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Real Aspects of the Moduli Space of Genus Zero

Stable Maps

Seongchun Kwon

Abstract

We show that the moduli space of genus zero stable maps is a real projective

variety if the target space is a smooth convex real projective variety. We show that

evaluation maps, forgetful maps are real morphisms. We analyze the real part of

the moduli space.
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1. Introduction

We call a projective variety V as a real projective variety if V has an anti-holomorphic
involution τ on the set of complex points V (C). By a real structure on V , we mean an
anti-holomorphic involution τ . The real part of (V, τ ) is the locus which is fixed by τ .

In the following paragraph, readers can find the definitions of the moduli space of
stable maps and various maps defined on it in [3].

Let’s assume that X is a convex real projective variety. We show the following:

• The moduli space Mk(X, β) of k-pointed genus 0 stable maps is a real projective
variety.

• Let Mk be the Deligne-Mumford moduli space of k-pointed genus 0 curves. The
forgetful maps Fn : Mn(X, β) → Mn−1(X, β), F : Mk(X, β) → Mk are real
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morphisms(i.e., morphisms which commute with the anti-holomorphic involution
on the domain and that on the target), where n ≥ 1, k ≥ 3.

• Let evi : Mk(X, β) → X be the i-th evaluation map. Then, evi is a real map.

• Let CP
n have the real structure from the complex conjugation involution. Let X be

a real projective variety such that the imbedding i which decides the real structure
on X has a non-empty intersection with RP

n ⊂ CP
n. Let Mk(X, β), k ≥ 3, be the

moduli space of k-pointed genus 0 stable maps with a smooth domain curve. Then,
each point in the real part Mk(X, β)re of the moduli space represents a real stable
map having marked points on the real part of the domain curve.

This paper is organized as follows. In Sec. 2, we show that the moduli space is a real
projective variety. We prove that straightforwardly, based on the explicit tangent space
splitting calculation. In Sec. 3, we show that the forgetful maps, and the evaluation map
are real maps. Also, we do real part analysis when k ≥ 3.

Theorem 2.2 is the main theorem in this paper. Real part analysis, done in sec. 3,
shows that the studies of the intersection theoretic properties on the real part of Mk(X, β)
are important for real enumerative applications. The main results of this paper are similar
to those in [10]. The main Theorem in [10] and in this paper is based on the proof which
shows that the defined involution on the complex moduli space of stable maps is an
anti-holomorphic involution, when the target space X is a real convex projective variety.
However, the practical methods of proofs are different.

The real version of the Gromov-Witten invariants are defined in [11], when the target
space is a rational projective surface. Different from the Gromov-Witten invariant defined
on Mk(X, β), the real version of the Gromov-Witten invariants are local invariants.

Relevant theory which considers the global minimum bound of real enumerative
problems has been developed by J-Y Welschinger in [21], [22]. The Gromov-Witten
invariant in the real world with Quantum Schubert calculus has been widely studied by
F. Sottile. See [16], [17], [18], [19], [20].

Convention:

• The real structure on CP
1, defined by the standard complex conjugation involu-

tion, and the real structure of the target space X will be always denoted by s, t
respectively.
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• Let C be an arithmetic genus 0 curve. Let π : C̃ := CP
1
1 ∪ . . . ∪ CP

1
l → C be

a normalization map. We will denote the irreducible component in C̃ by CP
1
q(p),

either if it contains π−1(p) where p is a non-singular point in C, or if it contains p

where p is any point in C̃.

2. Real Aspects of the moduli spaces

The following Lemma is well-known. See [6, 2.3], [4, sec.10], [13, 4.1]. However, the
author couldn’t find the proof. Thus, we include the proof.

