Some Remarks on the $L^p - L^q$ Boundedness of uC_{φ}

M. R. Jabbarzadeh

Abstract

In this paper we will consider the weighted composition operators between two different L^p - spaces and then we characterize the functions u and transformations φ that induce weighted composition operator uC_{φ} between $L^p(X, \Sigma, \mu)$ -spaces by using some properties of conditional expectation operator, pair (u, φ) and the measure space (X, Σ, μ) .

Key Words: Weighted composition operator, conditional expectation, multiplication operator.

1. Preliminaries And Notations

Let (X, Σ_X, μ) be a sigma finite measure space. By L(X), we denote the linear space of all Σ_X -measurable functions on X. When we consider any sub-sigma algebra \mathcal{A} of Σ_X , we assume they are completed. For any sigma finite algebra $\mathcal{A} \subseteq \Sigma_X$ and $1 \leq p \leq \infty$ we abbreviate the L^p -space $L^p(X, \mathcal{A}, \mu|_{\mathcal{A}})$ to $L^p(\mathcal{A})$, and denote its norm by $\|.\|_p$. We understand $L^p(\mathcal{A})$ as a subspace of $L^p(\Sigma_X)$ and as a Banach space. We define the support of a function $f \in L(X)$ as $\sigma(f) = \{x \in X; f(x) \neq 0\}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set.

Next, let (Y, Σ_Y, ν) be another sigma finite measure space. Similarly, we use the symbols L(Y) and $L^p(\Sigma_Y)$ to denote the linear space of all Σ_Y -measurable functions on Y and the L^p -space $L^p(Y, \Sigma_Y, \nu)$, respectively. Take a function $u \in L(Y)$ and let $\varphi : Y \to X$ be a non-singular measurable function; i.e. $\varphi^{-1}(\Sigma_X) \subseteq \Sigma_Y$ and

²⁰⁰⁰ AMS Mathematics Subject Classification: Primary 47B20; Secondary 47B38.

 $\nu \circ \varphi^{-1}(A) = \nu(\varphi^{-1}(A)) = 0$ for all $A \in \Sigma_X$ such that $\mu(A) = 0$. Then the non-singularity of φ means that $\nu \circ \varphi^{-1}$ is absolutely continuous with respect to μ (we write $\nu \circ \varphi^{-1} \ll \mu$, as usual). Let $h_{\varphi} \in L(X)$ be the Radon-Nikodym derivative $h_{\varphi} = d\nu \circ \varphi^{-1}/d\mu$.

Associated with each sigma algebra $\mathcal{A} \subseteq \Sigma_Y$, there exists an operator $E_{\nu}^{\mathcal{A}} = E$, which is called *conditional expectation* operator, on the set of all non-negative measurable functions f or for each $f \in L^q(\Sigma_Y)$ for any $q, 1 \leq q \leq \infty$, and is uniquely determined by the conditions

(i) E(f) is \mathcal{A} - measurable, and

(ii) if A is any A- measurable set for which $\int_A f d\mu$ exists, we have $\int_A f d\mu = \int_A E(f) d\mu$.

This operator is at the central idea of our work, and we list here some of its useful properties:

E1. If g is \mathcal{A} -measurable then E(fg) = E(f)g.

E2. E(1) = 1.

E3. If f > 0 then E(f) > 0.

E4. If $f \ge 0$ then $E(f) \ge 0$ and $\sigma(f) \subseteq \sigma(E(f))$.

