Induced Mappings on Boolean Algebras of Clopen Sets and on Projections of the C^* -Algebra C(X)

Ahmed Al-Rawashdeh and Wasfi Shatanawi

Abstract

For a compact space X, any group automorphism φ of $C(X, \mathbb{S}^1)$ induces a mapping Θ on the Boolean algebra of the clopen subsets of X. We prove that the disjointness of Θ equivalent to θ_{φ} is an orthoisomorphism on the sets of projections of the C^* -algebra C(X), when $\varphi(-1) = -1$. Indeed, Θ is a Boolean isomorphism iff θ_{φ} preserves the product of projections. If X is equipped with a probability measure μ , on a certain σ -algebra of X, we show (under some condition) that Θ preserves the disjoint of clopen subsets, up to sets of measure zero, or equivalently, the mapping θ_{φ} is μ -orthoisomorphism on the projections of the C^* -algebra C(X).

Key Words: Unitary, Projections, Almost Isomorphisms, Boolean Algebra, Clopen Subset.

1. Introduction

For a unital C^* -algebra \mathfrak{A} , $\mathcal{P}(\mathfrak{A})$, $\mathcal{U}(\mathfrak{A})$ denotes the sets of projections, unitaries of \mathfrak{A} respectively. If X is a compact Hausdorff space, then C(X) denotes the C^* -algebra of continuous complex-valued functions on X, and $C(X, \mathbb{S}^1)$ is the set of all continuous functions on X with values in the unit circle \mathbb{S}^1 . The set of all closed and open subsets of X (the clopen subsets) is denoted by CO(X). For any set B, by B^c we mean the complement of B.

Let A and B be two unital C^* -algebras. A projection orthoisomorphism mapping is defined by H. Dye in [5], as a one-to-one correspondense θ between the projections of A

and B, which preserves the orthogonality, i.e. if p and q are projections of A such that pq = 0, then $\theta(p)\theta(q) = 0$.

If φ is a group isomorphism between the unitary groups of A and B, then φ maps the self-adjoint unitaries of A onto the self-adjoint unitaries of B, and therefore H. Dye in [5] defines a natural mapping θ_{φ} between the sets of projections of A and B via

$$1 - 2\theta_{\varphi}(p) = \varphi(1 - 2p).$$

Then a natural question arises here; for which C^* -algebra have we that the induced map θ_{φ} is an orthoisomorphism [1, Introd. Q.3]? This problem was already solved in the case of von Neumann factors by H. Dye, when he proved the following main lemma.

Lemma 1.1 [5, Lemma 13] Let M and N be two factors. If φ is an isomorphism between $\mathcal{U}(M)$, $\mathcal{U}(N)$ and M is not of type I_{2n} $(n \ge 1)$, then θ_{φ} is an orthoisomorphism.

Another positive answer is given in [1, Chapt. 5], where the author shows that for a large class of simple, unital C^* -algebras, the map θ_{φ} is always an orthoisomorphism. This class includes in particular, the Cuntz algebras \mathcal{O}_n , $2 \leq n \leq \infty$, and the simple unital AF-algebras having 2-divisible K_0 -group.

In this paper, we study the case of the non-simple, commutative C^* -algebra C(X) of continuous complex-valued functions on a compact subset X of \mathbb{R} .

Remark 1.2 Recall that if A is a simple, unital C^* -algebra, and φ is a group automorphism of the unitary group of A, then by the simplicity of A, we must have $\varphi(-1) = -1$, as also same holds in the case of factors discussed (see [5]). As we are working on the non-simple C^* -algebra C(X), we shall only consider automorphisms φ of $C(X, \mathbb{S}^1)$, which satisfy $\varphi(-1) = -1$.

Let φ be an automorphism of the unitary group $\mathcal{U}(C(X)) = C(X, \mathbb{S}^1)$ of C(X). Suppose $\varphi(-1) = -1$, as in Remark (1.2). This automorphism φ induces a bijective map θ_{φ} on the sets of projections $\mathcal{P}(C(X))$ of the C^* -algebra C(X). If $p \in \mathcal{P}(C(X))$, then $p = \chi_o$, where o is a clopen subset of X (see [4, IX.3]). Therefore, we define a map Θ^{φ} (induced by θ_{φ}) on the Boolean algebras (for more details about Boolean algebras, see [6]) of the clopen subsets CO(X) of X. This gives the link between the C^* -algebra C(X) and the Boolean algebra CO(X), which is studied in the first part of this paper. We prove

that θ_{φ} is an orthoisomorphism if and only if the mapping Θ preserves the disjointness of clopen subsets of X. Moreover, that Θ is a Boolean isomorphism is equivalent to θ_{φ} preserving the product of projection $\mathcal{P}(C(X))$.