The tangent space calculations done in Lemma 2.1, Theorem 2.1, are from repeated
K-group calculations of vector spaces based on the simple homological algebraic fact
(cf. Proposition 2.11. in [2]). The K-group we consider is the Grothendieck group of
K0(point) because the tangent space is calculated pointwise. The way to express the
tangent space of the Deligne-Mumford moduli space Mk in the proof of Lemma 2.1
is somewhat different from the conventional one. However, they are equivalent in the
K-theoretic point of view. The alternative expression is taken because it allows us to
easily relate the underlying real structure of the pointed curve with the anti-holomorphic
structure on the Deligne-Mumford moduli space. We include the details of the proof for
this alternative expression. Note that each element in Mk \ Mk represents a singular
curve having only nodal singularities. Different from the Deligne-Mumford moduli space
of pointed higher genus curves, singular curves in the Deligne-Mumford moduli space of
pointed genus zero curves are trees. Therefore, the number of singular points (i.e., gluing
points) is exactly one less than the number of irreducible components.

Lemma 2.1 Let c := [(C, a1, . . . , ak)] be a point in Mk. Let π : C̃ := CP
1
1∪. . .∪CP

1
l → C

be a normalization map, where CP
1
i is biholomorphic to CP

1. Let g1, . . . , gr, r = l − 1,

be singular points in C. Let’s denote two points in C̃ corresponding to π−1(gi) by g1
i , g

2
i .

Let c be the point in Mk represented by the pointed curve (C, s(a1), . . . , s(ak)) which
satisfies the following:

Let π : C̃ := CP
1
1 ∪ . . . ∪ CP

1
l → C be a normalization map.

• If g̃1, . . . , g̃r are singular points on C, then, g̃1
i ∈ CP

1
q(g1

i ), g̃
2
i ∈ CP

1
q(g2

i ) in π−1(g̃i)

are s(g1
i ), s(g

2
i ).
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• s(ai) is the point in CP
1
q(ai) conjugate to ai by the real structure s on CP

1
q(ai).

The involution, I : c 	→ c, defines a real structure on the genus zero Deligne-Mumford
moduli space Mk. Mk is a real projective variety.

Proof. It is well-known that the tangent space TcMk at c is Ext1(Ω1
C(a1 + . . .+ak),OC).

Thus,

TcMk =
l⊕

i=1

H1(CP
1
i , TCP

1
i (−

∑
j

q(aj,i) −
∑
α,β

gβ,i
α )) ⊕

r⊕
i=1

Tg1
i
CP

1
q(g1

i ) ⊗ Tg2
i
CP

1
q(g2

i ),

(1)

where aj,i ∈ {a1, . . . , ak} such that q(aj,i) ∈ CP
1
i , and gβ,i

α ∈ π−1(gα)
⋂

CP
1
i , where

gα ∈ {g1, . . . , gr}

=
k⊕

i=1

Tai CP
1
q(ai) ⊕

j=1,2⊕
i=1,... ,r

Tgj
i
CP

1
q(gj

i )
� (

l⊕
i=1

H0(CP
1
i , TCP

1
i ))

⊕
r⊕

i=1

Tg1
i
CP

1
q(g1

i ) ⊗ Tg2
i
CP

1
q(g2

i ). (2)

(1) comes from the following local to global spectral sequence (cf. [8], p. 99):

0 → H1(C,Ext0C(Ω1
C(a1 + . . .+ ak),OC)) → (3)

→ Ext1(Ω1
C(a1 + . . .+ ak),OC) → H0(C,Ext1C(Ω1

C(a1 + . . .+ ak),OC)) → 0.

See [7] for some further details. Terms
⊕k

i=1 TaiCP
1
q(ai)

,
⊕j=1,2

i=1,... ,r Tgj
i
CP

1
q(gj

i )
,

⊕l
i=1 H

0(CP
1
i , TCP

1
i ) in (2) come from the long exact sequence of sheaf cohomology

induced from the following short exact sequence of sheaves:

0 → TCP
1
i (−

∑
j

q(aj,i)−
∑
α,β

gβ,i
α ) → TCP

1
i →

⊕
j

Tq(aj,i)CP
1
i ⊕

⊕
α,β

Tgβ,i
α

CP
1
i → 0.

