{ \pm I\}$, acts on $\widehat{\mathbb{H}}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \wedge z=\frac{a z+b}{c z+d}
$$

As usual, we denote an element of H^{q} as a 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ remembering to identify any such matrix with its negative.

Let I be an ideal of $\mathbb{Z}\left[\lambda_{q}\right]$. The principal congruence subgroup of level I is

$$
H^{q}(I)=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in H^{q} \right\rvert\, a-1, b, c, d-1 \equiv 0(\bmod I)\right\}
$$

and any subgroup Λ^{q} of H^{q} containing $H^{q}(I)$ is called a congruence subgroup of level I. The two most important of these are

$$
H_{0}^{q}(I)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in H^{q} \right\rvert\, c \equiv 0(\bmod I)\right\}
$$

and

$$
H_{1}^{q}(I)=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in H^{q} \right\rvert\, a-1, c, d-1 \equiv 0(\bmod I)\right\}
$$

It is easy to see that we have the inclusions $H^{q}(I) \leq H_{1}^{q}(I) \leq H_{0}^{q}(I) \leq H^{q}$ and we can also see that $H^{q}(I)$ is normal in H^{q} and $H_{1}^{q}(I)$ is normal in $H_{0}^{q}(I)$.

Again, $H_{0}^{q}(I)$ is a natural generalization of the congruence subgroups $\Gamma_{0}(n)$ of Γ. It works because the elements of H^{q} sit naturally in the ring $\mathbb{Z}\left[\lambda_{q}\right]$.

Recall that H^{q} is commensurable with $\operatorname{PSL}(2, \mathbb{Z})$ if and only if $q=4$ and 6 . The elements of such groups are completely known (see [17]).

Suppose H^{q} is not commensurable with $\operatorname{PSL}(2, \mathbb{Z})$. By the result of A. Leutbecher $([14],[15]), \mathbb{Q}(\lambda) \cup\{\infty\}$ is the set of cusps of H^{q} if and only if $q=5$. Also, 5 is the only q other than 4,6 for which $\mathbb{Q}(\lambda)$ is a quadratic field. For all other q 's, the degree is >2. As a consequence, $q=5$ is the next most workable and interesting q. Some of the classical results on the modular group can be generalized to H^{5} (see [3], [9], [10], [11]).

From now on, q will be 5 , so $\lambda:=\lambda_{5}$, then $\mathbb{Z}[\lambda]=\mathbb{Z}\left[\lambda_{5}\right]$ and $U:=U_{5}$, or $U=\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right)$.

The main facts used in our proofs:
(a) $\mathbb{Z}[\lambda]$ is a principal ideal domain. The norm of any element $u+v \lambda$ of $\mathbb{Z}[\lambda]$ is defined by $\operatorname{Nor}(u+v \lambda)=u^{2}-v^{2}+u v$. Let I be a non-zero ideal of $\mathbb{Z}[\lambda]$. For an element $a \in \mathbb{Z}[\lambda]$, we say that a and I are relatively prime if there exist elements $x \in \mathbb{Z}[\lambda]$ and $b \in I$ such that $a x+b=1$, and this is denoted by $(a, I)=1$.

Let $a, b \in \mathbb{Z}[\lambda]$. The element a is said to be congruent to b modulo I (denoted by $a \equiv b(\bmod I))$ if $a-b \in I$.
(b) The set of cusps of H^{5} is $\mathbb{Q}(\lambda) \cup\{\infty\}([14],[15])$. Furthermore, if $x \in \mathbb{Q}(\lambda)$ is a cusp, x has a unique reduced form $x=\frac{a}{c}([13])$. By definition, this means that $a, c \in \mathbb{Z}[\lambda]$ with $c \geq 0$ and there exists $b, d \in \mathbb{Z}[\lambda]$ such that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in H^{5}$. Clearly, $(a, c)=1$ so that if $x=\frac{a^{\prime}}{c^{\prime}}$ with $\left(a^{\prime}, c^{\prime}\right)=1$, then $a=\mu a^{\prime}, c=\mu c^{\prime}$ where μ is a unit in $\mathbb{Z}[\lambda]$.
(c) (Corollary 5 of [13]) $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in H^{5}$ if and only if $b=m \lambda, m \in \mathbb{Z}$. Similarly, $\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right) \in H^{5}$ if and only if $c=n \lambda, n \in \mathbb{Z}$.
(d) (Proposition 6 of [13]) Suppose x_{i}, x_{j} are H^{5}-rationals with reduced form $\frac{a_{i}}{c_{i}}$ and $\frac{b_{j}}{d_{j}}$, respectively, and suppose that $x_{i}<x_{j}$. Then the following statements are equivalent:

UZUN

(i) $\left(\begin{array}{cc}a_{i} & b_{j} \\ c_{i} & d_{j}\end{array}\right) \in H^{5}$;
(ii) $\left(x_{i}, x_{j}\right)$ is an even line, that is, it is the image of the complete hyperbolic geodesic with ends at 0 and ∞ under the action of some $A \in H^{5}$;
(iii) $a_{i} d_{j}-b_{j} c_{i}=1$.
(e) $A \in H$ if and only if it is a finite word in the generators T and U. The word can be written as

$$
\begin{equation*}
A=U^{r_{0}} T U^{r_{1}} T \ldots T U^{r_{n+1}} \tag{1.1}
\end{equation*}
$$

where r_{i} are non zero integers except r_{0} and r_{n+1} which may be 0 . The word in turn gives rise to the matrix A. By judicious applications of the generators the word can be made unique ([18]).
(f) (Lemma 1 of [3]) If I is a non-zero ideal of $\mathbb{Z}\left[\lambda_{5}\right]$, then

$$
\left[H^{5}: H_{0}^{5}(I)\right]=N(I) \prod_{P \backslash I}\left(1+\frac{1}{N(P)}\right)
$$

where the product is over the set of all prime ideals P which divide I . Here, for a non-zero ideal I of $\mathbb{Z}[\lambda], N(I)$ denotes the absolute norm of I.
(g) (Theorem 4.5 of [7]) If K, H, G are groups with $K<H<G$, then $[G: K]=[G$: $H][H: K]$. If any two of these indices are finite, then so is the third.
(h) (Corollary 2 of [10]) The indices of the congruence subgroups of H^{5} of level $I=(2)$ are $\left[H^{5}: H^{5}(I)\right]=10$, and $\left[H^{5}: H_{1}^{5}(I)\right]=\left[H^{5}: H_{0}^{5}(I)\right]=5$.

The rest of this paper is organized as follows. In the next section, we give some results concerning congruence subgroup $H_{0}^{5}(I)$, where $I=(2)^{\alpha},(\alpha=1,2)$ or I is a prime ideal, which will be needed later. In section 3 , we find the normalizer of the congruence subgroup $H_{0}^{5}(I)$ in $P S L(2, \mathbb{Z}[\lambda])$, where $I=(2)^{\alpha} I^{\prime},\left(2, I^{\prime}\right)=1$, and the proof of the conjecture in [8] for this case is given in Corollary 17.

2. Congruence subgroup $H_{0}^{5}(I)$

Lemma 1. Let the ideal $I=(2)=2 \mathbb{Z}[\lambda]$ and let $A \in H^{5}$. Then

$$
A \in H_{0}^{5}(I) \text { if and only if } A \equiv \pm\left(\begin{array}{cc}
1 & r \lambda \\
0 & 1
\end{array}\right)(\bmod I)
$$

UZUN

where $r=0,1$.
Proof. By using (g) and (h), we have that

$$
\left[H_{0}^{5}(I): H^{5}(I)\right]=2 .
$$

Then, since $U=\left(\begin{array}{cc}1 & \lambda \\ 0 & 1\end{array}\right) \notin H^{5}(I)$, the partition of $H_{0}^{5}(I)$ associated to the subgroup $H^{5}(I)$ is

$$
\begin{equation*}
H_{0}^{5}(I)=H^{5}(I) \cup U H^{5}(I) \tag{2.2}
\end{equation*}
$$

Thus, for every matrix A in $H_{0}^{5}(I)$, from (2.2), there are two cases as follows.
Case 1. If $A \in H^{5}(I)$, then we get

$$
A \equiv \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod I)
$$

Case 2. If $A \in U H^{5}(I)$, then we have

$$
A \equiv \pm\left(\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right)(\bmod I)
$$

This completes the proof of the lemma.

