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Abstract

The Potts model on a Cayley tree in the presence of competing two binary

interactions and magnetic field is considered. We exactly solve a problem of phase

transitions for the model,namely we calculate critical surface such that there is a

phase transition above it,and a single Gibbs state found elsewhere.
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1. Introduction

Lattice spin systems is a large class of systems considered in statistical mechanics.
Some of them have a real physical meaning, others are studied as suitable simplified
models of more complicated systems. The structure of the lattice plays an important
role in investigation of spin systems. For example, in order to study a phase transition
problem for a system on Z

d and on a Cayley tree, there are two different methods:
Pirogov-Sinai theory on Z

d, Markov random field theory and recurrent equations of this
theory on Cayley tree. In [2-9], Gibbs measures are described for several models on a
Cayley tree, using the Markov random field theory. The Potts model was introduced
as a generalization of the Ising model. The idea came from the representation of the
Ising model as interacting spins which can be either parallel or antiparallel. An obvious
generalization was to extend the number of directions of the spins. Such a model was
proposed by C.Domb as a PhD thesis for his student R.Potts in 1952. At present, the
Potts model encompasses a number of problems in statistical physics and lattice theory.
It has been a subject of increasing intense research interest in recent years [10]. It includes
the ice-rule vertex and bond percolation models as special cases. In this paper we consider
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a Potts model with competing two binary interactions and external magnetic field on the
Cayley tree. The paper is organized as follows. In sections 2 we give definitions of the
model, Cayley tree and Gibbs measures. In sections 3 we reduce the problem of describing
limit Gibbs measures to the problem of solving a system of nonlinear functional equations.
Last section is devoted to describe translation-invariant Gibbs measures.

2. Definitions

Cayley tree. The Cayley tree Γk (see [1]) of order k ≥ 1 is an infinite tree,
i.e., a graph without cycles, from each vertex of which exactly k + 1 edges issue. Let
Γk = (V, L, i) where V is the set of of vertices of Γk, L is the set of edges of Γk and
i is the incidence function associating each edge � ∈ L with its ends points x, y ∈ V.

If i(�) = {x, y}, then x and y are called nearest neighboring vertices and we write
� =< x, y >. The distance d(x, y), x, y ∈ V on Cayley tree is defined by the formula

d(x, y) = min{d|x = x0, x1, x2, ..., xd−1, xd = y ∈ V such that the pairs

< x0, x1 >, ..., < xd−1, xd > are neighboring vertices}.

For the fixed x0 ∈ V we set

Wn = {x ∈ V : d(x0, x) = n},

Vn = {x ∈ V : d(x0, x) ≤ n},
Ln = {� =< x, y >∈ L : x, y ∈ Vn}.

A collection of the pairs < x0, x1 >,...,< xd−1, y > is called a path from x to y. We write
x < y if the path from x0 to y goes through x. We call the vertex y a direct successor of
x, if y > x and x, y are nearest neighbors. The set of the direct successors of x is denoted
by S(x), i.e.,

S(x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ W

We observe that, for any vertex x �= x0, x has k direct successors and x0 has k + 1.
The vertices x and y are called second neighbors which is denoted by > x, y <, if there
exists a vertex z ∈ V such that x, z and y, z are nearest neighbors.

We consider a semi-infinite Cayley tree Jk of order k ≥ 2, i. e., a graph without cycles
with (k + 1) edges issuing from each vertex except x0 and with k edges issuing from the
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vertex x0, which is called the tree root. According to well known theorems, this can
be reconstituted as a Cayley tree [4]. The second neighbors > x, y < is called one-level
neighbors, if vertices x and y belong to Wn for some n, that is if they are situated on the
same level. We will consider only one-level second neighbors.

In the Potts model, spin variables σ(x) take their values on a discrete set Φ =

{1, 2, ..., q}, q > 2 which are associated with each vertex of the tree Jk. The Potts model
with competing two binary interactions, is defined by the following Hamiltonian:

H(σ) = −J
∑

〈x,y〉
δσ(x)σ(y) − J1

∑

>x,y<

δσ(x)σ(y) − h
∑

x∈V

δ1σ(x), (2.1)

where the sum in the first term ranges all nearest neighbors, second sum ranges all one-
level second neighbors, δ is the Kroneker’s symbol and J, J1, h ∈ R are constants.