Signs on the summations are from the K-group calculation by using Proposition 2.11.

in [2]. Note that the rank of H0(CP
1
i , TCP

1
i (−

∑
j

q(aj,i) −
∑
α,β

gβ,i
α )) is zero due to the

stability condition.
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The tangent space TcMk at c is:

k⊕
i=1

Ts(ai)CP
1
q(ai) ⊕

j=1,2⊕
i=1,... ,r

Ts(gj
i )CP

1
q(gj

i )
(4)

�(
l⊕

i=1

H0(CP
1
i , TCP

1
i )) ⊕

r⊕
i=1

Ts(g1
i )CP

1
q(g1

i ) ⊗ Ts(g2
i )CP

1
q(g2

i ).

The actual expression of the tangent space splitting depends on the pointed curve rep-
resenting the point c. However, one can observe the following. Let (C ′, σ(a1), . . . , σ(ak))
represent the point c in Mk, where σ is an element in Aut(CP

1). Then, (C ′, s ◦
σ(a1), . . . , s ◦ σ(ak)) represents c.

Let v be an element in H0(CP
1
i , TCP

1
i ). Let’s denote v |x be the value of v at x. Then,

v̄ defined by v̄ |s(x):= ds(v |x) is an element in H0(CP
1
i , TCP

1
i ). The differential ds of the

real structure s induces the anti-holomorphic involution, v 	→ v̄, on H0(CP
1
i , TCP

1
i ). The

anti-holomorphic involutions on other components in (2) to (4) are obviously induced by
the differential ds on each component. Thus, the differential dI |c: (2) 	→ (4) at c is an
anti-holomorphic involution. I is an anti-holomorphic involution. ✷

Remark 2.1 We can also prove the Lemma2.1 as follows. The Deligne-Mumford moduli
space is originally defined over Z. (See [14, III.3].) So, it is defined over any field. The
C-scheme Deligne-Mumford moduli space can be obtained by a scalar extension from
the R-scheme Deligne-Mumford moduli space. That is, the C-scheme Deligne-Mumford

moduli space is a complexification M
R

k ×R C of the R-scheme Deligne-Mumford moduli

space M
R

k . Thus, it has a canonical anti-holomorphic involution. (See [15, p4, (1.4)
Proposition].) It is easily seen that the anti-holomorphic involution in Lemma 2.1 is
identical to the corresponding canonical involution in this Remark.

We calculate the tangent space on the moduli space Mk(X, β) of k-pointed genus
zero stable maps. Theorem 2.1 is proven in symplectic category by taking the different
methods of calculations in [12] when f is an immersion on each irreducible component.
Intuitive interpretations of the calculational results are seen in [12].
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Theorem 2.1 Let X be a convex projective variety.
Let f := [(f, C, a1, . . . , ak)] be a point in Mk(X, β) such that β is non-trivial. Let

π : C̃ := CP
1
1 ∪ . . . ∪ CP

1
l → C be a normalization map, where CP

1
m is biholomorphic to

CP
1. Let g1, . . . , gr be singular points on C, r := l−1. Let’s denote elements in π−1(gn)

by g1
n, g

2
n. Let Nm be the normal sheaf induced from a morphism dfm : TCP

1
m → TX.

(i) Suppose fm := f |CP1
m

is non-trivial, m = 1, . . . , l. Then, the tangent space

TfMk(X, β) at f is

l⊕
m=1

H0(CP
1
m, Nm)⊕

⊕
i=1,... ,k

TaiCP
1
q(ai)

⊕ (
⊕

n=1,... ,r

Tg1
n
CP

1
q(g1

n) ⊗ Tg2
n
CP

1
q(g2

n))⊕

⊕
j=1,2⊕

n=1,... ,r

Tgj
n
CP

1
q(gj

n)
� (

r⊕
n=1

Tf(gn)X).

(ii) We may assume the following by reordering if necessary:
a. fi := f |CP1

i
is trivial if i = 1, . . . , m, and is non-trivial if i = m+ 1, . . . , l.

b. If i = 1, . . . , h, then, gi joins the irreducible components on which the restriction
of f is non-trivial. If i = h + 1, . . . , r, then gi joins the irreducible components such
that f is trivial on one of the components or both components. Then, the tangent space
TfMk(X, β) at f is

l⊕
i=m+1

H0(CP
1
i , Ni)⊕

⊕
i=1,... ,k

TaiCP
1
q(ai) ⊕ (

⊕
i=1,... ,r

Tg1
i
CP

1
q(g1

i ) ⊗ Tg2
i
CP

1
q(g2

i )) ⊕

⊕
j=1,2⊕

i=1,... ,r

Tgj
i
CP

1
q(gj

i )
� (

h⊕
i=1

Tf(gi)X) �
m⊕

i=1

H0(CP
1
i , TCP

1
i ).

