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Abstract

In the present paper, we introduce a sequence of linear operators, which is a

higher order generalization of positive linear operators defined by a class of Borel

measures studied in [2]. Then, using the concept of A−statistical convergence

we obtain some approximation results which are stronger than the aspects of the

classical approximation theory.
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1. Introduction

Let I be an arbitrary interval of the real line, and let C(I) denote the linear space
of all real-valued continuous functions on I. Assume that g is a non-negative increasing
function on [0,∞) with g(0) = 1. If I is an unbounded interval, then we consider the
following function space

Cg(I) =
{
f ∈ C(I) : lim

|y|→∞; (y∈I)

|f(y)|
(g(|y|))c

= 0 for any c > 0
}
, (1)

which was examined in [2], [3]. Here, we should remark that if I = [a,+∞) (or I =
(a,+∞)), then the item “|y| → ∞; (y ∈ I)” in the definition (1) reduces to “y → +∞”;
however, if I = (−∞, a] (or I = (−∞, a)), then we have “y → −∞”. On the other hand,
if I is an bounded interval, then we will use the space C(I) instead of Cg(I).
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Now, for each fixed x ∈ I, let {µn,x : n ∈ N} be a collection of measures defined on
(I,B), where B is the sigma field of Borel measurable subsets of I. Assume that, for any
δ > 0, the condition

sup
n∈N

∫
I \ Iδ

g(|y|)dµn,x(y) <∞ (2)

holds, where Iδ := [x − δ, x + δ] ∩ I. In the condition (2), the boundedness is pointwise
with respect to x; that is, it is bounded for each fixed x ∈ I. With this terminology, in
[2], some approximation properties of the following positive linear operators defined on
Cg(I) were investigated:

Ln(f ; x) =
∫
I

f(y)dµn,x(y) , n ∈ N and f ∈ Cg(I). (3)

Define the space C [r]
g (I) by

C [r]
g (I) =

{
f : f(r) ∈ Cg(I)

}
, (r = 0, 1, 2, ...).

If r = 0, then observe that C [0]
g (I) = Cg(I). We now consider the r−th order generaliza-

tion of the operators Ln defined by (3) as follows

L[r]
n (f ; x) =

r∑
k=0

∫
I

f(k)(y)
(x − y)k

k!
dµn,x(y), (4)

where f ∈ C
[r]
g (I), (r = 0, 1, 2, ...), n ∈ N, and also the function g satisfy the condition

(2). We note that this kind of generalization was also considered in [11]. It is easy to see
that if r = 0, then we have

L[0]
n (f ; x) = Ln(f ; x).

The main goal of the present paper is to investigate various approximation properties

of the linear operators L[r]
n defined by (4) with the help of the concept of A-statistical

convergence. Recently, it has been shown that regular (non-matrix) summability trans-
formations are also quite effective on the approximation of positive linear operators (see
[2], [3], [4], [5], [9]). Especially, using the concept of the A-statistical convergence, where
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A is a non-negative regular matrix, instead of the ordinary convergence in the approxi-
mation theory gives us many advantages, since A statistical convergence is stronger than
the usual convergence.

Before proceeding further, we recall the concept of A-statistical convergence.
Let A := (ajn), j, n ∈ N, be a non-negative regular summability, i.e. limAx = L

whenever limx = L, where Ax := ((Ax)j) is called an A-transform of x := (xn) and is
given by

(Ax)j :=
∞∑

n=1

ajnxn,

provided that the series convergence for each j ∈ N (see [10]). Then a sequence x := (xn)
is called A-statistical convergent to a number L if, for every ε > 0,

lim
j

∑
n:|xn−L|≥ε

ajn = 0.

We denote this limit by stA − limx = L [7] (see also [12], [14]). If we take A =
C1, the Cesàro matrix of order one, then C1-statistical convergence is equivalent to
statistical convergence [6], [8]. Also replacing the matrix A by the identity matrix,
A-statistical convergence coincides with the ordinary convergence. Kolk [12] proved
that A-statistical convergence is stronger than ordinary convergence in the case of which
limj maxn |ajn| = 0.

2. A-Statistical Approximation Properties

In this section using A-statistical convergence we investigate some approximation

properties of the operators L[r]
n defined by (4).

We note that a function f ∈ C(I) belongs to LipM (α), 0 < α ≤ 1, provided

|f(y) − f(x)| ≤M |y − x|α (x, y ∈ I and M > 0). (5)

Then we obtain the following result.

Theorem 2.1 Let I be an arbitrary interval of the real line, and let r be a non-negative
integer. Assume that ∫

I

dµn,x(y) = 1 (for each x ∈ I and n ∈ N). (6)
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Then for all f ∈ C
[r]
g (I) such that f(r) ∈ LipM (α), 0 < α ≤ 1, and for each x ∈ I, we

have ∣∣∣L[r]
n (f ; x) − f(x)

∣∣∣ ≤ CLn(|x− y|α+r ; x)

where

C =
Mα

α+ r

B(α, r)
(r − 1)!

, (7)

and B(α, r) is the beta function.