3. Recursive Equations

There are several approachs to derive equation or system equations describing limiting
Gibbs measure for lattice models on Cayley tree. One approach is based on properties
of Markov random fields on Bethe lattices [6–9]. Another approach is based on recursive
equations for partition functions (for example [5]). Naturally, both approaches lead to the
same equation (see [3]). The second approach is more suitable for models with competing
interactions.

Let Λ be a finite subset of V. We will denote by σ(Λ) the restriction of σ to Λ. Let
σ(V\Λ) be a fixed boundary configuration. The total energy of σ(Λ) under condition
σ(V\Λ) is defined as

HΛ(σ(Λ)|σ(V \Λ)) = − J
∑

<x,y>:x,y∈Λ

δσ(x)σ(y) − J1

∑

>x,y<:x,y∈Λ

δσ(x)σ(y)

− J
∑

<x,y>:x∈Λ,y /∈Λ

δσ(x)σ(y) − J1

∑

>x,y<:x∈Λ,y /∈Λ

δσ(x)σ(y)(3.1)

− h
∑

x∈Λ

δ1σ(x).

Then partition function ZΛ(σ(V \ Λ) in volume Λ under boundary condition σ(V\Λ)
is defined as
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ZΛ(σ(V \Λ)) =
∑

σ(Λ)∈Ω(Λ)

exp(−βHΛ(σ(Λ)|σ(V \Λ))), (3.2)

where Ω(Λ) is the set of all configuration in volume Λ and β = 1
T is the inverse temper-

ature.
We consider the configuration σ(Vn) and the partition functions ZVn in volume Vn

and for the brevity we will denote them as σn and Z(n)respectively. Let us decompose

the partition function Z(n) into following summands:

Z(n) =
q∑

i=1

Z
(n)
i ,

where

Z
(n)
i =

∑

σn∈Ω(Vn):σ(x0)=i

exp(−βHVn(σn|σ(V \Vn))). (3.3)

We set
θ = exp(βJ); θ1 = exp(βJ1); θ2 = exp(βh).

We will consider case q = 3 and k = 2.
Let S(x0) = {x1, x2}. If σ(x0) = i, σ(x1) = j and σ(x2) = m, then from (3.1) and

(3.2) we have following

Z
(n)
i =

3∑

j,m=1

exp(Jδij + Jδim + J1δjm + hδ1i)Z
(n−1)
j Z(n−1)

m ,

so that
Z

(n)
1 = θ2[θ2θ1(Z(n−1)

1 )2 + 2θZ(n−1)
1 Z

(n−1)
2

+2θZ(n−1)
1 Z

(n−1)
3 + 2Z(n−1)

2 Z
(n−1)
3 + θ1(Z(n−1)

2 )2 + θ1(Z(n−1)
3 )2],

Z
(n)
2 = θ1(Z(n−1)

1 )2 + 2θZ(n−1)
1 Z

(n−1)
2

+2Z(n−1)
1 Z

(n−1)
3 + 2θZ(n−1)

2 Z
(n−1)
3 + θ2θ1(Z(n−1)

2 )2 + θ1(Z(n−1)
3 )2,
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Z
(n)
3 = θ1(Z(n−1)

1 )2 + 2θZ(n−1)
2 Z

(n−1)
3 + 2θZ(n−1)

2 Z
(n−1)
3

+2θ(Z(n−1)
1 )2(Z(n−1)

3 )2 + θ1(Z(n−1)
1 )2 + θ2θ1(Z(n−1)

3 )2.

After replacements un = Z
(n)
2

Z
(n)
1

and vn = Z
(n)
3

Z
(n)
1

, we have the following system of recurrent

equations:

θ2un =
θ1 + 2θun−1 + 2vn−1 + 2θun−1vn−1 + θ2θ1u

2
n−1 + θ1v

2
n−1

θ2θ1 + θ1u
2
n−1 + θ1u

2
n−1 + 2un−1vn−1 + 2θun−1 + 2θvn−1

θ2vn =
θ1 + 2θun−1 + 2vn−1 + 2θun−1vn−1 + θ1u

2
n−1 + θ2θ1v

2
n−1

θ2θ1 + θ1u2
n−1 + θ1u2

n−1 + 2un−1vn−1 + 2θun−1 + 2θvn−1
.