Proof. We will use the following index notations throughout the proof of (i):

i = 1, . . . , k the index for marked points;
m or m′ = 1, . . . , l the index for irreducible components;
n = 1, . . . , l− 1 the index for gluing points;
j = 1, 2 the upper index (with the lower index n);

for pregluing points in π−1(gi).

To make the notations simpler, we will use the following notations:
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ai(m) = ai if ai ∈ CP
1
m

= ∅ if ai /∈ CP
1
m;

gj
n(m) = gj

n if gj
n ∈ CP

1
m

= ∅ if gj
n /∈ CP

1
m;

T∅CP
1
m := ∅.

For example, if a1(1) = ∅, a2(1) = a2, then a1(1) + a2(1) = a2 and
Ta1(1)CP

1
1

⊕
Ta2(1)CP

1
1 = Ta2CP

1
1. Obviously,

∑
i,m ai(m) =

∑
i ai.

As a convention, if we don’t specify the range of the indices, e.g., ai, i = 1, 2, then we
always consider all possible indexes. That is, ai means ai, i = 1, . . . , k.

The tangent space at f is the hyperext group Ext1(f∗Ω1
X → Ω1

C(a1 + . . .+ ak),OC).

From the long exact sequence associated with the hyperext group
Ext1(f∗Ω1

X → Ω1
C(a1 + . . .+ ak),OC) (cf. [3, p285]):

0 → Hom(Ω1
C(a1 + . . .+ ak),OC) → H0(C, f∗TX) →

→ Ext1(f∗Ω1
X → Ω1

C(a1 + . . .+ ak),OC) →

→ Ext1(Ω1
C(a1 + . . .+ ak),OC) → 0,

we get the following tangent space splitting at f:

�Hom(Ω1
C (a1 + . . .+ ak),OC)⊕H0(C, f∗TX) ⊕ Ext1(Ω1

C(a1 + . . .+ ak),OC). (5)

We will calculate each term’s splitting first.

The standard fact we will use in the following calculations is Hom(Ω1
C(a1 + . . . +

ak),OC), Ext0(Ω1
C(a1 + . . . ak),OC) is the sheaf of derivations one gets from the pushfor-

ward of the sheaf of vector fields on C̃ := CP
1
1 ∪ . . .∪CP

1
l vanishing at the inverse images

gj
n of the node in C and the marked points ai. (cf. [8, p100])

For �Hom(Ω1
C (a1 + . . .+ ak),OC) term, we use the short exact sequences of sheaves:
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0 → TCP
1
m(−

∑
i

ai(m) −
∑
j,n

gj
n(m)) → TCP

1
m →

→
⊕

i

Tai(m)CP
1
m ⊕

⊕
j,n

Tgj
n(m)CP

1
m → 0 (6)

to get the following K-group equation:

Hom(Ω1
C(

∑
i

ai),OC) = H0(C, TC(−
∑

i

ai))

= H0(C, π∗(TC̃(−
∑

i

ai −
∑
j,n

gj
n)))

= H0(C̃, T C̃(−
∑

i

ai −
∑
j,n

gj
n))

=
⊕
m

H0(CP
1
m, TCP

1
m(−

∑
i

ai(m) −
∑
j,n

gj
n(m)))

=
⊕
m

[H0(CP
1
m, TCP

1
m) � (

⊕
i

Tai(m)CP
1
m)

� (
⊕
j,n

Tgj
n(m)CP

1
m)⊕H1(CP

1
m, TCP

1
m(−

∑
i

ai(m) −
∑
j,n

gj
n(m)))]

by (6).