If X is a connected space (i.e. C(X) has only the trivial projections 0 and 1), then Θ preserves the disjoint of the clopen subsets. Therefore, we consider the case where X is not a connected space. Recall that, if X is the Cantor ternary set, then C(X) is an AF-algebra; more generally, if X is a second countable space, then C(X) is an AF-algebra iff X is a totally disconnected space [7, 5.B]. Moreover, let us recall Stone's representation theorem:

Theorem 1.3 [8] If B is a Boolean algebra, then there exists a totally disconnected compact Hausdorff space X such that B is isomorphic to the Boolean algebra of clopen subsets of X.

In the second part of this paper (Section 3), we consider X to be a compact subset of \mathbb{R} , a σ -algebra \mathcal{A} of subsets of X, which contains the Borel subsets of X, and μ to be any probability measure on \mathcal{A} . We define the μ -orthoisomorphism map (or almost orthoisomorphism) on $\mathcal{P}(C(X))$; we find a condition on φ , in order that θ_{φ} becomes μ -orthoisomorphism, by imitating the technique used in proving the following theorem proved by the author.

Theorem 1.4 [1, Theorem (5.1.0.2)] Let A, B be simple, unital C^* -algebras, and φ be an isomorphism from $\mathcal{U}(A)$ to $\mathcal{U}(B)$. If there exist faithful, normalized traces τ_A and τ_B on A and B, respectively, such that

$$\tau_A(u) = \tau_B(\varphi(u)), \text{ for every self-adjoint } u \in \mathcal{U}(A),$$

then θ_{φ} is a projection orthoisomorphism.

So finally, we prove (under some conditions on φ) that if o_1 and o_2 are disjoint clopen subsets of X, then $\Theta(o_1)\Theta(o_2) = \chi_o$, such that $\mu(o) = 0$, i.e. Θ preserves disjoint of clopen subsets of X, up to sets of measure zero.

2. On The Boolean Algebra CO(X)

By direct computation, one can easily deduce the following: If o, o_1 and o_2 are clopen subsets of X, then $\chi_{o_1 \cap o_2} = \chi_{o_1} \chi_{o_2}, \chi_{o^c} = 1 - \chi_o, \chi_{o_1 \cup o_2} = \chi_{o_1} + \chi_{o_2} - \chi_{o_1 \cap o_2}$; and hence if o_1 and o_2 are disjoint clopen sets, then $\chi_{o_1 \cup o_2} = \chi_{o_1} + \chi_{o_2}$.

Let φ be a group automorphism of $\mathcal{U}(C(X))$. Therefore φ induces a natural mapping θ_{φ} on the set of projections $\mathcal{P}(C(X))$ via

$$1 - 2\theta_{\varphi}(p) = \varphi(1 - 2p).$$

Then θ_{φ} induces a mapping Θ on the Boolean algebra of the clopen subsets CO(X) of X, which is defined as follows.

Definition 2.1 If φ is a group automorphism of $\mathcal{U}(C(X))$, then the following commutative diagram defines the map Θ^{φ} (or simply, Θ) on the Boolean algebra CO(X):

$$\mathcal{P}(C(X)) \xrightarrow{\theta_{\varphi}} \mathcal{P}(C(X))$$

$$\uparrow \qquad \qquad \downarrow$$

$$CO(X) \xrightarrow{\Theta} CO(X)$$
i.e. $o \in CO(X) \iff \chi_o \in \mathcal{P}(C(X)), \text{ and } \chi_{\Theta(o)} = \theta_{\varphi}(\chi_o).$

Now let us establish some basic properties of the induced map Θ^{φ} on the Boolean algebras CO(X), which are similar to those results established for θ_{φ} in [3]. As the induced map θ_{φ} is a bijective map from its definition, consequently, we have the following result.

Proposition 2.2 The induced Θ is a bijective map on the Boolean algebra CO(X).

