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Abstract

In this work, we give the notion of braiding for categorical Lie algebras and

crossed modules of Lie algebras and we give an equivalence between them.
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1. Introduction

Crossed modules of groups were introduced by Whitehead in [19]. The commutative
algebra analogue of crossed modules was given by Porter in [18]. Kassel and Loday [15]
introduced crossed modules of Lie algebras as computational algebraic objects equivalent
to simplicial Lie algebras with Moore complex of length 1. Conduché [6] defined 2-
crossed module of groups and he gave a link between 2-crossed modules and simplicial
groups. Ellis [11] captured the algebraic structure of a Moore complex of length 2 in
his definition of a 2-crossed module of Lie algebras. Akça and Arvasi [1] have defined
higher dimensional Peiffer elements for Lie algebras in the image of the Moore complex
of a simplicial Lie algebra, and they then gave a functor from simplicial Lie algebras to
2-crossed Lie algebras in terms of hypercrossed complex pairings.

Joyal and Street [13, 14] have defined the notion of braiding for a monoidal category
and they have showed that braided monoidal categories are equivalent to crossed semi-
modules with bracket operations. Brown and Gilbert introduced in [4] the notion of
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braided, regular crossed module as an algebraic model for homotopy 3-type equivalent
to Conduché’s 2-crossed module and simplicial groups with Moore complex of length 2.
The reduced case of braided regular crossed module is called a braided crossed module of
groups. Of course, braided crossed modules of groups are equivalent to reduced 2-crossed
modules and braided categorical groups (cf. [13, 14]) and reduced simplicial groups with
Moore complex of length 2 (cf. [6]).

Thus the main points of this paper are:

(i) to define the notion of braiding for categorical Lie algebras (without identities)
and crossed modules of Lie algebras;

(ii) to construct an equivalence between the category of braided crossed modules of
Lie algebras and that of braided categorical Lie algebras by using the equivalence between
crossed objects and categorical objects in the category of Lie algebras; and

(iii) by using the method of Akça and Arvasi [1], to give a functor from reduced
simplicial Lie algebras to braided crossed modules of Lie algebras in terms of hypercrossed
complex pairings.

2. Braiding for Categorical Lie Algebras and Crossed Modules

All Lie algebras will be over a fixed commutative ring k.

As we mentioned in introduction, Joyal and Street [13, 14] have defined the notion
of braiding for any monoidal category and showed that braided monoidal categories are
equivalent to crossed semi-modules with bracket operations. Now, we give the definition
of braided monoidal category from [13].

A braided monoidal category is a monoidal category (V,⊗, I) together with a family
of isomorphisms

τA,B : A ⊗ B → B ⊗ A

called braidings, natural in both variables, such that for all A, B, C in V ,

(i) τA,I = τI,A = 1A,

(ii) τA⊗B,C = (τA,C ⊗ 1B) ◦ (1A ⊗ τB,C ),

(iii) τA,B⊗C = (1B ⊗ τA,C) ◦ (τA,B ⊗ 1C).
A symmetry is a braiding such that the following diagram commutes:
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B ⊗ A
τB,A

�����������

A ⊗ B

τA,B

�����������

1
�� A ⊗ B ;

but not every braiding is a symmetry. If the braiding τ is a symmetry, then (V,⊗, I) is
called a symmetric monoidal category.
One link with homotopy theory and related areas is that the nerve of a braided

monoidal category is, up to group completion, a double loop space (cf. Berger, [3]).
Kamps and Porter gave a link between braided monoidal categories, Gray categories and
2-crossed modules in [16]. Garzon and Miranda [12] examined braided categorical groups
and braided crossed modules of groups and they gave the homotopy properties of them.
In the following Cat(LAlg) will denote the category of internal categories in the

category of Lie algebras. An object of Cat(LAlg), called a categorical Lie algebra, will
be represented by a diagram of Lie algebras and homomorphisms

L : L1

s,t ���� L  ,0
I

��

such that sI = tI = idL0 , and the composition of two morphisms x, y ∈ L1 with
t(x) = s(y) will be denoted x ◦ y. Now we give the notion of braiding for categorical
Lie algebras.

Definition 2.1 A braiding for a categorical Lie algebra

L : L1

s,t ���� L0
I

��

is a map

L0 × L0
τ−→ L1

(a, b) �−→ τa,b

which satisfies the following conditions.
1. sτa,b = [a, b] and tτa,b = [b, a], thus τa,b : [a, b]→ [b, a] is a morphism in L1.