Properties E1 and E2 imply that E is an idempotent; and as operator on $L^q(\Sigma_Y)$ we have $E(L^q(\Sigma_Y)) = L^q(\mathcal{A})$. Hence E is the identity operator I on $L^q(\Sigma_Y)$, if and only if $\mathcal{A} = \Sigma_Y$. If we put $\mathcal{A} = \varphi^{-1}(\Sigma_X)$, it is easy to show that, for each non-negative Σ_Y measurable function f or for each $f \in L^q(\Sigma_Y)$, there exists a Σ_X -measurable function gsuch that $E(f) = g \circ \varphi$. We can assume that $\sigma(g) \subseteq \sigma(h_\varphi)$, and there exists only one g with this property. We then write $g = E(f) \circ \varphi^{-1}$, though we make no assumptions regarding the invertibility of φ (see [1]). For a deeper study of the properties of E see [5]. For any non-singular measurable function φ from Y into X and $u \in L(Y)$, the pair (u, φ) induce a linear operator uC_φ from $L^p(\Sigma_X)$ into L(Y) defined by

$$uC_{\varphi}(f) = u.f \circ \varphi \qquad (f \in L^p(\Sigma_X)).$$

Here, the non-singularity of φ guarantees that uC_{φ} is well defined as a mapping of equivalence classes of functions on $\sigma(u)$. If uC_{φ} takes $L^p(\Sigma_X)$ into $L^q(\Sigma_Y)$, then uC_{φ} is bounded, by the closed graph theorem. In this case we call uC_{φ} a weighted composition operator $L^p(\Sigma_X)$ into $L^q(\Sigma_Y)$. If X = Y and φ is the identity, we write uC_{φ} as M_u and call it the multiplication operator induced by u. In case that $u \equiv 1$ we write $uC_{\varphi} = M_uC_{\varphi}$ as C_{φ} and call it the composition operator induced by φ .

Boundedness of uC_{φ}

Boundedness of composition operators in L^p -spaces $(1 \le p < \infty)$ for finite measures appeared already in the Dunford-Schwarz book [2, Lemma 7, pp.664–665] and for σ -finite measures in [6] and [7]. In this section we turn attention to the follow-up problem.

Which function $u \in L(Y)$ and measurable function $\varphi : Y \to X$ induce a weighted composition operator from $L^p(\Sigma_X)$ into $L^q(\Sigma_Y)$ in the case $1 \le q \le p < \infty$?

The next lemma will be crucial in what follows. In fact, it is a slight generalization of proposition 2.1 in [3].

Lemma 1 Suppose $1 \le p$, $q < \infty$, $u \in L(Y)$ and let the pair (u, φ) induce a weighted composition operator from $L^p(\Sigma_X)$ into $L^q(\Sigma_Y)$. Then for any $f \in L^p(\Sigma_X)$ we have

$$\|uC_{\varphi}f\|_{L^q(\Sigma_Y)} = \|M_Jf\|_{L^q(\Sigma_X)},$$

where $J = (h_{\varphi}E(|u|^q) \circ \varphi^{-1})^{\frac{1}{q}}$.

Proof. Let $f \in L^p(\Sigma_X)$. As an application of the properties of the conditional expectation and using the change of variable formula we have

$$\|uC_{\varphi}f\|_{L^{q}(\Sigma_{Y})}^{q} = \int_{Y} |u.f \circ \varphi|^{q} d\nu = \int_{Y} E(|u|^{q})|f|^{q} \circ \varphi d\nu$$
$$= \int_{X} E(|u|^{q}) \circ \varphi^{-1}|f|^{q} d\nu \circ \varphi^{-1} = \int_{X} (h_{\varphi}E(|u|^{q}) \circ \varphi^{-1})|f|^{q} d\mu$$
$$= \int_{X} |Jf|^{q} d\mu = \|M_{J}f\|_{L^{q}(\Sigma_{X})}^{q}.$$

So we proved that the pair (u, φ) induce a weighted composition operator uC_{φ} : $L^p(\Sigma_X) \to L^q(\Sigma_Y)$ if and only if J induces a multiplication operator $M_J : L^p(\Sigma_X) \to L^q(\Sigma_X)$ and $\|uC_{\varphi}\| = \|M_J\|$.

The proof of the following proposition can be obtained by adapting the proof of theorem 2.3 in [4].

