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Higher Order Generalization of Positive Linear
Operators Defined by a Class of Borel Measures
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Abstract
In the present paper, we introduce a sequence of linear operators, which is a
higher order generalization of positive linear operators defined by a class of Borel
measures studied in [2]. Then, using the concept of A—statistical convergence
we obtain some approximation results which are stronger than the aspects of the

classical approximation theory.
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1. Introduction

Let I be an arbitrary interval of the real line, and let C(I) denote the linear space
of all real-valued continuous functions on I. Assume that g is a non-negative increasing
function on [0, 00) with g(0) = 1. If T is an unbounded interval, then we consider the
following function space

Cy(I) = {f eC(): |y|—>£>1;n(yel) % =0 for any ¢ > O}, (1)
which was examined in [2], [3]. Here, we should remark that if I = [a,+00) (or T =
(@, +00)), then the item “|y| — oo; (y € I)” in the definition (1) reduces to “y — +o0”;
however, if I = (—oo,a] (or I = (—00,a)), then we have “y — —o0”. On the other hand,
if I is an bounded interval, then we will use the space C([) instead of Cy(I).
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Now, for each fixed = € I, let {un 4 : n € N} be a collection of measures defined on
(I, B), where B is the sigma field of Borel measurable subsets of I. Assume that, for any
d > 0, the condition

sup / 919 dpina(y) < o0 (2)

neN
I\ Is

holds, where Is := [z — §,2 + §] N I. In the condition (2), the boundedness is pointwise
with respect to z; that is, it is bounded for each fixed x € I. With this terminology, in
[2], some approximation properties of the following positive linear operators defined on
Cy(I) were investigated:

= /f(y)dunw(y) , neNand feCy(I). (3)
T

Define the space C![]T] (I) by
i ={r: 1 ec,n}, (r=012..).

If » = 0, then observe that C![]O] (I) = Cy(I). We now consider the r—th order generaliza-
tion of the operators L,, defined by (3) as follows

Z / B (y) dum( ), (4)

where f € C![]T] (I), (r=0,1,2,...), n € N, and also the function g satisfy the condition
(2). We note that this kind of generalization was also considered in [11]. Tt is easy to see
that if » = 0, then we have

LO(fiz) = La(f; 2).

The main goal of the present paper is to investigate various approximation properties

of the linear operators L defined by (4) with the help of the concept of A-statistical
convergence. Recently, it has been shown that regular (non-matrix) summability trans-
formations are also quite effective on the approximation of positive linear operators (see
[2], [3], [4], [5], [9]). Especially, using the concept of the A-statistical convergence, where

334



DUMAN

A is a non-negative regular matrix, instead of the ordinary convergence in the approxi-
mation theory gives us many advantages, since A statistical convergence is stronger than
the usual convergence.

Before proceeding further, we recall the concept of A-statistical convergence.

Let A := (ajn), j,n € N, be a non-negative regular summability, i.e. limAz = L
whenever limz = L, where Az := ((Az);) is called an A-transform of z := (z,) and is
given by

(Az); = Z AjnTn,
n=1

provided that the series convergence for each j € N (see [10]). Then a sequence z := ()
is called A-statistical convergent to a number L if, for every € > 0,

lim Z ajn = 0.

J
n:|z,—L|>e

We denote this limit by sty — limaz = L [7] (see also [12], [14]). If we take A =
(1, the Cesaro matrix of order one, then C-statistical convergence is equivalent to
statistical convergence [6], [8]. Also replacing the matrix A by the identity matrix,
A-statistical convergence coincides with the ordinary convergence. Kolk [12] proved
that A-statistical convergence is stronger than ordinary convergence in the case of which

lim; max, |aj,| = 0.

2. A-Statistical Approximation Properties

In this section using A-statistical convergence we investigate some approximation

properties of the operators LLT] defined by (4).
We note that a function f € C(I) belongs to Lipa(c), 0 < a < 1, provided

[f(y) = f@)| < My —z|*  (x,y €l and M >0). ()
Then we obtain the following result.

