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An Investigation on a Subclass of p-Valently Starlike

Functions in the Unit Disc
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Abstract

LetAp denote the class of functions of the form f(z) = zp+ap+1z
p+1+ap+2z

p+2+

· · · which are regular and p-valent in the open unit disc D = {z : |z| < 1}. Let Mp(α)

be the subclass of Ap consisting of functions f(z) which satisfy Re
�
z f ′(z)

f(z)

�
< α,

(z ∈ D) for some real α (α > 1).

The aim of this paper is to give a representation theorem, a distortion theorem

and a coefficient inequality for the class Mp(α).

Key Words: Starlike and convex functions, distortion theorem, coefficient inequal-

ity.

1. Introduction

Let Ω be the family of functions w(z) which are regular in the open unit disc D and
satisfy the conditions w(0) = 0, |w(z)| < 1 for z ∈ D.

Let, Ap denote the class of functions f(z) of the form

f(z) = zp + ap+1z
p+1 + ap+2z

p+2 + · · · , (1)

which are analytic and p-valent in the open unit disc D.
Finally, let Mp(α) be the subclass of Ap consisting of functions f(z) which satisfy the

inequality

Re

(
z
f ′(z)
f(z)

)
< α, z ∈ D, α > p. (2)
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This class was introduced by S. Owa and H. M. Sirivastava ([3], [4], [5]).

Definition 1 ([1]) Let f(z) and g(z) be analytic functions in the open unit disc D. Then
we say that the function f(z) is subordinate to g(z), written f ≺ g, if there exist as an
analytic function w(z) in the open unit disc D such that w(0) = 0, |w(z)| < 1 and
f(z) = g(w(z)) for all z ∈ D.

In particular, if g(z) is univalent in D then f ≺ g if and only if f(0) = g(0) and
f(D) ⊆ g(D).

The following lemma, known as the Jack’s Lemma, is needed in the sequel.

Lemma 1 ([2]) Let w(z) be a non-constant and analytic function in the unit disc D with
w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at the point z0, then
z0w

′(z0) = kw(z0) and k ≥ 1.

2. Main Results

In this section we derive a representation theorem, a distortion theorem and a coeffi-
cient inequality for the class Mp(α).

Lemma 2

f(z) ∈ Mp(α) ⇔
(

z
f ′(z)
f(z)

)
≺ p − (2α − p)z

1− z
.

Proof. Let us define the function p(z) by

p(z) =
α − z f ′(z)

f(z)

α − p

for f(z) ∈ Mp(α). Then p(z) = 1 + p1z + p2z
2 + · · · is analytic in D, p(0) = 1 and

Rep(z) > 0 (z ∈ D). Hence we have

1 + w(z)
1− w(z)

= p(z) =
α − z f ′(z)

f(z)

α − p

or

z
f ′(z)
f(z)

=
p − (2α− p)w(z)

1− w(z)
⇒ z

f ′(z)
f(z)

≺ p − (2α− p)z
1− z

.
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Conversely

z
f ′(z)
f(z)

≺ p − (2α − p)z
1− z

⇒
α − z f ′(z)

f(z)

α − p
=

1 +w(z)
1− w(z)

= p(z) ⇒

Re

(
z
f ′(z)
f(z)

)
< α.

✷

Theorem 1 If f(z) ∈ Ap satisfies(
z
f ′(z)
f(z)

− p

)
≺ 2(p − α)z

1− z
, (3)

then f(z) ∈ Mp(α).

Proof. The linear transformation

w1 = h(z) =
2(p − α)z
1− z

maps |z| = r onto the circle centered at C(r) = 2(p−α)r2

1−r2 and having the radius ρ(r) =
2(α−p)r

1−r2 . Therefore h(D) is contained in the closed disc centered at C(r) with radius ρ(r).