Proposition 2 Suppose $1 \le q and <math>\frac{1}{p} + \frac{1}{r} = \frac{1}{q}$. Let $u \in L(Y)$ and $\varphi : Y \to X$ be a non-singular measurable function. Then the pair (u, φ) induce a weighted composition operator uC_{φ} from $L^{p}(\Sigma_{X})$ into $L^{q}(\Sigma_{Y})$ if and only if $J \in L^{r}(\Sigma_{X})$ and its norm given by $||uC_{\varphi}|| = ||J||_{L^{r}(\Sigma_{X})}$.

Corollary 3 Under the same assumptions as in proposition 2.2, φ induces a composition operator $C_{\varphi} : L^p(\Sigma_X) \to L^q(\Sigma_Y)$ if and only if $h_{\varphi} \in L^{\frac{r}{q}}(\Sigma_X)$. Also, if X = Y, u induces a multiplication operator $M_u : L^p(\Sigma_X) \to L^q(\Sigma_X)$ if and only if $u \in L^r(\Sigma_X)$. In these cases we have $\|uC_{\varphi}\| = \|h_{\varphi}^{\frac{1}{q}}\|_{L^r(\Sigma_X)}$ and $\|M_u\| = \|u\|_{L^r(\Sigma_X)}$.

If p = q, then r must be ∞ . So $uC_{\varphi}(L^p(\Sigma_X)) \subseteq L^p(\Sigma_Y)$ if and only if $J \in L^{\infty}(\Sigma_X)$. In this case $||uC_{\varphi}|| = ||J||_{L^{\infty}(\Sigma_X)}$. This fact is well known. For direct proof see [6].

Examples. (i) Suppose $X = [0, a^4]$ and $Y = [-a^2, a^2]$ for some a > 0. Let φ : $(Y, \Sigma_Y, \nu) \to (X, \Sigma_X, \mu)$ be defined on Lebesgue measure spaces by $\varphi(x) = a^4 - x^2$. If we consider $uC_{\varphi} : L^2(\Sigma_X) \to L^2(\Sigma_Y)$ as $uC_{\varphi}f(x) = xf(a^4 - x^2)$, then a simple computation gives $h_{\varphi} = 1/(2\sqrt{a^4 - x}) \notin L^{\infty}(\Sigma_X)$. Then C_{φ} does not define a bounded composition operator. However it is easy to see that

$$J(x) = \left(\frac{1}{2\sqrt{a^4 - x}} \left[2(a^4 - x)\right]\right)^{\frac{1}{2}} = \sqrt[4]{a^4 - x} \in L^{\infty}(\Sigma_X).$$

So uC_{φ} is bounded and $||uC_{\varphi}|| = a$.

(ii) Let (X, Σ_X, μ) be the unit circle in complex plane and Lebesgue measurable sets equipped with normalized Lebesgue measure, and $\varphi(z) = z^2$. If we consider uC_{φ} from $L^2(X, \Sigma_X, \mu)$ into $L^2(X, \Sigma_X, \mu \circ \varphi^{-1})$, then we have

$$\begin{aligned} \|uC_{\varphi}\|_{L^{2}(X,\Sigma_{X},\ \mu\circ\varphi^{-1})}^{2} &= \int_{X} h_{\varphi}|u|^{2}|f\circ\varphi|^{2}d\mu\circ\varphi^{-1} \\ &= \int_{X} h_{\varphi}E(h_{\varphi}|u|^{2})\circ\varphi^{-1}|f|^{2}d\mu = \int_{X} G|f|^{2}d\mu, \end{aligned}$$

where $G = h_{\varphi} E(h_{\varphi}|u|^2) \circ \varphi^{-1}$. Hence uC_{φ} is bounded if and only if $G \in L^{\infty}(X, \Sigma_X, \mu)$. We note that by a simple computation we have

$$G(z) = \frac{1}{2} \sum_{\zeta^2 = z} |u(\zeta)|^2 h(\zeta), \qquad (z \in X).$$