Corollary 2. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of $H_{0}^{5}(I)$. In this case,
(i) if $I=(2)$, then, $a-d \equiv 0(\bmod (2))$
(ii) if $I=(4)=(2)^{2}$, then, $a-d \equiv 0(\bmod (4))$.

Proof. (i) Since $a^{2}-1=(a-1)(a+1)$, by Lemma 1, we have

$$
\begin{equation*}
a^{2}-1 \equiv 0\left(\bmod (2)^{2}\right) \tag{2.3}
\end{equation*}
$$

Since $A \in H_{0}^{5}(2)$ and $a d-b c=1$, we have

$$
\begin{equation*}
a d \equiv 1(\bmod (2)) \tag{2.4}
\end{equation*}
$$

UZUN

Suppose that $a-d \equiv u(\bmod (2))$ for some $u \in \mathbb{Z}[\lambda]$. Multiplying by a, one has $a^{2}-a d \equiv$ $a u(\bmod (2))$. In this case, since $a \not \equiv 0(\bmod (2))$, by (2.3) and (2.4), we have $u \equiv 0(\bmod (2))$. This implies that $a-d \equiv 0(\bmod (2))$.
(ii) Since $A \in H_{0}^{5}(4)$ and $a d-b c=1$, it is clear that $a d \equiv 1(\bmod (4))$. Here, using a similar argument as in the proof of (i), we have $a-d \equiv 0(\bmod (4))$.

Remark 3. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of $H_{0}^{5}(2)$. Then $a-d \equiv 0\left(\bmod (2)^{2}\right)$ is not necessarily true.

Example 4. From (1.1),

$$
A=U T U^{2} T=\left(\begin{array}{cc}
1+2 \lambda & -\lambda \\
2 \lambda & -1
\end{array}\right) \in H_{0}^{5}(2)
$$

Then, for the matrix A, we have $a-d=2(1+\lambda) \not \equiv 0\left(\bmod (2)^{2}\right)$.
Remark 5. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of $H_{0}^{5}(4)$. Then $a-d \equiv 0\left(\bmod (2)^{3}\right)$ is not necessarily true.

Example 6. If we take $A=\left(\begin{array}{cc}1+2 \lambda & -\lambda \\ 2 \lambda & -1\end{array}\right)$, then, for matrices

$$
A^{2}=\left(\begin{array}{cc}
3+6 \lambda & -2-2 \lambda \\
4(1+\lambda) & -1-2 \lambda
\end{array}\right) \in H_{0}^{5}\left((2)^{2}\right) \text { and } A^{4}=\left(\begin{array}{cc}
29+48 \lambda & -4(3+5 \lambda) \\
8(3+5 \lambda) & -11-16 \lambda
\end{array}\right)
$$

$\in H_{0}^{5}\left((2)^{3}\right)$, we have $a-d=4(1+\lambda) \not \equiv 0\left(\bmod (2)^{3}\right)$ and $a-d=4(10+16 \lambda) \not \equiv 0\left(\bmod (2)^{3}\right)$, respectively.

Remark 7. If the ideal $I \neq(2)$, then Corollary 2 (i) and (ii) are not true.
Example 8. Let $I=(3)$. From (1.1),

$$
B=U T U^{4} T U^{2} T U T U^{-1} T=\left(\begin{array}{cc}
25+40 \lambda & 10+17 \lambda \\
9(2+3 \lambda) & 8+11 \lambda
\end{array}\right) \in H_{0}^{5}(3)
$$

UZUN

For the matrix $B, a=25+40 \lambda$. Then it is easily seen that $a^{2}-1 \not \equiv 0(\bmod (3))$. It follows that $a-d \not \equiv 0(\bmod (3))$.