For H0(C, f∗TX), we use the short exact sequence of sheaves

0 → f∗TX → ⊕
m f∗

mTX → ⊕
n Tf(gn)X → 0,

to get the K-group equation

H0(C, f∗TX) =
⊕

m H0(CP
1
m, f∗

mTX) � ⊕
n Tf(gn)X,

because H1(C, f∗TX) vanishes by Lemma 10 in [5].

For Ext1(Ω1
C(a1 + . . .+ ak),OC), we use the exact sequence from the local to global

spectral sequence in (3) to get
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Ext1(Ω1
C(a1 + . . .+ ak),OC)

= H1(C,Ext0(ΩC(
∑

i

ai),OC)) ⊕H0(C,Ext1(ΩC(
∑

i

ai),OC)

= H1(C, π∗(TC̃(−
∑

i

ai −
∑
i,n

gj
n))) ⊕H0(C,Ext1(ΩC(

∑
i

ai),OC))

=
⊕
m

[H1(CP
1
m, TCP

1
m(−

∑
i

ai(m) −
∑
n,j

gj
n(m)))]

⊕
⊕

m,m′,n

[(Tg1
n(m)CP

1
m)⊗ (Tg2

n(m′)CP
1
m′ )].

The result follows by putting all terms to (5), and simplify further by K-group
calculations, with the long exact sequence of sheaf cohomology induced from the following
short exact sequence of sheaves:

0 → TCP
1
m → f∗

mTX → Nm → 0.

The proof of (ii) is very similar to the proof of (i). We employ the fact that if fα is
trivial, then H0(CP

1
α, f

∗
αTX) is isomorphic to Tfα(CP1

α)X. ✷

For the proof of Theorem 2.2, it is enough to show that the involution defined by
[(f, C, a1, . . . , ak)] 	→ [(f, C, s(a1), . . . , s(ak))] on the moduli space Mk(X, β) is an anti-
holomorphic involution (cf. [15, p4, (1.4) Proposition]). Mk(X, β) is a normal projective
variety. It has orbifold singularities. So, we show that the defined involution is an anti-
holomorphic involution with local chart before the local quotient by a finite group action
and then show there is a canonical conjugate group action on the conjugate local chart
around the conjugate point.

Theorem 2.2 Let X be a convex real projective variety. Then, the moduli space Mk(X, β)
of stable maps is a real projective variety whose real structure comes from the involution
defined by [(f, C, a1, . . . , ak)] 	→ [(t ◦ f ◦ s, C, s(a1), . . . , s(ak))], where the notations C

and C are the same as in Lemma 2.1.

Proof. Let f be a point in Mk(X, β) represented by (f, C, s(a1), . . . , s(ak)), where
f(z) := t ◦ f ◦ s(z). Let H : Mk(X, β) → Mk(X, β) be the involution defined by f 	→ f .
The Theorem follows if we show that H is an anti-holomorphic involution.
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Let β be non-trivial. Let’s suppose that f is non-trivial on every component. From
Theorem2.1 (i), we know that the tangent space at
f := [(f, C, a1, . . . , ak)] is

l⊕
i=1

H0(CP
1
i , Ni)⊕

⊕
i=1,... ,k

TaiCP
1
q(ai)

⊕ (
⊕

i=1,... ,r

Tg1
i
CP

1
q(g1

i ) ⊗ Tg2
i
CP

1
q(g2

i )) ⊕

⊕
j=1,2⊕

i=1,... ,r

Tgj
i
CP

1
q(gj

i )
� (

r⊕
i=1

Tf(gi)X).

Let N i be the normal sheaf induced from the morphism df i : TCP
1
i → TX, where

f i(z) := t ◦ fi ◦ s(z). The tangent space at f is:

l⊕
i=1

H0(CP
1
i , N i)⊕

⊕
i=1,... ,k

Ts(ai)CP
1
q(ai) ⊕ (

⊕
i=1,... ,r

Ts(g1
i )CP

1
q(g1

i ) ⊗ Ts(g2
i )CP

1
q(g2

i ))⊕

⊕
j=1,2⊕

i=1,... ,r

Ts(gj
i )CP

1
q(gj

i )
� (

r⊕
i=1

Tt◦f(gi)X).