Now, we try to give another characterization of boundedness for uC_{φ} from $L^{p}(\Sigma_{X})$ into $L^{q}(\Sigma_{Y})$. Let $u \in L(Y)$ and $\varphi: Y \to X$ be a non-singular measurable function. Define the measure $\mu_{u,\varphi}$ by

$$\mu_{u,\varphi}(A) = \int_{\varphi^{-1}(A)} |u|^q d\nu, \qquad (A \in \Sigma_X) \ .$$

Since $\nu \circ \varphi^{-1} \ll \mu$, then for each $A \in \Sigma_X$ with $\mu(A) = 0$, we have $\nu(\varphi^{-1}(A)) = 0$; so $\mu_{u,\varphi}(A) = 0$. Then $\mu_{u,\varphi} \ll \mu$. Put $\theta = (\frac{d\mu_{u,\varphi}}{d\mu})^{1/q}$ which, of course, is a non-negative Σ_X -measurable function.

Lemma 4 Fixing $1 \leq q < \infty$ and given $u \in L(Y)$. Then, for any non-negative Σ_X -measurable function f,

$$\int_X f d\mu_{u,\varphi} = \int_Y |u|^q f \circ \varphi \ d\nu$$

in the sense that, if one of the Integrals exists, then so does the other, and they are equal. **Proof.** Let $f = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$ where $A_i \in \Sigma_X$ and $0 < \mu(A_i) < \infty$. We have that

$$\int_X f d\mu_{u,\varphi} = \sum_{i=1}^n \alpha_i \mu_{u,\varphi}(A_i)$$
$$= \sum_{i=1}^n \alpha_i \int_{\varphi^{-1}(A_i)} |u|^q d\nu = \int_Y |u|^q \left(\sum_{i=1}^n \alpha_i \chi_{\varphi^{-1}(A_i)}\right) d\nu$$
$$= \int_Y |u|^q \left(\sum_{i=1}^n \alpha_i \chi_{A_i}\right) \circ \varphi \ d\nu = \int_Y |u|^q f \circ \varphi \ d\nu.$$

Now, if f is a non-negative function in L(X), we take an increasing sequence $\{f_n\}_{n=1}^{\infty}$ of non-negative simple functions such that $f_n \to f$ a.e. Then we have $\int_X f_n d\mu_{u,\varphi} \to \int_X f d\mu_{u,\varphi}$. On the other hand $\{|u|^q f_n \circ \varphi\}_{n=1}^{\infty}$ is an increasing sequence such that $|u|^q f_n \circ \varphi \to |u|^q f \circ \varphi$ a.e., so $\int_X f_n d\mu_{u,\varphi} = \int_Y |u|^q f_n \circ \varphi \, d\nu \to \int_Y |u|^q f \circ \varphi \, d\nu$. \Box

Now, we present the main result of this paper.

Theorem 5 Suppose $1 \le q and <math>\frac{1}{p} + \frac{1}{r} = \frac{1}{q}$. Let $u \in L(Y)$ and $\varphi : Y \to X$ be a non-singular measurable function. Then the following assertions are equivalent:

(i) The pair (u, φ) induce a weighted composition operator uC_{φ} from $L^{p}(\Sigma_{X})$ into $L^{q}(\Sigma_{Y})$. (ii) θ belongs to $L^{r}(\Sigma_{X})$.

(iii) There is a partition $\{F_n\}_{n=1}^{\infty}$ of X such that $\sum_{n=1}^{\infty} \|\theta_{|_{F_n}}\|_{\infty}^r \mu(F_n) < \infty$, where $\|\theta_{|_{F_n}}\|_{\infty} = ess \sup_{x \in F_n} \theta(x)$.