Example 9. Let $I=(2+\lambda)$. From (1.1),

$$
C=T U^{2} T U^{3} T U^{2} T U^{-2} T=\left(\begin{array}{cc}
12+25 \lambda & 5+6 \lambda \\
-(2+\lambda)^{2}(4+5 \lambda) & -4(3+5 \lambda)
\end{array}\right) \in H_{0}^{5}(2+\lambda)
$$

For the matrix $C, a=12+25 \lambda$ and $a^{2}-1=(11+25 \lambda)(13+25 \lambda)$. From (a), we have $\operatorname{Nor}\left(a^{2}-1\right)=131.229$ and $\operatorname{Nor}(2+\lambda)=5$. In this case, since $\operatorname{Nor}\left(a^{2}-1\right) \equiv 4 \bmod 5$, we obtain $a^{2}-1 \not \equiv 0(\bmod (2+\lambda))$. This implies that $a-d \not \equiv 0(\bmod (2+\lambda))$.

Example 10. Let $I=(4-\lambda)$. From (1.1),

$$
D=T U^{7} T U^{-5} T=\left(\begin{array}{cc}
5 \lambda & 1 \\
-(4-\lambda)^{3}(2+3 \lambda) & -7 \lambda
\end{array}\right) \in H_{0}^{5}(4-\lambda) .
$$

For the matrix $D, a=5 \lambda$. Using a similar argument as in Example(9), we have $a^{2}-1 \not \equiv 0(\bmod (4-\lambda))$. This implies that $a-d \not \equiv 0(\bmod (4-\lambda))$.

Corollary 11. $H_{0}^{5}(2)=H_{1}^{5}(2)$.
Lemma 12. Let $I=(\tau)$ be a prime ideal of $\mathbb{Z}[\lambda]$. Let p be the positive rational prime which lies below τ. Then
(i) $(p)=(\tau)$ if and only if $H_{0}^{5}(p)=H_{0}^{5}(\tau)$.
(ii) $(p) \neq(\tau)$ if and only if $H_{0}^{5}(p) \varsubsetneqq H_{0}^{5}(\tau)$.

Proof. (i) If $(p)=(\tau)$, then it is easily seen that $H_{0}^{5}(p)=H_{0}^{5}(\tau)$. Suppose that $H_{0}^{5}(p)=H_{0}^{5}(\tau)$. Let $x=\frac{1}{\tau} \in \mathbb{Q}(\lambda)$. By Leutbecher's Theorem ([14], [15]), x is a cusp of H^{5}. By (b), the reduced form for x is of the form $\frac{c}{c \tau}$, where c is a unit in $\mathbb{Z}[\lambda]$. Thus, by (d), $H_{0}^{5}(\tau)$ contains an element of the form

$$
A_{c}=\left(\begin{array}{ll}
c & b \tag{2.5}\\
c \tau & d
\end{array}\right)
$$

In this case, since $H_{0}^{5}(p)=H_{0}^{5}(\tau)$, it follows that $\tau=c^{-1} p u$, where $u \in \mathbb{Z}[\lambda]$. Thus we have $(p)=(\tau)$.

UZUN

(ii) Let $(p) \neq(\tau)$. Since $(p) \subset(\tau)$, it is clear that $H_{0}^{5}(p)<H_{0}^{5}(\tau)$. By (2.5), $A_{c} \notin H_{0}^{5}(p)$. This implies that $H_{0}^{5}(p) \supsetneqq H_{0}^{5}(\tau)$.

Conversely, from (2.5), we have $(p) \neq(\tau)$.
3. Upper bound for $N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)$

Let I^{\prime} be an ideal of $\mathbb{Z}[\lambda]$. Since $\mathbb{Z}[\lambda]$ is a principal ideal domain, $I^{\prime}=(\tau)$ for some τ. Note that we may assume that τ is positive.