On the other hand, if we define the function w(z) by

f(z)
zp

= (1− w(z))−2(p−α), (4)

where (1 − w(z))−2(p−α) has the value 1 at the origin, then w(z) is analytic in D, and
w(0) = 0. If we take the logarithmic derivate of equality (4), simple calculations yield

z
f ′(z)
f(z)

− p =
2(p − α)zw′(z)

1− w(z)
. (5)

Now it is easy to realize that the subordination (3) is equivalent to |w(z)| < 1 for all
z ∈ D. Indeed, assume the contrary. There exists z0 ∈ D such that |w(z0)| = 1. Then
by Jack’s lemma, z0w

′(z0) = kw(z0) and k ≥ 1, for such z0 ∈ D, we have

z0
f ′(z0)
f(z0)

− p =
2(p − α)kw(z0)

1− w(z0)
= h(w(z0)) /∈ h(D)
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because |w(z0)| = 1 and k ≥ 1. But this contradicts condition (3) of this theorem and
so |w(z0)| < 1 for all z ∈ D. The sharpness of the result follows from the fact that
f(z)
zp = (1− w(z))−2(p−α) implies z f ′(z)

f(z) − p = 2(p−α)w(z)
1−w(z) = h(z).

On the other hand we have(
z
f ′(z)
f(z)

− p

)
≺ 2(p − α)z

1− z
⇒ z

f ′(z)
f(z)

=
p − (2α − p)w(z)

1− w(z)
,

which shows that f(z) ∈ Mp(α) (by using Lemma 2). The sharpness of the result follows

from the fact that f(z)
zp = (1− z)−2(p−α) implies

(
z

f ′(z)
f(z) − p

)
≺ 2(p−α)z

1−z . ✷

Corollary 1 If f(z) ∈ Mp(α) then f(z) can be written in the form f(z) = zp(1 −
w(z))−2(p−α), w(z) ∈ Ω. Therefore the function f∗(z) = zp

(1−z)2(p−α) belongs to the class

Mp(α).

Theorem 2 If f(z) ∈ Mp(α), then

rp(1− r)2(α−p) ≤ |f(z)| ≤ rp(1 + r)2(α−p). (6)

This result is sharp, since the extremal function is f∗(z) = zp

(1−z)2(p−α) .

Proof. The linear transformation

w2 = w2(z) =
p − (2α− p)z

1− z

maps |z| = r into the circle∣∣∣∣w2 −
p − (2α − p)r2

1− r2

∣∣∣∣ ≤ 2(α − p)r
1− r2

. (7)

On the other hand, by using Lemma 2, the definition of subordination and (7), we get∣∣∣∣z f ′(z)
f(z)

− p − (2α − p)r2

1− r2

∣∣∣∣ ≤ 2(α − p)r
1− r2

. (8)

The inequality (8) can be written in the form

p − 2(α− p)r − (2α− p)r2

1− r2
≤ Re

(
z
f ′(z)
f(z)

)
≤ p + 2(α − p)r − (2α − p)r2

1− r2
. (9)
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Since

Re

(
z
f ′(z)
f(z)

)
= r

∂

∂r
log |f(z)| , |z| = r,

and by (9), we obtain

p − 2(α − p)r − (2α − p)r2

r(1 + r)(1− r)
≤ ∂

∂r
log |f(z)| ≤ p + 2(α − p)r − (2α − p)r2

r(1 + r)(1− r)
.

Integrating both sides of this inequalities from 0 to r we obtain (6). ✷

Corollary 2 The radius of starlikeness of the class Mp(α) is

rs =
p

2α − p
.

This radius is sharp because the extremal function is f∗(z) = zp

(1−z)2(p−α) .

Proof. By using the inequality (9), we get

Re

(
z
f ′(z)
f(z)

)
≥ p − 2(α− p)r − (2α− p)r2

1− r2
. (10)

Since r < rs, the left hand side of the preceding inequality is positive, which implies that

rs =
p

2α − p
.

Also note that inequality (10) becomes an equality for the function

f∗(z) =
zp

(1− z)2(p−α)
.