If u = limun and v = limvn ,then

θ2u =
θ1 + 2θu + 2v + 2θuv + θ2θ1u

2 + θ1v
2

θ2θ1 + 2θu + 2θv + 2uv + θ1u2 + θ1v2

θ2v =
θ1 + 2u + 2θv + 2θuv + θ1u

2 + θ2θ1v
2

θ2θ1 + 2θu + 2θv + 2uv + θ1u2 + θ1v2
. (3.4)

The solutions of this system of nonlinear equations describe translation-invariant
Gibbs measures [3]. Note that, if there is more than one positive solution for equation
(3.4), then there is more than one translation-invariant Gibbs measure corresponding to
these solutions. We say that a phase transition occurs for model (2.1), if equation (3.4)
has more than one positive solution. The number of solutions of equation (3.4) depends

on the parameter β = 1
kT

. The phase transition usually occurs for low temperature. It is
possible to find an exact value of T ∗ such that a phase transition occurs for all T < T ∗,
where T ∗ is called a critical value of temperature.

Finding the exact value of the critical temperature for some models is to exactly solve
the models.

4. Translation-Invariant Gibbs Measures

In this sections we describe solutions of the system of nonlinear equations

θ2u =
θ1 + 2θu + 2v + 2θuv + θ2θ1u

2 + θ1v
2

θ2θ1 + 2θu + 2θv + 2uv + θ1u2 + θ1v2
(4.1)
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θ2v =
θ1 + 2u + 2θv + 2θuv + θ1u

2 + θ2θ1v
2

θ2θ1 + 2θu + 2θv + 2uv + θ1u2 + θ1v2
.

Subtracting these equations, we have

θ2(u− v) =
2(θ− 1)(u− v) + θ2θ1(u2 − v2)

θ2θ1 + 2θu + 2θv + 2uv + θ1u2 + θ1v2
, (4.2)

so that equality u = v give us some solutions of (4.1). For u = v we have

θ2u =
(θ2θ1 + 2θ + θ1)u2 + 2(θ + 1)u + θ1

2(θ1 + 1)u2 + 4θu + θ2θ1
. (4.3)

Let us consider the function

f(u) =
(θ2θ1 + 2θ + θ1)u2 + 2(θ + 1)u + θ1

2(θ1 + 1)u2 + 4θu + θ2θ1
. (4.4)

Elementary analysis of this function give us the following:

1) If θ > 1, f(u) is increasing; and if θ < 1, f(u) is decreasing for u > 0;

2) If θ1 > θ∗1 , where

θ∗1 =
θ2 + θ + 1 +

√
9θ4 + 26θ3 + 35θ2 + 50θ + 33
(θ2 + 2)(θ + 1)

,

then there exists an inflection point u∗ > 0 such that f ′′(u) > 0 for 0 < u < u∗ and
f ′′(u) < 0 for u > u∗ .

Lemma. Let θ > 1, and there is an inflection point. There exist η1(θ, θ1), η2(θ, θ1)
with 0 < η1(θ, θ1) < η2(θ, θ1) such that equation (4.1) has three solutions if η1(θ, θ1) <

θ2 < η2(θ, θ1); has two solutions if either θ2 = η1(θ, θ1) or θ2 = η2(θ, θ1) and has single
solution in other cases. In fact,

ηi(θ, θ1) =
1
u∗

i

f(u∗
i )

where u∗
1, u

∗
2 are the solutions of equation

uf
′
(u) = f(u).
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Proof follows from properties 1 and 2 of function f . Equation uf
′
(u) = f(u) is equivalent

to

Au4 + Bu3 + Cu2 + Du + E = 0, (4.5)

where A = 2(θ1 + 1)(θ2θ1 + 2θ + θ1) > 0, B = 8(θ + 1)(θ1 + 1) > 0, D = 8θθ1 > 0, and
E = θ2θ1 > 0.

As

C = −θ4θ2
1 − 2θ1θ3 − θ1θ

2 + 8θ2 + 8θ + 6θ2
1 + 6θ1,

then equation (4.5) has no positive roots if C > 0, and have two positive roots u∗
1, u∗

2 if
C < 0. It is easy to show that exist θ∗∗1 such that for all θ1 > θ∗∗1 coefficient C is negative,

where θ >
√

2.