Each term in the tangent space splitting at f , f is a complex vector space, such that

⊕
i=1,... ,k

TaiCP
1
q(ai)

dH	→
⊕

i=1,... ,l

Ts(ai)CP
1
q(ai) (7)

⊕
i=1,... ,r

Tg1
i
CP

1
q(g1

i ) ⊗ Tg2
i
CP

1
q(g2

i )
dH	→

⊕
i=1,... ,r

Ts(g1
i )CP

1
q(g1

i ) ⊗ Ts(g2
i )CP

1
q(g2

i ) (8)

j=1,2⊕
i=1,... ,r

Tgj
i
CP

1
q(gj

i )

dH	→
j=1,2⊕

i=1,... ,r

Ts(gj
i )CP

1
q(gj

i )
. (9)

It is obvious that dH in (7), (8), (9) is the anti-holomorphic involution induced by
the real structure of a complex conjugation map on CP

1:

r⊕
i=1

Tf(gi)X
dH	→

r⊕
i=1

Tt◦f(gi)X (10)
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Clearly, dH in (10) is the anti-holomorphic involution induced by the real structure t

on the target space X.

l⊕
i=1

H0(CP
1
i , Ni)

dH	→
l⊕

i=1

H0(CP
1
i , N i). (11)

Each normal sheaf Ni is the direct sum of the locally free sheaf NBi and skyscraper
sheaves supported by critical points of f . Similar to the case (10), the restriction of dH
to each skyscraper sheaf is the anti-holomorphic involution induced by the real structure
t on the target space X. Normal bundles NBi, NBi split into line bundles on CP

1 by
splitting principle. By considering Weil divisors characterizing each line bundle and the
definition of f i, one can check that NBi is a conjugate bundle for the bundle NBi. Thus,
the restriction of dH to H0(CP

1
i , NBi) is an anti-holomorphic involution.

The general case considered in Theorem2.1 (ii) can be easily proven by repeat-
ing the same arguments we did above, that is, by checking the componentwise anti-
holomorphicity of dH .

Let’s assume that (f ′, C ′, b1, . . . , bk) represents f . Then, there exists the element σ ∈
Aut(CP

1) such that f = f ′ ◦σ and bi = σ(ai). f is represented by (f, C, s(a1), . . . , s(ak)).

Note that f
′ ◦ σ = t ◦ f ′ ◦ s ◦ s ◦ σ ◦ s = t ◦ f ′ ◦ σ ◦ s = t ◦ f ◦ s = f , s(bi) = s ◦ σ ◦ s(s(ai)).

One can check that s ◦ σ ◦ s is also an element in Aut(CP
1). Thus, it shows that

(t ◦ f ′ ◦ s, C
′
, s(b1), . . . , s(bk)) represents f. This implies that the map H is an anti-

holomorphic involution on the local charts, independent of the actual choice of the chosen
pointed stable map representing f.

Let G be a finite group acting on the local chart Oh around h such that G×Oh →
Oh, (g, f) 	→ g · f. Let Oh be the conjugate local chart around h, i.e., Oh := {f | f ∈ Oh}.
Then, there is a canonical conjugate group action of G defined by g · f := g · f

Thus, H is an anti-holomorphic involution on the orbifold Mk(X, β).

Let’s assume that β is trivial. Then, the moduli space Mk(X, β) is isomorphic to the
complex manifold Mk × X. It is obvious the defined involution is an anti-holomorphic
involution. ✷

Remark 2.2 Araujo-Kollar constructed the moduli space of stable maps on any Noethe-
rian scheme in [1, sec. 10]. It is interesting to see whether the variety developed by the
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complexification of the moduli space defined over R is isomorphic to the moduli space of
stable maps defined over C or not. Note that the complexification as a variety doesn’t
need to have any meaning as a moduli space. Nevertheless, an element in the real part
of the variety gotten by the complexification uniquely corresponds to a real point in the
moduli space constructed over R.