Proof Is obvious.

In the following proposition, we establish a functorial property of the map $\varphi \mapsto \Theta$.

Proposition 2.3 (i) If φ and ψ are two automorphisms of $C(X, \mathbb{S}^1)$, then $\Theta^{\psi\varphi} = \Theta^{\psi}\Theta^{\varphi}$. (ii) If ι is the identity map of $C(X, \mathbb{S}^1)$, then Θ^{ι} is the identity map on CO(X). (iii) If φ is an automorphisms of $C(X, \mathbb{S}^1)$, then $(\Theta^{\varphi})^{-1} = \Theta^{\varphi^{-1}}$.

Proof (i) Let φ and ψ be two automorphisms of $C(X, \mathbb{S}^1)$. It is enough to prove $\chi_{\Theta^{\psi}\varphi} = \chi_{\Theta^{\psi}\Theta^{\varphi}}$. If $o \in CO(X)$, then

$$\begin{split} \chi_{\Theta^{\psi\varphi}(o)} &= \theta_{\psi\varphi}(\chi_o) \\ &= \theta_{\psi}(\theta_{\varphi}(\chi_o)) \quad \text{by [3, Prop. (3.1.0.4)(i)]} \\ &= \theta_{\psi}(\chi_{\Theta^{\varphi}(o)}) \\ &= \chi_{\Theta^{\psi}\Theta^{\varphi}(o)}. \end{split}$$

(ii) If $o \in CO(X)$, then $\chi_{\Theta^{\iota}(o)} = \theta_{\iota}(\chi_o) = \chi_o$ as θ_{ι} is the identity map on the sets of projections by [3, Prop. (3.1.0.4); (ii)], therefore $\Theta^{\iota}(o) = o$.

(iii) If $o \in CO(X)$, then also by [3, Prop. (3.1.0.4); (iii)] we have

$$\chi_{(\Theta^{\varphi})^{-1}(o)} = (\theta_{\varphi})^{-1}(\chi_{o}) = \theta_{\varphi^{-1}}(\chi_{o}) = \chi_{\Theta^{\varphi^{-1}}(o)}.$$

Hence the proposition has been checked.

Consequently, we have proved the following corollary.

Corollary 2.4 The group of all automorphisms φ of $C(X, \mathbb{S}^1)$ induces a group of mappings θ^{φ} of the Boolean algebra CO(X).

Remark 2.5 For the rest of this paper, if φ is an automorphism of the unitary group $C(X, \mathbb{S}^1)$ of C(X), then as mentioned in Remark (1.2), φ is assumed to satisfy $\varphi(-1) = -1$. Therefore, from [2] or [3, Lemma (3.1.0.3)(6)] we have that $\theta_{\varphi}(1) = 1$ and $\theta_{\varphi}(1-p) = 1 - \theta_{\varphi}(p)$, for any projection p of C(X). In the case of factors which is discussed in [5], $\varphi(-1) = -1$ is already satisfied, as well as in the case of simple C^* -algebras.

Now we discuss the question whether the map Θ is a Boolean isomorphism, or under what conditions it becomes so? Also we give a characterization of Θ being a Boolean isomorphism in term of the induced map θ_{φ} on the projections of C(X). Also a characterization of Θ preserving the disjointness of the clopen sets.

As the induced map θ_{φ} on the set of projections preserves the partition of the unity (i.e. if pq = 0 and p + q = 1, then $\theta_{\varphi}(p)\theta_{\varphi}(q) = 0$), then consequently, we have the following proposition.

Proposition 2.6 Let φ be as in Remark (2.5). If o_1 and o_2 are two clopen subsets of X which form a partition of X, then $\Theta(o_1) \cap \Theta(o_2) = \emptyset$.

Proof Let $p = \chi_{o_1}$ and $q = \chi_{o_2}$. Then p and q are projections of C(X) such that p + q = 1 and pq = 0. Therefore,

$$\theta_{\varphi}(p)\theta_{\varphi}(q) = \theta_{\varphi}(p)\theta_{\varphi}(1-p) = \theta_{\varphi}(p)(1-\theta_{\varphi}(p)) = 0.$$

Then we have

$$\chi_{\Theta(o_1)\cap\Theta(o_2)} = \chi_{\Theta(o_1)}\chi_{\Theta(o_2)} = 0$$

and hence $\Theta(o_1) \cap \Theta(o_2) = \emptyset$, which ends the proof.