2. Given x, y ∈ L1; x : a → a′, y : b → b′, the following diagram is commutative:
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[a, b]
[x,y] ��

τa,b

��

[a′, b′]

τa′,b′
��

[b, a]
[y,x]

�� [b′, a′]

or equivalently for x, y ∈ L1,

[x, y] ◦ τt(x),t(y) = τs(x),s(y) ◦ [y, x].

3. For a, b, c ∈ L0

τ[a,b],c = [τa,c, I(b)] + [I(a), τb,c].

4. For a, b, c ∈ L0

τa,[b,c] = [I(b), τa,c] + [τa,b, I(c)].

A categorical Lie algebra together with a braiding map is called a braided categorical
Lie algebra. Given braided categorical Lie algebras (L, τ ), (L′, τ ′), a morphism between
them is a morphism of Lie algebras which is compatible with τ in the sense that the
following square is commutative:

L0 × L0
τ ��

f0×f0

��

L1

f1

��
L′

0 × L′
0

τ ′
�� L′

1.

BCat(LAlg) will denote the category of braided categorical Lie algebras.

The notion of crossed module of Lie algebras was defined by Kassel and Loday [15].

Let M and N be two Lie algebras. By an action of N on M we mean a k-linear map
N × M → M, (n, m) �→ n · m satisfying

[n, n′] · m = n · (n′ · m) − n′(n · m)
n · [m, m′] = [n · m, m′] + [m, n ·m′]

for all m, m′ ∈ M and n, n′ ∈ N.
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Recall from [15] the notion of a crossed module of Lie algebras. A crossed module of
Lie algebras is a Lie homomorphism ∂ :M → N together with an action of N on M such
that

CM1) ∂(n · m) = [n, ∂m] CM2) ∂m · m′ = [m, m′]

for all m, m′ ∈ M , n ∈ N.

Now, we give the notion of braiding for crossed module of Lie algebras.

Definition 2.2 A braided crossed module of Lie algebras (M, N, ∂) is a crossed module
of Lie algebras together with a map {−,−} : N × N → M called braiding map satisfying
the following axioms:

B1. ∂{x, y}+ [y, x] = [x, y],
B2. {x, ∂a}+ a · x = x · a,

B3. {∂b, y}+ y · b = b · y,

B4. {∂a, ∂b}+ [b, a] = [a, b],
B5. {a, [b, c]}= b · {a, c}+ {a, b} · c,
B6. {[a, b], c}= {a, c} · b+ a · {b, c}

for all a, b, c ∈ M and x, y ∈ N.

The morphisms of braided crossed modules of Lie algebras are the morphisms of
crossed modules of Lie algebras which are compatible with the braiding map. BLXM
will denote the category of braided crossed modules of Lie algebras.
The category of braided crossed modules is equivalent to that of braided cat-groups.

In the following, we give the Lie algebra case of this result.

Theorem 2.3 The category of braided categorical Lie algebras is equivalent to the cate-
gory of braided crossed modules of Lie algebras.

Proof. Let (M, N, ∂) be a braided crossed module of Lie algebras together with a
braiding map {−,−}. By using the action of N on M, one forms the semi-direct product
Lie algebra M � N with Lie operation given by

[(m, n), (m′, n′)] = ([m, m′] +m · n′ + n · m′, [n, n′])

for all (m, n), (m′, n′) ∈ M � N. Let L0 = N and L1 = M � N. The source and target
maps are given by s(m, n) = ∂m+ n and t(m, n) = n respectively. These maps are Lie
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algebra homomorphisms. Indeed,

s([(m, n), (m′, n′)]) = s(([m, m′] +m · n′ + n ·m′, [n, n′]))
= ∂[m, m′] + ∂(m · n′) + ∂(n · m′) + [n, n′]
= [∂m, ∂m′] + [∂m, n′] + [n, ∂m′] + [n, n′]
= [∂m+ n, ∂m′ + n′]
= [s(m, n), s(m′, n′)],

and

t([(m, n), (m′, n′)]) = [n, n′] = [t(m, n), t(m′, n′)].

From L0 to L1, the identity map can be given by I(n) = (0, n) for n ∈ L0. The category
composition on L1 can be given by

(m, n) ◦ (m′, n′) = (m+m′, n′)

if n = ∂m′ + n′. Thus we have a category object in the category of Lie algebras:

L : L1 = M � N
s,t ���� N = L0
I

�� .