It follows that

rs =
p

2α − p

and the proof is complete. ✷

225
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Theorem 3 If f(z) = zp + ap+1z
p+1 + ap+2z

p+2 + · · · belongs to Mp(α), then

|ap+k| ≤
1
k!

k−1∏
m=0

2(α − p) +m. (11)

Proof. Using Lemma 2, we get

p(z) =
α− z f ′(z)

f(z)

α − p
⇔ zf ′(z) = αf(z) + (p − α)f(z)p(z) (12)




pzp + (p + 1)ap+1z
p+1 + (p + 2)ap+2z

p+2 + · · ·+ (p + k)ap+kzp+k + · · · =(
αzp + αap+1z

p+1 + αap+2z
p+2 + · · ·+ αap+kzp+k + · · ·

)
+

(p − α)
(
zp + ap+1z

p+1 + ap+2z
p+2 + · · ·+ ap+kzp+k + · · ·

)
·(

1 + p1z + p2z
2 + · · ·+ pkzk + · · ·

)
.

(13)

Evaluating the coefficient of zp+k in both sides (13) gives

(p + k)ap+k =

{
αap+k + p(ap+k + p1ap+k−1 + p2ap+k−2 + · · ·+ pk−1ap+1 + pk)

−α(ap+k + p1ap+k−1 + p2ap+k−2 + · · ·+ pk−1ap+1 + pk).
(14)

On the other hand, we have that

|pn| ≤ 2. (15)

If we consider the relations (14) and (15) together, then we obtain

|ap+k| ≤
2(α − p)

k

k∑
m=1

|ap+m−1|, |ap| = 1. (16)

To prove (11) we will use the induction principle.
Now, consider inequality (16) and the following inequality:

|ap+k| ≤
1
k!

k−1∏
m=0

2(α − p) +m. (17)

The right hand sides of these inequalities are the same, because
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For k = 1:

|ap+1| ≤
1
1!

0∏
m=0

2(α − p) + m = 2(α − p).

|ap+1| ≤
2(α − p)

1

1∑
m=1

|ap+m−1| = 2(α − p);

For k = 2:

|ap+2| ≤
1
2!

1∏
m=0

2(α − p) +m =
1
2!
2(α − p)(2(α − p) + 1).

|ap+2 | ≤
2(α − p)

2

2∑
m=1

|ap+m−1| =
2(α − p)

2
(|ap|+ |ap+1|) =

1
2!
2(α − p)(2(α − p) + 1).

Now, suppose that this result is true for k = t. Then we have

|ap+t| ≤
1
t!

t−1∏
m=0

x + m ⇒

|ap+t| ≤
1
t!
(x)(x + 1)(x + 2) · · · (x + (t − 1)). (18)

|ap+t| ≤
x

t

t∑
m=1

|ap+t−1| ⇒

|ap+t| ≤
x

t
(1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t−1|) , (19)

where x = 2(α− p).
From (18), (19) and the induction hypothesis, we get

x

t!
(x + 1)(x + 2) · · · (x + (t − 1)) =

x

t
(1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t−1|) ⇒

1
t!
(x + 1)(x + 2) · · · (x + (t − 1)) =

1
t
(1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t−1|) ⇒

x + t

t + 1
· 1
t!
(x+1)(x+2) · · ·(x+(t−1)) =

x + t

t + 1
· 1
t
(1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t−1|) ⇒
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1
(t + 1)!

(x + 1)(x + 2) · · · (x + t) =

{
1

t+1 [
x
t (1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t−1|)

+(1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t−1|)] ⇒

1
(t + 1)!

(x+1)(x+2) · · · (x+ t) =
|ap+t|
t + 1

+
1

t + 1
(1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t−1|) ⇒

1
(t + 1)!

(x+ 1)(x + 2) · · · (x+ t) =
1

t + 1
(1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t−1|+ |ap+t|) ⇒

x

(t + 1)!
(x + 1)(x + 2) · · · (x + t) =

x

t + 1
(1 + |ap+1|+ |ap+2|+ · · ·+ |ap+t|) (20)

Equality (20) shows that the result is valid for k = t + 1. Therefore, we have (11) and
the proof is complete. ✷
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