Proposition 2.7 Let φ be as in Remark (2.5). If o is a clopen subset of X, then $\Theta(o^c) = (\Theta(o))^c$.

Proof Let $o \in CO(X)$. It's enough to prove $\chi_{\Theta(o^c)} = \chi_{(\Theta(o))^c}$. This is equivalent to prove $\theta_{\varphi}(\chi_{o^c}) = 1 - \chi_{\Theta(o)}$. But

$$\theta_{\varphi}(\chi_{o^c}) = \theta_{\varphi}(1 - \chi_o) = 1 - \theta_{\varphi}(\chi_o).$$

Hence the proposition has been checked.

Now in the following lemma, we characterize the concept of orthoisomorphism on the sets of projections of the C^* -algebra C(X). The characterization is valid for any automorphism φ of $C(X, \mathbb{S}^1)$, without any restrictions as in Remark (2.5).

Lemma 2.8 Let φ be any automorphism of $C(X, \mathbb{S}^1)$. Then θ_{φ} is an orthoisomorphism on the projections of C(X) iff Θ preserves the disjoint of the clopen sets in the Boolean algebra CO(X).

Proof Suppose that θ_{φ} is an orthoisomorphism. Let o_1 and o_2 be two disjoint clopen subsets of X. Then

$$o_{1} \cap o_{1} = \emptyset \quad \Leftrightarrow \quad \chi_{o_{1}}\chi_{o_{2}} = 0$$

$$\Leftrightarrow \quad \theta_{\varphi}(\chi_{o_{1}})\theta_{\varphi}(\chi_{o_{2}}) = 0$$

$$\Leftrightarrow \quad \chi_{\Theta(o_{1})}\chi_{\Theta(o_{2})} = 0$$

$$\Leftrightarrow \quad \chi_{\Theta(o_{1})\cap\Theta(o_{2})} = 0$$

$$\Leftrightarrow \quad \Theta(o_{1})\cap\Theta(o_{2}) = \emptyset.$$

444

For the converse, suppose that Θ preserves the disjoint of clopen subsets of X. Let $p, q \in \mathcal{P}(C(X))$, such that pq = 0. Then $p = \chi_{o_1}$ and $q = \chi_{o_2}$, for some $o_1, o_2 \in CO(X)$. As $\chi_{o_1 \cap o_2} = 0$, then $o_1 \cap o_2 = \emptyset$; therefore, by assumption, we have $\Theta(o_1) \cap \Theta(o_2) = \emptyset$, and then

$$0 = \chi_{\Theta(o_1) \cap \Theta(o_2)} = \chi_{\Theta(o_1)} \chi_{\Theta(o_2)};$$

thus we have $\theta_{\varphi}(p)\theta_{\varphi}(q) = 0$.

Now recall that if p and q are commuting projections of a unital C^* -algebra A, then the symmetric difference projection of p and q, which is denoted by $p\Delta q$ (the same notation for symmetric difference of two sets), is defined by $p\Delta q = p + q - 2pq$. It is easy to prove that if o_1 and o_2 are clopen subsets of X, then $\chi_{o_1}\Delta\chi_{o_2} = \chi_{o_1\Delta o_2}$. As the induced map θ_{φ} between the sets of projections preserves the symmetric difference ([5, Lemma 9], [3, Lemma (3.1.0.3)]), then we have the following lemma.

Lemma 2.9 Let φ be as in Remark (2.5). If o_1 and o_2 are two clopen subsets of X, then $\Theta(o_1 \Delta o_2) = \Theta(o_1) \Delta \Theta(o_2)$, i.e. Θ preserves the symmetric difference of the clopen subsets.

Proof It is enough to prove $\chi_{\Theta(o_1 \Delta o_2)} = \chi_{\Theta(o_1) \Delta \Theta(o_2)}$. As

$$\begin{split} \chi_{\Theta(o_1 \Delta o_2)} &= \theta_{\varphi}(\chi_{o_1 \Delta o_2}) \\ &= \theta_{\varphi}(\chi_{o_1} \Delta \chi_{o_2}) \\ &= \theta_{\varphi}(\chi_{o_1}) \Delta \theta_{\varphi}(\chi_{o_2}) \\ &= \chi_{\Theta(o_1)} \Delta \chi_{\Theta(o_2)}, \end{split}$$

the lemma is checked.