A braiding map for this categorical Lie algebra is given by

τ : L0 × L0 → L1

(a, b) �→ τa,b = ({a, b}, [b, a]),

where {−,−} is the braiding map for the crossed module ∂. Now, we show that all axioms
of braided categorical Lie algebra are satisfied.
1. For a, b ∈ L0,

sτa,b = s({a, b}, [b, a])
= ∂{a, b}+ [b, a]
= [a, b]− [b, a] + [b, a] (by B1)
= [a, b],

and

tτa,b = t({a, b}, [b, a])
= [b, a].
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Thus we have τa,b : [a, b]→ [b, a].
2. For x = (a, b) : ∂a + b → b and y = (a′, b′) : ∂a′ + b′ → b′, we have

[x, y] : [(∂a+ b), (∂a′ + b′)]→ [b, b′].

For c = ∂a + b and d = ∂a′ + b′, it must be that

τc,d ◦ [y, x] = [x, y] ◦ τb,b.

We have

[x, y] ◦ τb,b′ = [x, y] ◦ ({b, b′}, [b′, b])
= ([a, a′] + a · b′ + b · a′, [b, b′]) ◦ ({b, b′}, [b′, b])
= ([a, a′] + a · b′ + b · a′ + {b, b′}, [b′, b]).

On the other hand we have

τc,d ◦ [y, x] = ({c, d}, [d, c])◦ ([a′, a] + a′ · b+ b′ · a, [b′, b])
= ({c, d}+ [a′, a] + a′ · b+ b′ · a, [b′, b]).

Since

{c, d} = {∂a+ b, ∂a′ + b′}
= {∂a+ b, ∂a′}+ {∂a+ b, b′}
= {∂a, ∂a′}+ {b, ∂a′}+ {∂a, b′}+ {b, b′} by bilinearity
= [a, a′]− [a′, a] + b · a′ − a′ · b+ a · b′ − b′ · a+ {b, b′} by B4, B2, B3,

we obtain

τc,d ◦ [y, x] = ({c, d}+ [a′, a] + a′ · b+ b′ · a, [b′, b])
= ([a, a′]− [a′, a] + b · a′ − a′ · b+ a · b′ − b′ · a+ {b, b′}

+[a′, a] + a′ · b+ b′ · a, [b′, b])
= ([a, a′] + a · b′ + b · a′ + {b, b′}, [b′, b]).

Thus we have

τc,d ◦ [y, x] = [x, y] ◦ τb,b.

Therefore, the diagram
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[s(x), s(y)]

τs(x),s(y)

��

[x,y] �� [t(x), t(y)]

τ t(x),t(y)

��
[s(y), s(x)]

[y,x]
�� [t(y), t(x)]

is commutative.
3. For a, b, c ∈ L0, we have

[τa,c, I(b)] + [I(a), τb,c] = [({a, c}, [c, a]), (0, b)]+ [(0, a), ({b, c}, [c, b])]
= ([{a, c}, 0] + {a, c} · b+ [c, a] · 0, [[c, a], b])

+([0, {b, c}] + 0 · [c, b] + a · {b, c}, [a, [c, b]])
= ({a, c} · b+ a · {b, c}, [[c, a], b]+ [a, [c, b]])
= ({[a, b], c}, [c, [a, b]]) (by B6 and Jacobi identity)
= τ[a,b],c.

4. For a, b, c ∈ L0, we have

[I(b), τa,c] + [τa,b, I(c)] = [(0, b), ({a, c}, [c, a])]+ [({a, b}, [b, a]), (0, c)]
= ([0, {a, c}]+ 0 · [c, a] + b · {a, c}, [b, [c, a]])

+([{a, b}, 0] + [b, a] · 0 + {a, b} · c, [[b, a], c])
= (b · {a, c}+ {a, b} · c, [b, [c, a]]+ [[b, a], c])
= ({a, [b, c]}, [[b, c], a]) (by B5 and Jacobi identity)
= τa,[b,c].

Thus, all axioms of braided categorical Lie algebra are verified. We can define a
functor from braided crossed modules to braided categorical Lie algebras:

∆ : BLXM→ BCat(LAlg).

Conversely let

L : L1

s,t ���� L0
I

��

be a braided categorical Lie algebra together with a braiding map τ. Then t : ker s → L0

is a crossed module with the actions given by a·x = [a, I(x)] and x·a = [I(x), a] for x ∈ L0
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and a ∈ ker s. Indeed t(a · x) = t([a, I(x)]) = [ta, x] and a · t(a′) = [a, I(ta′)] = [a, a′]. The
braiding map on this crossed module is given by

{−,−} : C0 × C0 −→ ker s
(a, b) �−→ I([a, b])− τa,b.