Proof. Suppose that (i) holds, and $f \in L^p(\Sigma_X)$. By using lemma 2.4 we have

$$\begin{aligned} \|uC_{\varphi}\|_{L^{q}(\Sigma_{Y})}^{q} &= \int_{Y} |u|^{q} |f|^{q} \circ \varphi \ d\nu = \int_{X} |f|^{q} d\mu_{u,\varphi} \\ &= \int_{X} |\theta f|^{q} d\mu = \|M_{\theta} f\|_{L^{q}(\Sigma_{X})}^{q} . \end{aligned}$$

Hence by corollary 2.3, uC_{φ} is bounded if and only if $\theta \in L^r(\Sigma_X)$. Thus we obtain the equivalence of (i) and (ii).

Assume that (iii) dose not hold. Choose a number a > 1 arbitrarily, and set $F_0 = \{x \in X : \theta(x) = 0\}, F_{2n} = \{x \in X : a^{n-1} < \theta(x)^r \le a^n\}$ and $F_{2n-1} = \{x \in X : a^{-n} \le \theta(x)^r < a^{-n+1}\}$. Then $\{F_n\}_{n=0}^{\infty}$ clearly becomes a partition of X. So we have

$$\int_{X} \theta^{r} d\mu = \sum_{i=1}^{\infty} \int_{F_{2n}} \theta^{r} d\mu + \sum_{i=1}^{\infty} \int_{F_{2n-1}} \theta^{r} d\mu$$
$$\geq \sum_{i=1}^{\infty} a^{n-1} \mu(F_{2n}) + \sum_{i=1}^{\infty} a^{-n} \mu(F_{2n-1})$$
$$\geq \frac{1}{a} \left[\sum_{n=1}^{\infty} \|\theta_{|F_{2n}}\|_{\infty}^{r} \mu(F_{2n}) + \sum_{n=1}^{\infty} \|\theta_{|F_{2n-1}}\|_{\infty}^{r} \mu(F_{2n-1}) \right]$$
$$\geq \frac{1}{a} \sum_{n=1}^{\infty} \|\theta_{|F_{n}}\|_{\infty}^{r} \mu(F_{n}) = +\infty.$$

This means that $\theta \notin L^r(\Sigma_X)$. Hence we proved the implication (ii) \Rightarrow (iii).

Finally, let $\{F_n\}_{n=0}^{\infty}$ be a partition of X such that $\sum_{n=1}^{\infty} \|\theta_{|_{F_n}}\|_{\infty}^r \mu(F_n) < \infty$, we have

$$\int_X \theta^r d\mu = \sum_{i=1}^\infty \int_{F_n} \theta^r d\mu \le \sum_{n=1}^\infty \|\theta_{|_{F_n}}\|_\infty^r \mu(F_n) < \infty.$$

Thus we proved the implication $(iii) \Rightarrow (i) (\Leftrightarrow (ii))$.

Acknowledgments

The author would like to thank the referees for their useful comments.

References

- Campbell, J., Jamison, J.: On some classes of weighted composition operators, Glasgow Math. J. 32, 87-94, (1990).
- [2] Dunford, N., Schwartz, J. T.: Linear Operators, Part I, Interscience, New York, 1971.
- [3] Hoover, T., Lambert, T., Quinn, J.: The Markov process determined by a weighted composition operator. Studia Math. (Poland) LXXII, 225-235, (1982).
- [4] Jabbarzadeh, M. R., Pourreza, E.: A note on weighted composition operators on L^p-spaces, Bull. Iranian Math. Soc. 29, 47-54, (2002).
- [5] Rao, M. M.: Conditional measure and applications, Marcel Dekker, New York, 1993.
- [6] Singh, R. K.: Composition operators induced by rational functions, Proc. Amer. Math. Soc. 59, 329-333, (1976).
- [7] Takagi, H., Yokouchi, K.: Multiplication and composition operators between two L^p- spaces, Contemp. Math. 232, 321-338, (1999).

M. R. JABBARZADEH Faculty of Mathematical Science University of Tabriz 51664 Tabriz-IRAN e-mail: mjabbar@tabrizu.ac.ir Received 05.12.2005