From now on, we take the ideal

$$
\begin{equation*}
I=(2)^{\alpha} I^{\prime}=(2)^{\alpha} \cap I^{\prime}=\left(2^{\alpha} \tau\right) \tag{3.6}
\end{equation*}
$$

where $\left(2, I^{\prime}\right)=1$ and $I^{\prime}=(\tau)$ is a prime ideal. Denote by $N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)$ the normalizer of $H_{0}^{5}\left(2^{\alpha} \tau\right)$ in $P S L(2, \mathbb{Z}[\lambda])$. Let $X=\left(\begin{array}{ll}x & z \\ y & t\end{array}\right) \in N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)$, and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $H_{0}^{5}\left(2^{\alpha} \tau\right)$. Then, we have that

$$
\begin{align*}
X A X^{-1}= & \left(\begin{array}{cc}
a t x-b x y-d y z+c t z & -(a-d) x z+b x^{2}-c z^{2} \\
(a-d) t y-b y^{2}+c t^{2} & -a y z+b y x+d x t-c t z
\end{array}\right) \in H_{0}^{5}\left(2^{\alpha} \tau\right) \tag{3.7}\\
& X^{-1} A X=\left(\begin{array}{cc}
* & * \\
-(a-d) x y-b y^{2}+c x^{2} & *
\end{array}\right) \in H_{0}^{5}\left(2^{\alpha} \tau\right) \tag{3.8}
\end{align*}
$$

If we take $A=\left(\begin{array}{cc}1 & \lambda \\ 0 & 1\end{array}\right)$, then,

$$
\begin{align*}
& X A X^{-1}=\left(\begin{array}{ll}
1-x y \lambda & x^{2} \lambda \\
-y^{2} \lambda & 1+x y \lambda
\end{array}\right) \in H_{0}^{5}\left(2^{\alpha} \tau\right) \tag{3.9}\\
& X^{-1} A X=\left(\begin{array}{ll}
1+t y \lambda & t^{2} \lambda \\
-y^{2} \lambda & 1-t y \lambda
\end{array}\right) \in H_{0}^{5}\left(2^{\alpha} \tau\right) \tag{3.10}
\end{align*}
$$

Lemma 13. Let $X=\left(\begin{array}{ll}x & z \\ y & t\end{array}\right) \in N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)$. Then

$$
y \equiv 0\left(\bmod \left(2^{\alpha^{\prime}} \tau\right)\right)
$$

UZUN

where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$.
Proof. Since λ is a unit in $\mathbb{Z}[\lambda]$, by (3.9) and (3.10), then

$$
\begin{equation*}
y^{2} \equiv 0\left(\bmod \left(2^{\alpha} \tau\right)\right) \tag{3.11}
\end{equation*}
$$

Since $a d-b c=1$ and $x t-y z=1$, from (3.8), we have

$$
\begin{equation*}
\left(a^{2}-1\right) y \equiv 0\left(\bmod \left(2^{\alpha} \tau\right)\right) \tag{3.12}
\end{equation*}
$$

Here, since $I^{\prime}=(\tau)$ and (2) are prime ideals, by (3.6), (3.11) and (3.12), we obtain

$$
\begin{gather*}
y \equiv 0(\bmod (2)) \tag{3.13}\\
\left(a^{2}-1\right) y \equiv 0(\bmod (2)) \tag{3.14}
\end{gather*}
$$

and

$$
\begin{gather*}
y \equiv 0(\bmod (\tau)) \tag{3.15}\\
\left(a^{2}-1\right) y \equiv 0(\bmod (\tau)) \tag{3.16}
\end{gather*}
$$

By (3.13), there exists $\alpha^{\prime} \in \mathbb{Z}_{+}$such that

$$
\begin{equation*}
y \equiv 0\left(\bmod (2)^{\alpha^{\prime}}\right) \text { and } y \not \equiv 0\left(\bmod (2)^{\alpha^{\prime}+1}\right) \tag{3.17}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
y^{2} \equiv 0\left(\bmod (2)^{2 \alpha^{\prime}}\right) \tag{3.18}
\end{equation*}
$$