As a consequence result of Lemma (2.9) and Lemma (2.8), we can easily prove.

Corollary 2.10 Let φ be as in Remark (2.5). If the map θ_{φ} is an orthoisomorphism between the sets of projections of C(X), then the map Θ preserves the disjoint union of the clopen subsets of X.

Proof Let o_1 and o_2 be two disjoint clopen subsets of X. As $o_1 \cup o_2 = o_1 \Delta o_2$, then by applying Lemma (2.9) together with Lemma (2.8), we prove $\Theta(o_1 \cup o_2) = \Theta(o_1) \cup \Theta(o_2)$. \Box

Now let's prove the following result, which shows that, if θ_{φ} is an orthoisomorphism between the sets of projections, then saying that the map Θ preserves the union of clopen subsets of X is equivalent to saying that the map Θ preserves the intersection of the clopen sets.

Lemma 2.11 Let φ be as in Remark (2.5) such that the induced map θ_{φ} is an orthoisomorphism. Let o_1 and o_2 be two clopen subsets of X. Then

$$\Theta(o_1 \cap o_2) = \Theta(o_1) \cap \Theta(o_2) \quad \text{iff} \quad \Theta(o_1 \cup o_2) = \Theta(o_1) \cup \Theta(o_2).$$

Proof As $o_1 \cup o_2 = (o_1 \Delta o_2) \cup (o_1 \cap o_2)$ where the union in the right hand side is a disjoint union, then by Corollary (2.10)

$$\Theta(o_1 \cup o_2) = \Theta(o_1 \Delta o_2) \cup \Theta(o_1 \cap o_2). \tag{1}$$

If Θ preserves the union of the clopen sets, then by Lemma (2.9), we have $\Theta(o_1) \cup \Theta(o_2) = (\Theta(o_1)\Delta\Theta(o_2)) \cup \Theta(o_1 \cap o_2)$ therefore,

$$\Theta(o_1 \cap o_2) = (\Theta(o_1) \cup \Theta(o_2)) \setminus (\Theta(o_1) \Delta \Theta(o_2)) = \Theta(o_1) \cap \Theta(o_2).$$

On the other hand, if Θ preserves the intersection of clopen sets, then again by (1) and Lemma (2.9), we have

$$\Theta(o_1 \cup o_2) = (\Theta(o_1)\Delta\Theta(o_2)) \cup (\Theta(o_1) \cap \Theta(o_2)) = \Theta(o_1) \cup \Theta(o_2).$$

Hence the lemma is checked.

Now let's give a characterization of Θ being a Boolean isomorphism on CO(X) in terms of the induced map θ_{φ} on the set of projections $\mathcal{P}(C(X))$.

Theorem 2.12 Let φ be as in Remark (2.5). Then the map Θ on the Boolean algebra CO(X) is a Boolean isomorphism iff the induced map θ_{φ} on the projections of the C^* -algebra C(X) preserves the product of projections, and hence an orthoisomorphism.

Proof Suppose that Θ is a Boolean isomorphism on CO(X). If $p, q \in \mathcal{P}(C(X))$, then $p = \chi_{o_1}$ and $q = \chi_{o_2}$. Moreover,

$$\begin{aligned} \theta_{\varphi}(pq) &= \theta_{\varphi}(\chi_{o_1}\chi_{o_2}) \\ &= \theta_{\varphi}(\chi_{o_1\cap o_2}) \\ &= \chi_{\Theta(o_1\cap o_2)} \\ &= \chi_{\Theta(o_1)\cap\Theta(o_2)} \\ &= \chi_{\Theta(o_1)}\chi_{\Theta(o_2)} \\ &= \theta_{\varphi}(p)\theta_{\varphi}(q). \end{aligned}$$

Suppose that θ_{φ} preserves the product of projections in $\mathcal{P}(C(X))$, hence it is an orthoisomorphism. By Lemma (2.11) and Proposition (2.7), it is enough to prove that Θ preserves the intersection of the clopen sets, and this holds as

$$\chi_{\Theta(o_1\cap o_2)} = \theta_{\varphi}(\chi_{o_1}\chi_{o_2}) = \theta_{\varphi}(\chi_{o_1})\theta_{\varphi}(\chi_{o_2}) = \chi_{\Theta(o_1)}\chi_{\Theta(o_2)}.$$

Hence the proof of the theorem is completed.