Thus for θ >
√

2, θ1(θ) > max(θ∗1 , θ∗∗1 ) and η1(θ, θ1) < θ2 < η2(θ, θ1), equation
(4.5) has three positive roots.

Now let us come back to equation (4.3). After cancelling by (u− v), we have

t =
θ1θ2s

2 + (2θ2θ − θ1(θ2 − 1))s+ θ2θ1θ2 − 2(θ − 1)
2θ2(θ1 − 1)

. (4.6)

where u + v = s and uv = t. After dividing the first equation of (4.1) into the second,
and simplifying we have

t =
θ1s

2 + 2s+ θ1
θ2θ1 + θ1 − 2θ

, (4.7)

From (4.7) and (4.6) follow

θ1(θ + 1)s+ 2
θ2

=
θ1[θ1(θ + 1) − 2]s2 + 2[θ1(θ2 + θ− 2) − 2(θ + 1)]s

θ1(θ2 + 1) − 2θ

+
θ1[θ1(θ3 + θ2 + 2θ + 2) − 2(θ2θ + 1)]

θ1(θ2 + 1) − 2θ
. (4.8)

It is easy to show that if θ1 > θ+1
θ2+θ−2

then all coefficients in (4.8) are positive.

Note that the system of equations
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u + v = s

uv = t (4.9)

have solutions when t < s2

4 , so that from (4.7) follow

(θ1(θ2 − 3) − 2θ)s2 − 8s− 4θ1 > 0. (4.10)

It is easy to check that for θ >
√

3 and

θ1 >
θ +

√
9θ2 − 24

θ2 − 3
, (4.11)

inequality (4.10) is valid.

From θ1 >
θ+1

θ2+θ−2 and θ1 >
θ+

√
9θ2−24

θ2−3 follow that, for

θ1 >
θ +

√
9θ2 − 24

θ2 − 3
,

all coefficients of (4.8) are positive and system (4.9) have solutions.
Now let us consider equation (4.8). The elementary analysis gives the following:

1) if

θ2 <
2[θ1(θ2 + 1) − 2θ]

θ1 [θ1(θ3 + θ2 + 2θ + 2) − 2(θ2 + θ + 1)]
,

then equation (4.8) has single root;
2) if

θ2 >
2[θ1(θ2 + 1) − 2θ]

θ1 [θ1(θ3 + θ2 + 2θ + 2) − 2(θ2 + θ + 1)]
,

there is k0 such that the line y − 2
θ2

= k0s is a tangent for parabola from the right-hand

side of (4.8); and then for θ2 <
θ1(θ1+1)

k0
, equation (4.8) has two positive roots.

Thus equation (4.8) has two positive roots, when

θ >
√

3, θ1 >
θ +

√
9θ2 − 24

θ3 − 3
,
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and
2[θ1(θ2 + 1) − 2θ]

θ1[θ1(θ3 + θ2 + 2θ + 2) − 2(θ2 + θ + 1)]
< θ2 <

θ1(θ + 1)
k0

where k0 is defined above.
Recalling results for equation (4.1), we have following. The system of equation (4.1)

has seven solutions if θ >
√

3, θ1 > A and B < θ2 < C, where

A = max(θ∗1 , θ
∗∗
1 ,

θ +
√

9θ2 − 24
θ2 − 3

)

B = max(η1,
2[θ1(θ2 + 1) − 2θ]

θ1[θ1(θ3 + θ2 + 2θ + 2) − 2(θ2 + θ + 1)
) (4.12)

C = min(η2,
θ1(θ + 1)

k0
).

A more detailed analysis similar to [2] shows that only three solutions are stable.

Thus we have proved the following theorem

Theorem. Assume that conditions (4.12) are satisfied then for the model (2.1), and
then there are three translation-invariant Gibbs measure, i.e. there is phase transition
takes place.

It is easy to show that these three measures correspond to boundary conditions

σ(V \ Vn) ≡ i, i = 1, 2, 3.
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Department of Mathematics

Arts and Science Faculty

Harran University, Sanliurfa, 63200, TURKEY

e-mail: temirseyit@harran.edu.tr

Received 18.11.2005

238