For α and α^{\prime}, there are two cases:
Case1. Let $\alpha<\alpha^{\prime}$. Then (3.11) and (3.12) are always true.
Case2. Let $\alpha \geq \alpha^{\prime}$. From (3.11) and (3.18), we obtain

$$
\begin{equation*}
\alpha \leq 2 \alpha^{\prime} \Rightarrow \frac{\alpha}{2} \leq \alpha^{\prime} \leq \alpha . \tag{3.19}
\end{equation*}
$$

From (3) and (3.17), we get

$$
\begin{equation*}
\left(a^{2}-1\right) y \equiv 0\left(\bmod (2)^{\alpha^{\prime}+2}\right) \tag{3.20}
\end{equation*}
$$

UZUN

By using (3.12) and (3.20), we have that

$$
\begin{equation*}
\alpha \leq \alpha^{\prime}+2 \Rightarrow 0 \leq \alpha-\alpha^{\prime} \leq 2 \tag{3.21}
\end{equation*}
$$

Thus, the smallest element $\alpha^{\prime} \in \mathbb{Z}_{+}$which satisfies (3.19) and (3.21) must be found.
(i) For $\alpha=1,2$ and 3, by (3.19) and (3.21), we have that $\alpha^{\prime}=1,1$ and 2 , respectively.
(ii) For $\alpha \geq 4$, there exists an element $\beta \in \mathbb{N}$ such that $\alpha=\beta+4$. In this case, by (3.19) and (3.21),

$$
2 \leq \alpha^{\prime} \text { and } \beta+2 \leq \alpha^{\prime}
$$

Since α^{\prime} is smallest, it follows that $\alpha^{\prime}=\beta+2$. Thus, for every $\alpha \in \mathbb{Z}_{+}$such that $\alpha \geq 4$, we obtain $\alpha^{\prime}=\alpha-2$. Consequently, from (i) and (ii), we have $y \equiv 0\left(\bmod \left(2^{\alpha^{\prime}} \tau\right)\right)$, where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$.

This completes the proof of the lemma.

Lemma 14.(Lemma 1 of [12]) If I is a prime ideal of $\mathbb{Z}[\lambda]$, then

$$
N\left(H_{0}^{5}(I)\right)=H_{0}^{5}(I)
$$

Remark 15. If I is not a prime ideal of $\mathbb{Z}[\lambda]$, then Lemma 14 is not necessarily true as in the following theorem.

Theorem 16. Let the ideal $I=\left(2^{\alpha} \tau\right)$ as in (6). Then

$$
N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)=H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right)
$$

where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$.
Proof. By Corollary 2 (i) and (ii), it is clear that

$$
\begin{equation*}
H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right) \leq N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right) \tag{3.22}
\end{equation*}
$$

where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$. Now we prove the converse inclusion, that is,

$$
H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right) \geq N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)
$$

where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$. Let $X=\left(\begin{array}{cc}x & z \\ y & t\end{array}\right) \in N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)$. Then, by Lemma 13 and (3.10), it is clear that

$$
y \equiv 0\left(\bmod \left(2^{\alpha^{\prime}} \tau\right)\right)
$$

This implies that $y=c 2^{\alpha^{\prime}} \tau$ for some $c \in \mathbb{Z}[\lambda]$. Suppose $c \neq 0$. Recall that $a=\frac{x}{c 2^{\alpha^{\prime} \tau} \in}$ $\mathbb{Q}(\lambda)$ is a cusp of H^{5} as in (b). Let $a=\frac{x^{\prime}}{y^{\prime}}$ be the reduced form for a. Then H^{5} contains an element of the form

$$
Y=\left(\begin{array}{cc}
x^{\prime} & z^{\prime} \\
y^{\prime} & t^{\prime}
\end{array}\right)
$$