Since s({a, b}) = s(I([a, b]) − τa,b) = [a, b] − [a, b] = 0, we have {a, b} ∈ ker s. The
verification of the axioms of braided crossed module is easy. For example the following
equalities;
for a, b ∈ C0

t{a, b} = t(I([a, b])− τa,b)
= tI([a, b])− tτa,b

= [a, b]− [b, a],

for x, y ∈ ker s

{a, ty} = [I(a), y]− τa,ty

= a · y − y · a

and

{tx, b} = [x, I(b)]− τtx,b

= x · b − b · x

are axioms B1, B2, and B3 of braided crossed module respectively. We leave the other
axioms to reader as an exercise. Thus we can define a functor from braided categorical
Lie algebras to braided crossed modules;

Θ : BCat(LAlg)→ BLXM.

✷

3. Simplicial and Braided Crossed Lie Algebras

In this section, we define a functor from reduced simplicial Lie algebras to braided
crossed modules of Lie algebras in terms of hypercrossed complex pairings.
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Simplicial Lie Algebras
A simplicial Lie algebra (cf. [1], [7] and [11]) L consists of a family of Lie algebras

Ln together with face and degeneracy maps dn
i : Ln → Ln−1, 0 ≤ i ≤ n (n �= 0) and

sn
i : Ln → Ln+1, 0 ≤ i ≤ n satisfying the usual simplicial identities;

1. dn−1
i dn

j = dn−1
j−1dn

i , (0 ≤ i < j ≤ n),
2. sn+1

i sn
j = sn+1

j+1 sn
i , (0 ≤ i ≤ j ≤ n),

3. dn+1
i sn

j = sn−1
j−1 dn

i , (0 ≤ i < j ≤ n),
4. dn+1

i sn
j = id, (i = j or i = j + 1),

5. dn+1
i sn

j = sn−1
j dn

i−1 (0 ≤ j < i − 1 ≤ n).

In fact it can be completely described as a functor L :∆op →LieAlg where ∆ is the
category of finite ordinals. We obtain for each k ≥ 0 a subcategory ∆≤k determined
by the objects [j] of ∆ with j ≤ k . A k−truncated simplicial Lie algebra is a functor
from ∆op

≤k to LieAlg. We denote the category of k−truncated simplicial Lie algebra by
TrkSimpLAlg. A reduced simplicial Lie algebra is a simplicial Lie algebra whose last
component is trivial.

The Moore Complex
Given a simplicial Lie algebra L, the Moore complex (NL,∂) of L, is the chain complex

defined by

NLn =
n−1⋂
i=0

Kerdn
i ,

with ∂n : NLn → NLn−1 induced from dn
n by restriction. We say that the Moore complex

NL of a simplicial Lie algebra is of length k if NEn = 0 for all n ≥ k+1, so that a Moore
complex of length k is also of length l for l ≥ k.

Hypercrossed Complex Pairings

The following terminology and notation can be found in [5], [17] for group case, [2]
for commutative algebra case and [1], [11] for Lie algebra case.
For the ordered set [n] = {0 < 1 < ... < n}, let αn

i : [n+ 1] → [n] be the increasing
surjective map given by;

αn
i (j) =

{
j if j ≤ i,

j − 1 if j > i.

248



ULUALAN

Let S(n, n − r) be the set of all monotone increasing surjective maps from [n] to [n − r].
This can be generated from the various αn

i by composition. The composition of these
generating maps is subject to the following rule: αjαi = αi−1αj , j < i. This implies
that every element α ∈ S(n, n − r) has a unique expression as α = αi1 ◦ αi2 ◦ ... ◦ αir

with 0 ≤ i1 < i2 < ... < ir ≤ n − 1, where the indices ik are the elements of [n] such
that {i1, ..., ir} = {i : α(i) = α(i + 1)}. We thus can identify S(n, n − r) with the set
{(ir , ..., i1) : 0 ≤ i1 < i2 < ... < ir ≤ n − 1}. In particular, the single element of S(n, n),
defined by the identity map on [n], corresponds to the empty 0-tuple ( ) denoted by ∅n.
Similarly, the only element of S(n, 0) is (n − 1, n− 2, ..., 0). For all n ≥ 0, let

S(n) =
⋃

0≤r≤n

S(n, n − r).