Theorem 2.1 Let I be an arbitrary interval of the real line, and let r be a non-negative
integer. Assume that

/dun@(y) =1 (for each x € I andn € N). (6)
1
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Then for all f € C![]T] (I) such that f") € Lipp(a), 0 < o < 1, and for each x € I, we
have

LiV(f;2) — f(2)| < CLp(Jlz —y|*"" ;@)

where
_ Ma B(a,r)
¢= atr(r—1) @
and B(a,r) is the beta function.
Proof. By (4) and (6), we get
r ok
fla) - L (si) = [ {f(w) It %} i o). 0
k=0 '

1

Applying the Taylor’s formula (see [11]) we may write that

1
- (LL' - y)k _ (LL' _y)r r— T T
o) = W = / 1= [1Ow + 1 - 9) — 1O W) d. (9)
Since f(") € Lipy(a), we get from (5) that

£+t =) = O W) < Mt —yl* (10)

Considering (10) in (9), and using the beta integral, we conclude that

r k
B (k) (z —v) < |y ylotr Ma B(a,T) 1
‘f(w) > MW <le -l ST ()
So combining (11) with (8), we have
Mo B(a,T)
_ . ‘ < ) / et
@) =L < [ el )
I
Mo B(a,T) atr
= _ | "l(l - | * 7./,[;),
a+r(r—1)!
which gives the desired result. O
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Theorem 2.2 Let A = (a;,) be a non-negative reqular summability matriz, and let I be
an arbitrary interval of the real line. Let 0 < a <1 and let r be a non-negative integer.
Assume that the condition (6) is satisfied. Assume further that g : [0,00) — R, g(y) = ¥

and hy : T — R, hy(y) = |z —y|*"" for each fized x € 1. If the condition
sta —lim Ly, (hy,z) =0 (12)

holds, then for all f € C![]T] (I) such that f") € Lipy (), we have

L) (fi0) = f(@)] =0,

Proof. Let x € I be fixed. By the definitions of the functions g and h,, observe that
hy € Cg(I). Now, for a given € > 0, define the following sets:

sta — lim
n

U := {nEN: ‘Lg](f;x) —f(x)‘ 25}
and

V= {neN:Ln(hm;x)Z %}

where the constant C is given by (7). So it follows from Theorem 2.1 that U C V.
Therefore, we get, for all j € N, that

Z Qjn S Z Qjn- (13)

nelU neV
Note the condition (12) implies lim > a;, = 0. So, we conclude from (13) that
J nev
lim Y aj, =0, whence the result. O
J neU

If we use the test functions e;(y) = 3%, (i = 0,1,2), instead of (12) in Theorem 2.1,
then we have the following approximation result via A—statistical convergence.

Theorem 2.3 Under the conditions of Theorem 2.2, if
sta —lim|Ly(e;,z) —e;(x)] =0, (i=0,1,2), (14)

then for all f € C![]T] (I) such that f) € Lipas(c), we have

sta —lim |LI(f;2) — f(z)] = 0.
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Proof.  We first note that, by the definition of g, the test functions e;, (i = 0,1, 2)
belong to Cy(I). So, by Theorem 1 in [2], the condition (14) yields that for all h € Cy (1)

sta — liin |L(h,2) — h(z)| = 0. (15)

In particular, take h := h,, which is defined in Theorem 2.2. Since h,(z) = 0, it follows
from (15) that

sta —lm|Ly(hy, z)| = 0,

which gives (12). Therefore the proof follows from Theorem 2.2. O

Corollary 2.4 If I is closed and bounded interval of the real line, say I = [a, b], and also
sta —lim||Ln(ei, ") — eillgpapy =0, (1=0,1,2),

then for all f € CMa,b] such that ") € Lipas(a) we have
ta — i HLW ) — H —0,
sta =t 20— 1]

where |||,y denotes the usual sup norm on [a,b].

Special Cases
(a) Choosing r = 0 in Theorem 2.3, we get Theorem 1 in [2].
(b) The choice of » = 0 in Corollary 2.4 reduces to Corollary 2 in [2].

(¢) If we replace the matrix A by the Cesaro matrix of order one and choose r = 0
in Corollary 2.4, then we get the statistical approximation theorem introduced by
Gadjiev and Orhan (see Theorem 1 in [9)]).

(d) If we replace the matrix A by the identity matrix and also choose r = 0 in
Corollary 2.4, then we get the classical Korovkin-type approximation theorem (see,
for instance, [1], [13]).
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