Let’s consider the degree 2 maps from CP
1 to CP

1(:= C ∪ {∞}), defined by z 	→ z2

and z 	→ −z2. Then, they are represented by two distinct real points in the moduli
space constructed over R. But they are represented by one point in the real part of the
complex moduli space M0(CP

1, 2 · [line]), because they are equivalent maps. Thus, the
complexification of the moduli space of degree 2 maps over R cannot be isomorphic to
the complex moduli space M0(CP

1, 2 · [line]).

Due to the differences of the categories and equivalence relations, the complexification
of the moduli space defined over R as a variety is not always isomorphic to the moduli
space defined over C. Recall Remark 2.1 for the Deligne-Mumford moduli space.

3. Real Properties of the Moduli space

Proposition 3.1 The i-th evaluation map evi is a real map.

Proof. It is enough to show that evi commutes with the real structure H on
Mk(X, β), t on X. See [9, p107, 4.7.(c)]. Let f := [(f, C, a1, . . . , ak)]. Then, H(f ) :=
[(t ◦ f ◦ s, s(a1), . . . , s(ak))]. Thus, t ◦ f ◦ s(s(ai)) = evi(H(f )) = t(evi(f )) = t(f(ai)).
This commutation relation is independent of the pointed stable map representing the
point f ∈ Mk(X, β). Thus, the Proposition follows. ✷

One can show the following Proposition as we proved Proposition 3.1. Its proof is left
to readers.

Proposition 3.2 The forgetful maps, Mk(X, β) → Mk−1(X, β), Mk(X, β) → Mk, are
real maps.

Proposition 3.3 Let CP
n have the real structure from a complex conjugation involu-

tion. Let X be a real projective variety such that the imbedding i which decides the real
structure of X intersects with the real part RP

n of CP
n. If k ≥ 3, then the real part of
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Mk(X, β) (the locus in Mk(X, β) whose domain curve is smooth) consists of stable maps
[(f,CP

1, a1, . . . , ak)] such that ai is in RP
1(⊂ CP

1) and f is a real map, i.e., f ◦s = t◦f.

Proof. It is well-known that the real part of the Deligne-Mumford moduli space Mk

(before the compactification) consists of curves whose marked points are on the real part
RP

1 of the domain curve CP
1. (See [6, sec. 2.3].) If f := [(f,CP

1, a1, . . . , ak)] represents
a point in the real part of Mk(X, β), then Proposition 3.2 asserts that f is represented
by a map (f,CP

1, a1, . . . , ak), where ai is on the real part RP
1 in CP

1. And there exists
σ ∈ Aut(CP

1) such that f = t ◦ f ◦ s ◦ σ, ai = σ(ai). Since k ≥ 3, σ is an identity map.
It shows that f is a real map. ✷

Let’s assume that the target space X has the same real structure stated in Proposition
3.3. Then, of course, the type of stable maps described in Proposition 3.3 are in the real
part of Mk(X, β). But, the real part analysis of the whole moduli space Mk(X, β) for all
k is subtle. Let’s illustrate with some examples.

• If k = 0, then some non-real maps are in the real part of the moduli space. For
example, the non-real map f : CP

1 → CP
2 whose image curve is represented by the

equation x2 + y2 + z2 in CP
2 is in the real part of the moduli space.

• On Mk(X, β) \Mk(X, β), the stable maps all of whose gluing points are in the real
part of the domain curve, and all of whose marked points are in the real part of
each irreducible component are in the real part of the moduli space.

• The gluing points in the reducible domain curve don’t have to be in the real part
of the domain curve. Let [(f, C, a1)] be the element in M1(CP

1, 2 · [line]) such that

∗ the normalization C̃ of the domain curve C is CP
1
0 ∪ CP

1
1 ∪ CP

1
2, where CP

1
i
∼=

CP
1 ∼= C ∪ {∞}

∗ the point 0 ∈ CP
1
1 is glued to the point i ∈ CP

1
0 and the point 0 ∈ CP

1
2 is glued

to the point −i ∈ CP
1
0

∗ f |CP1
0
= 0, f |CP1

1
= f |CP1

2
= identity map

The last example was given by Pierre Deligne to the author.
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