We say that α = (ir , ...i1) < β = (js, ..., j1) in S(n) if i1 = j1, ..., ik = jk but ik+1 >

jk+1, (k ≥ 0) or if i1 = j1, ..., ir = jr and r < s. This makes S(n) an ordered set.
We recall briefly from Akça and Arvasi (cf. [1]) the construction of a family of k-linear

morphisms. We define a set P (n) consisting of pairs of elements (α, β) from S(n) with
α ∩ β = ∅ and β < α where α = (ir , ...i1), β = (js, ...j1) ∈ S(n). The k-linear morphisms
that we will need,

{Cα,β : NLn−#α × NLn−#β → NLn : (α, β) ∈ P (n), n ≥ 0}

are given as composites:

Cα,β(xα ⊗ yβ) = p[−,−](sα × sβ)(xα, yβ)

= p([sα(xα), sβ(yβ)])

= (1− sn−1dn−1)...(1− s0d0)([sα(xα), sβ(yβ)]),

where

sα = sir ...si1 : NLn−#α → Ln, sβ = sjs ...sj1 : NLn−#β → Ln,

p : Ln → NLn is defined by composite projections p = pn−1...p0 with pj = 1 − sjdj for
j = 0, 1, ..., n− 1 and [−,−] : Ln × Ln → Ln denotes the Lie bracket.
From [1], we will now consider that the ideal In in Ln such that generated by all

elements of the form

Cα,β(xα, yβ),
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where xα ∈ NLn−#α and yβ ∈ NLn−#β and for all (α, β) ∈ P (n).
Consider Cα,β(xα, yβ) and Cβ,α(yβ , xα), here one uses [sα(xα), sβ(yβ)], the other

[sα(xα), sβ(yβ)] = −[sβ(yβ), sα(xα)],

so the changing α and β gives the only minus sign.

Proposition 3.1 ([1]) Let L be a simplicial Lie algebra and n > 0, and Dn the ideal
in Ln generated by degenerate elements. We suppose Ln = Dn, and let In be the ideal
generated by elements of the form

Cα,β(xα, yβ) with (α, β) ∈ P (n),

where xα ∈ NLn−#α, yβ ∈ NLn−#β with 1 ≤ r, s ≤ n. Then, NLn = In and as a
corollary

∂n(NLn) = ∂n(In).

According to above proposition for n = 2, 3, Akça and Arvasi have showed the image
of In by ∂n what it looks like.
Supposing D2 = L2, take β = (1), α = (0) and x, y ∈ NL1 = ker d0. The ideal I2 is

generated by elements of the form

C(1)(0)(x ⊗ y) = [s1x, s0y − s1y]

and these give the generator elements of the ideal I2. Then the image of I2 by ∂2 is

d2[C(1)(0)(x, y)] = [x, s0d1y − y]

where x ∈ ker d0 and y−s0d1y ∈ ker d1. Therefore the image of I2 by ∂2 is [kerd0, ker d1].
For n = 3, the linear morphisms are

C(1,0),(2), C(2,0),(1), C(2,1),(0)

C(2),(0), C(2),(1), C(1),(0).

Then the ideal I3 is generated by the elements: for x ∈ NL1 and y ∈ NL2

C(1,0),(2)(x, y) = [s1s0x − s2s0x, s2y],
C(2,0),(1)(x, y) = [s2s0x − s2s1x, s1y − s2y],
C(2,0),(1)(x, y) = [s2s1x, s0y − s1y + s2y];
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and for x, y ∈ NL2

C(1),(0)(x, y) = [s1x, s0y − s1y] + [s2x, s2y],
C(2),(0)(x, y) = [s2x, s0y],
C(1),(0)(x, y) = [s2x, s1y − s2y].

For the image of these elements see to [1].

Then, we can give the following proposition. In the proof of this proposition, we will
use the image of the Cα,β pairings in the Moore complex of a simplicial Lie algebra.

Proposition 3.2 There is a functor from reduced simplicial Lie algebras to braided
crossed modules of Lie algebras.

Proof. Let L be a reduced simplicial Lie algebra with Moore complex NL. We
construct a braided crossed module of Lie algebras (M, N, ∂). Let N = NL1 and M =
NL2/∂3(NL3 ∩ D3). The two actions of n ∈ N on m ∈ M are:

1. the actions m · ∂1n and ∂1n · m correspond to [m, s0n] and [s0n, m] respectively.

2. the actions n · m and m · n correspond to [s1n, m] and [m, s1n] respectively.