Since $\left(x, c 2^{\alpha^{\prime}} \tau\right)=1, y^{\prime}=\mu c 2^{\alpha^{\prime}} \tau$ where μ is a unit of $\mathbb{Z}[\lambda]$. Hence y^{\prime} is a multiple of $2^{\alpha^{\prime}} \tau$. This implies that $Y \in H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right) \leq N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)$. Since $X \infty=Y \infty$, it follows that

$$
Y^{-1} X=\left(\begin{array}{ll}
u & v \\
0 & u^{-1}
\end{array}\right) \in N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)
$$

where $u, v \in \mathbb{Z}[\lambda]$. Applying (9) and (10) to $Y^{-1} X$, we have that

$$
\left(\begin{array}{ll}
1 & u^{2} \lambda \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & u^{-2} \lambda \\
0 & 1
\end{array}\right)
$$

are elements of $H_{0}^{5}\left(2^{\alpha} \tau\right)$. By (c), $u= \pm 1$. Multiplying $Y^{-1} X$ by $-I$ if necessary, we may assume that $u=1$ and

$$
Y^{-1} X=\left(\begin{array}{ll}
1 & x+y \lambda \\
0 & 1
\end{array}\right)
$$

where $x, y \in \mathbb{Z}$. Note that

$$
\left(\begin{array}{ll}
1 & y \lambda \\
0 & 1
\end{array}\right) \in N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)
$$

As a consequence,

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \in N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)
$$

Suppose that $x \neq 0$. Since $\lambda \in \mathbb{R} \backslash \mathbb{Q}$, for any $\epsilon>0$, there exist k and l such that

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)^{k}\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right)^{l}=\left(\begin{array}{cc}
1 & \delta \\
0 & 1
\end{array}\right)=\sigma \in N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right)
$$

where $0<|\delta|<\epsilon$. As a consequence,

$$
\sigma\left(\begin{array}{ll}
1 & 0 \\
2^{\alpha} p \lambda & 1
\end{array}\right) \sigma^{-1}=\left(\begin{array}{ll}
1+2^{\alpha} \delta p & 2^{\alpha} \delta^{2} p \\
0 & 1-2^{\alpha} \delta p
\end{array}\right) \in H_{0}^{5}\left(2^{\alpha} \tau\right)
$$

where p is the positive rational prime which lies below τ. This implies that $H_{0}^{5}\left(2^{\alpha} \tau\right)$ is not discrete, giving a contradiction. Hence $x=0$ and $Y^{-1} X \in H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right)$. Since $Y \in H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right)$, then we obtain $X \in H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right)$.

Suppose $y=0$. From the above argument, we have that $X \in H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right)$. Consequently,

$$
N\left(H_{0}^{5}\left(2^{\alpha} \tau\right)\right) \leq H_{0}^{5}\left(2^{\alpha^{\prime}} \tau\right)
$$

where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$.
This completes the proof of the theorem.
Corollary 17. Let $I=(2)^{\alpha} I^{\prime}$ be an ideal of $\mathbb{Z}[\lambda]$, where I^{\prime} is a prime ideal of $\mathbb{Z}[\lambda]$ and $\left(2, I^{\prime}\right)=1$. Then the normalizer of $H_{0}^{5}(I)$ in H^{5} is $H_{0}^{5}\left((2)^{\alpha^{\prime}} I^{\prime}\right)$, where $\alpha^{\prime}=$ $\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$.

Proof. From Theorem 16, it is clear that

$$
N\left(H_{0}^{5}(I)\right) \cap H^{5}=H_{0}^{5}\left((2)^{\alpha^{\prime}} I^{\prime}\right)
$$

where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$.
Theorem 18. Let $I=(2)^{\alpha} I^{\prime}$ be an ideal of $\mathbb{Z}[\lambda]$, and $\left(2, I^{\prime}\right)=1$. Then

$$
\left[H_{0}^{5}\left((2)^{\alpha^{\prime}} I^{\prime}\right): H_{0}^{5}\left((2)^{\alpha} I^{\prime}\right)\right]= \begin{cases}1, & \alpha=1 \\ 4, & \alpha=2,3 \\ 16, & \alpha \geq 4\end{cases}
$$

where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$.