It is clear that if X and Y are homeomorphic topological spaces, then their Boolean algebras of clopen subsets CO(X) and CO(Y) are Boolean isomorphic. Also the C^* -algebras C(X) and C(Y) are *-isomorphic.

3. Almost Orthoisomorphism On Projections Of C(X)

Let X be a compact space, with a σ -algebra \mathcal{A} of subsets of X containing the Borel subsets of X, and μ be a probability measure on \mathcal{A} . Also let φ be an automorphism of $C(X, \mathbb{S}^1)$, as in Remark (2.5) i.e. $\varphi(-1) = -1$. In this section, we concentrate on some compact spaces X, such that under some conditions, we have that the induced map θ_{φ} is an orthoisomorphism (in some sense) on the sets of projections $\mathcal{P}(C(X))$; and as discussed in the previous part, we find a condition on φ in order that the map Θ preserves the disjointness of clopen subsets, up to sets of measure zero, i.e. if o_1 and o_2 are disjoint clopen subsets of X, then $\Theta(o_1)\Theta(o_2)$ equals to a clopen subset of measure zero.

Recall that a state (see [7, 6.3]) on a C^* -algebra A is a linear map $s : A \to \mathbb{C}$ which is positive i.e. $s(a^*a) \ge 0$ and ||s|| = 1. Moreover, by [7, Example 6.5], if μ is a probability

measure on X, then the map $s_{\mu} : C(X) \to \mathbb{C}$ defined by $f \mapsto \int_X f d\mu$ gives a state on C(X) and hence define a normalized trace.

Let φ be as in Remark (2.5). We discuss whether the induced map θ_{φ} on $\mathcal{P}(C(X))$ is an orthoisomorphism. We are going to define a normalized faithful (in some sense) trace on C(X), where φ is invariant under τ , in order to use [1, Theorem 5.1.0.2].

Definition 3.1 Let τ be a trace on C(X). Then τ is called μ -almost faithful (μ -faithful), if $f \ge 0$ and $\tau(f) = 0$ implies f = 0, μ -almost everywhere.

Definition 3.2 A mapping α on $\mathcal{P}(C(X))$ is called a μ -orthoisomorphism if for all $p, q \in \mathcal{P}(C(X)), pq = 0$ implies $\alpha(p)\alpha(q) = 0$ μ -almost everywhere.

Let us prove the following.

Proposition 3.3 The mapping $\tau_{\mu} : C(X) \to \mathbb{C}$ which is defined by $f \mapsto \int_X f d\mu$ is a normalized μ -faithful trace on C(X).

Proof It is clear that τ_{μ} is a normalized trace on C(X). To prove that τ_{μ} is μ -faithful, let $f \in C(X)$, and suppose that $\tau_{\mu}(f^*f) = 0$. Therefore

$$\int_X |f|^2 \, d\mu = 0,$$

and then $|f|^2 = 0$ almost everywhere on X, hence the proposition has been proved. \Box

Recall that if u is a self-adjoint unitary of C(X), then $u \in C(X, \{1, -1\})$, then let's define the following.

Definition 3.4 Any self-adjoint unitary u of C(X), associates the partition $\{X_u^+, X_u^-\}$ of X induced by u, where

$$X_u^+ := \{ x \in X | \ u(x) = 1 \},\$$

$$X_u^- := \{ x \in X | \ u(x) = -1 \}.$$

Notice that if u is any self-adjoint unitary of C(X), then both X_u^+ and X_u^- are measurable subsets of X.

Remark 3.5 The only purpose from assuming the σ -algebra \mathcal{A} containing the Borel sets of X, is to ensure that X_u^+ and X_u^- are measurable subsets of X. So \mathcal{A} can be replaced by any σ -algebra which satisfies this condition.

In the proof of our result, we assume that φ satisfies the following condition: For any self-adjoint unitary u of C(X)

$$\mu(X_u^+) + \mu(X_{\varphi(u)}^-) = \mu(X_{\varphi(u)}^+) + \mu(X_u^-)$$
(2)

It is clear that the identity automorphism of $\mathcal{U}(C(X))$, and the automorphism $u \mapsto \overline{u}$ both satisfy condition (2).