Proof. By (4) and (6), we get

f(x) − L[r]
n (f ; x) =

∫
I

{
f(x) −

r∑
k=0

f(k)(y)
(x − y)k

k!

}
dµn,x(y). (8)

Applying the Taylor’s formula (see [11]) we may write that

f(x) −
r∑

k=0

f(k)(y)
(x − y)k

k!
=

(x − y)r

(r − 1)!

1∫
0

(1 − t)r−1
[
f(r)(y + t(x− y)) − f(r)(y)

]
dt. (9)

Since f(r) ∈ LipM (α), we get from (5) that∣∣∣f(r)(y + t(x− y)) − f(r)(y)
∣∣∣ ≤Mtα |x− y|α . (10)

Considering (10) in (9), and using the beta integral, we conclude that∣∣∣∣∣f(x) −
r∑

k=0

f(k)(y)
(x − y)k

k!

∣∣∣∣∣ ≤ |x− y|α+r Mα

α+ r

B(α, r)
(r − 1)!

. (11)

So combining (11) with (8), we have

∣∣∣f(x) − L[r]
n (f ; x)

∣∣∣ ≤ Mα

α+ r

B(α, r)
(r − 1)!

∫
I

|x− y|α+r
dµn,x(y)

=
Mα

α+ r

B(α, r)
(r − 1)!

Ln(|x− y|α+r ; x),

which gives the desired result. ✷
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Theorem 2.2 Let A = (ajn) be a non-negative regular summability matrix, and let I be
an arbitrary interval of the real line. Let 0 < α ≤ 1 and let r be a non-negative integer.
Assume that the condition (6) is satisfied. Assume further that g : [0,∞) → R, g(y) = ey

and hx : I → R, hx(y) = |x− y|α+r for each fixed x ∈ I. If the condition

stA − lim
n
Ln(hx, x) = 0 (12)

holds, then for all f ∈ C [r]
g (I) such that f(r) ∈ LipM (α), we have

stA − lim
n

∣∣∣L[r]
n (f ; x)− f(x)

∣∣∣ = 0.

Proof. Let x ∈ I be fixed. By the definitions of the functions g and hx, observe that
hx ∈ Cg(I). Now, for a given ε > 0, define the following sets:

U :=
{
n ∈ N :

∣∣∣L[r]
n (f ; x) − f(x)

∣∣∣ ≥ ε
}

and

V :=
{
n ∈ N : Ln(hx; x) ≥ ε

C

}
,

where the constant C is given by (7). So it follows from Theorem 2.1 that U ⊆ V.

Therefore, we get, for all j ∈ N, that∑
n∈U

ajn ≤
∑
n∈V

ajn. (13)

Note the condition (12) implies lim
j

∑
n∈V

ajn = 0. So, we conclude from (13) that

lim
j

∑
n∈U

ajn = 0, whence the result. ✷

If we use the test functions ei(y) = yi, (i = 0, 1, 2), instead of (12) in Theorem 2.1,
then we have the following approximation result via A−statistical convergence.

Theorem 2.3 Under the conditions of Theorem 2.2, if

stA − lim
n

|Ln(ei, x)− ei(x)| = 0, (i = 0, 1, 2), (14)

then for all f ∈ C [r]
g (I) such that f(r) ∈ LipM (α), we have

stA − lim
n

∣∣∣L[r]
n (f ; x)− f(x)

∣∣∣ = 0.
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Proof. We first note that, by the definition of g, the test functions ei, (i = 0, 1, 2)
belong to Cg(I). So, by Theorem 1 in [2], the condition (14) yields that for all h ∈ Cg(I)

stA − lim
n

|Ln(h, x)− h(x)| = 0. (15)

In particular, take h := hx, which is defined in Theorem 2.2. Since hx(x) = 0, it follows
from (15) that

stA − lim
n

|Ln(hx, x)| = 0,

which gives (12). Therefore the proof follows from Theorem 2.2. ✷

Corollary 2.4 If I is closed and bounded interval of the real line, say I = [a, b], and also

stA − lim
n

‖Ln(ei, ·)− ei‖C[a,b] = 0, (i = 0, 1, 2),

then for all f ∈ C [r][a, b] such that f(r) ∈ LipM (α) we have

stA − lim
n

∥∥∥L[r]
n (f, ·)− f

∥∥∥
C[a,b]

= 0,

where ‖·‖C[a,b] denotes the usual sup norm on [a, b].

Special Cases

(a) Choosing r = 0 in Theorem 2.3, we get Theorem 1 in [2].

(b) The choice of r = 0 in Corollary 2.4 reduces to Corollary 2 in [2].

(c) If we replace the matrix A by the Cesàro matrix of order one and choose r = 0
in Corollary 2.4, then we get the statistical approximation theorem introduced by
Gadjiev and Orhan (see Theorem 1 in [9]).

(d) If we replace the matrix A by the identity matrix and also choose r = 0 in
Corollary 2.4, then we get the classical Korovkin-type approximation theorem (see,
for instance, [1], [13]).
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