It is plainly that the morphism

∂2 = d2 :M → N

is a crossed module of Lie algebras. The braiding map on this crossed module can be
defined by

{−,−} : N × N −→ M = NL2/∂3(NL3 ∩ D3)
(x, y) �−→ {x, y} = [s1x, s1y − s0y]− [s1y − s0y, s1x],

where the right hand side denotes a coset inNL2/∂3(NL3∩D3) represented by an element
in NL2.

Now, we show that all axioms of braided crossed module are verified. In the following
calculations, we display the elements omitting the overlines, for the sake of simplification.

B1. For x, y ∈ N, we have
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∂2{x, y} = d2([s1x, s1y − s0y] − [s1y − s0y, s1x])
= [x, y − s0d1y]− [y − s0d1y, x]
= [x, y]− [y, x] + [s0d1y, x]− [x, s0d1y]
= [x, y]− [y, x] + ∂1y · x − x · ∂1y (by the action)
= [x, y]− [y, x] (by reduced condition).

B2. From ∂3(C(2,1),(0)(y, a)) = [s1y, s0d2a−s1d2a]+[s1y, a] ∈ ∂3(NL3∩D3), we have

[s1y, s1d2a − s0d2a] ≡ [s1y, a] mod∂3(NL3 ∩ D3),

and from ∂3(C(0),(2,1)(a, y)) = [s0d2a − s1d2a, s1y] + [a, s1y] ∈ ∂3(NL3 ∩ D3), we have

[s1d2a − s0d2a, s1y] ≡ [a, s1y] mod∂3(NL3 ∩ D3).

We thus have from ∂3(C(2,1),(0)(y, a) − C(0),(2,1)(a, y)),

{y, ∂2a} = [s1y, s1d2a − s0d2a]− [s1d2a − s0d2a, s1y]
≡ [s1y, a]− [a, s1y] mod∂3(NL3 ∩ D3)
= y · a − a · y (by the action)

for y ∈ N and a ∈ M.

B3. From ∂3(C(1,0),(2)(x, b)) = [s0y − s1y, s1d2x]− [s0y − s1y, x] ∈ ∂3(NL3 ∩D3), we
have

[s0y − s1y, s1d2x] ≡ [s0y − s1y, x] mod∂3(NL3 ∩ D3)

and from ∂3(C(2),(1,0)(b, x)) = [s1d2x, s0y − s1y]− [x, s0y − s1y] ∈ ∂3(NL3 ∩D3), we have

[s1d2x, s0y − s1y] ≡ [x, s0y − s1y] mod∂3(NL3 ∩ D3).

We thus obtain from ∂3(C(1,0),(2)(x, b)− C(2),(1,0)(b, x)),

{∂2x, b} = [s1d2b, s1x − s0x]− [s1x − s0x, s1d2b]
≡ [s1x, b]− [b, s1x] + [s1s0d1x, b]− [b, s1s0d1x] mod∂3(NL3 ∩ D3)
= x · b − b · x+ ∂1x · b − b · ∂1x (by the action)
= x · b − b · x (by reduced condition)
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for x ∈ M and b ∈ N.

B4. From ∂3(C(1),(0)(a, b)) = [s1d2a, s0d2b] − [s1d2a, s1d2b] + [a, b] ∈ ∂3(NL3 ∩ D3),
we have

[s1d2a, s1d2b − s0d2b] ≡ [a, b] mod∂3(NL3 ∩ D3),

and from ∂3(C(0),(1)(b, a)) = [s1d2b, s1d2a] − [s0d2b, s1d2a] + [b, a] ∈ ∂3(NL3 ∩ D3), we
have

[s1d2b − s0d2b, s1d2a] ≡ [b, a] mod∂3(NL3 ∩ D3).

Thus from ∂3(C(1),(0)(a, b)− C(0),(1)(b, a)) we have

{∂2a, ∂2b} = [s1d2a, s1d2b − s0d2b]− [s1d2b − s0d2b, s1d2a]
= [a, b]− [b, a] mod∂3(NL3 ∩ D3).

Other axioms can be shown similarly.
If the Moore complex of the simplicial Lie algebra L is length 2, we can write

∂3(NL3 ∩D3) = 0 due to [1], in this case, we would have defined a functor from reduced
simplicial Lie algebras with Moore complex of length 2 to braided crossed modules of Lie
algebras. Consequently we can define a functor

Γ : ReSimpLAlg→ BLXM.

✷

Remark The situations in this paper can be summarized in the following diagram of
unbroken arrows:

ReSimpLAlg

Γ

�� ��
BLXM

��

∆ ��
BCat(LAlg).

Θ
��
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