Proof. By using (f) and (g), we have that

$$
\left[H_{0}^{5}\left((2)^{\alpha^{\prime}} I^{\prime}\right): H_{0}^{5}\left((2)^{\alpha} I^{\prime}\right)\right]=\frac{\left[H^{5}: H_{0}^{5}\left((2)^{\alpha} I^{\prime}\right)\right]}{\left[H^{5}: H_{0}^{5}\left((2)^{\alpha^{\prime}} I^{\prime}\right)\right]}=\left\{\begin{aligned}
1, & \alpha=1 \\
4, & \alpha=2,3 \\
16, & \alpha \geq 4
\end{aligned}\right.
$$

where $\alpha^{\prime}=\alpha-\min \left(2,\left[\left|\frac{\alpha}{2}\right|\right]\right)$.

Acknowledgements

I would like to express my sincere gratitude to Professor Mehmet Akbaş for his immense help during the preparation of this paper.

References

[1] Akbaş, M., Singerman, D.: The Normalizer $\Gamma(N)$ in $\operatorname{PSL}(2, \mathbb{R})$, Glasgow Math. J. 32,317327 (1990).
[2] Atkin, A. O. L., Lehner, J.: Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 185,134-160 (1970).
[3] Chan, S.-P., Lang, M.-L., Lim, C.-H., Tan, S.-P.: The invariants of the congruence subgroups $G_{5}(I)$ of the Hecke group G_{5}, Illinois J. of Math. 38,636-652 (1994).
[4] Conway, J.H., Norton, S.P.: Montrous Moonshine, Bull. London Math. Soc. 11,308-339 (1979).
[5] Conway, J.H.: Understanding Groups like $\Gamma_{0}(N)$, Groups, difference sets and the monester (Columbus, Ohio, 1993), Ohio State Univ. Math. Res. Inst. Publ., 4, de Gruyter, Berlin, 327-343 (1996).
[6] Hecke, E.: Uber die Bestimmung Dirichletscher Reichen durch ihre Funktionalgleichungen, Math. Ann. 112,664-699(1936).
[7] Hungerfort, T.W.: Algebra, Springer Verlag, Springer Verlag, New York, Heidelberg, Berlin, 1980.
[8] Ivrissimtzis, I.P.: Congruence subgroups of Hecke groups and regular dessins, Ph.D. Thesis, University of Southampton, 1998.
[9] Lang, M.-L.: Normalizers of the congruence subgroups of the Hecke groups G_{4} and G_{6}, Journal of Number Theory, 90,31-43 (2001).
[10] Lang, M.-L., Lim, C.-H., Tan, S.-P.: Principal Congruence Subgroups of the Hecke Groups, Journal of Number Theory 85, 220-130 (2000).
[11] Lang, M.-L., Tan, S.-P.: Normalizers of the congruence subgroups of the Hecke group G_{5} II, Proc.Amer.Math.Soc. 127, 2271-2280 (2000).
[12] Lang, M.-L., Tan, S.-P.: Normalizers of the congruence subgroups of the Hecke group G_{5}, Proc.Amer.Math.Soc. 127, 3131-3140 (1999).
[13] Lang, M.-L., Lim, C.-H., Tan, S.-P.: Independent generators for congruence subgroups of Hecke groups, Math. Z. 220, 569-594 (1995).
[14] Leutbecher, A.: Uber die Heckeschen Gruppen $G(\lambda)$, Abh. Math. Sem. Hambg. 31, 199205 (1967).
[15] Leutbecher, A.: Uber die Heckeschen Gruppen $G(\lambda)$, II, Math. Ann. 211, 63-68 (1974).
[16] Newman, M.: The normalizer of certain Modular Subgroups, Canada J. Math. 8, 29-31 (1956).
[17] Parson, L.A.: Generalized Kloosterman sums and the Fourier coefficients of cusp forms, Trans. Amer. Math. Soc. 217, 329-350 (1976).
[18] Rosen, D.: The substitutions of the Hecke group $\Gamma\left(2 \cos \frac{\pi}{5}\right)$, Arch. Math.46, 533-538 (1986).

Süleyman UZUN

Department of Mathematics, Faculty of Science and Arts,
Karadeniz Technical University, 61080 Trabzon-TURKEY
e-mail: suzunktu@yahoo.com

[^0]: MSC: 11F06, 20H05