Now let's prove the following lemma.

Lemma 3.6 Let φ be as in Remark (2.5). If φ satisfies condition (2), then $\tau_{\mu}(\varphi(u)) = \tau_{\mu}(u)$, for all self-adjoint unitaries of C(X).

Proof If u is a self-adjoint unitary, then we have

$$\begin{aligned} \tau_{\mu}(\varphi(u)) &= \int_{X} \varphi(u) \, d\mu \\ &= \int_{X} (\varphi(u))^{+} \, d\mu - \int_{X} (\varphi(u))^{-} \, d\mu \\ &= \mu(X_{\varphi(u)}^{+}) - \mu(X_{\varphi(u)}^{-}) \\ &= \mu(X_{u}^{+}) - \mu(X_{u}^{-}) , \quad \text{by condition (2)} \\ &= \int_{X} u \, d\mu \\ &= \tau_{\mu}(u). \end{aligned}$$

Hence the lemma is checked.

Now we are in the position to prove the following result.

Theorem 3.7 Let X be a compact subset of \mathbb{R} , with a σ -algebra \mathcal{A} , containing the Borel subsets of X (or as in Remark (3.5)), and μ be a probability measure on \mathcal{A} . Let φ be an automorphism of $C(X, \mathbb{S}^1)$, such that $\varphi(-1) = -1$. If φ satisfies condition (2), then the induced map θ_{φ} is μ -orthoisomorphism on $\mathcal{P}(C(X))$.

Proof Let $p, q \in \mathcal{P}(C(X))$ such that pq = 0, and u, v be the self-adjoint unitaries 1 - 2p, 1 - 2q (respectively). If $x = \theta_{\varphi}(p)\theta_{\varphi}(q)$, then

$$xx^* = \frac{1}{4}[(1-\varphi(u))(1-\varphi(v))]$$
$$= \frac{1}{4}[1-\varphi(u)-\varphi(v)+\varphi(uv)].$$

Therefore, by Lemma (3.6), we have

$$\tau_{\mu}(xx^{*}) = \frac{1}{4}[1 - \tau_{\mu}(u) - \tau_{\mu}(v) + \tau_{\mu}(uv)]$$

= $\tau_{\mu}(pq)$
= 0.

Then by Proposition (3.3), we have that $x = \theta_{\varphi}(p)\theta_{\varphi}(q) = 0$, μ -almost everywhere; hence the proof is completed.

Consequently, we have the following result of the map Θ on the Boolean algebra CO(X).

Corollary 3.8 Let (X, μ) and φ be as in the previous theorem. If o_1 and o_2 are disjoint clopen subsets of X, then $\Theta(o_1)\Theta(o_2) = o$, such that $\mu(o) = 0$, i.e. Θ preserves the disjoint of the clopen subsets of X, up to sets of measure zero.

Proof Direct from the previous theorem and Lemma (2.8).

References

- Al-Rawashdeh, A.: The Unitary Group As An Invariant of a Simple Unital C*-Algebra, Ph.D Thesis, University of Ottawa, Canada (2003).
- [2] Al-Rawashdeh, A., Giordano, T., Booth, A.: Unitary Groups As a Complete Invariant, to appear.
- [3] Booth, A.: The Unitary Groups As a Complete Invariant for Simple Unital AF Algebras, Master Thesis, University of Ottawa (1998).
- [4] Davidson, K.R.: C^{*}-Algebras by Example, Fields Institute Monographs, 6, Amer. Math. Soc., Providencs, RI (1996).

- [5] Dye, H.: On the Geometry of Projections in Certain Operator Algebras, Ann. of Math., Second Series, 61, 73-89 (1955).
- [6] Halmos, P.R.: Lectures On Boolean Algebras, Springer (1974).
- [7] de la Harpe, P., Jones, V.F.R.: An Introduction to C^* -Algebras, Université de Genève (1995).
- [8] Stone, M.: The Theory of Representations For Boolean Algebras, Trans. Amer. Math. Soc. 4, 37-111 (1936).

Ahmed S. AL-RAWASHDEH Department of Mathematics and Statistics Jordan University of Science and Technology Irbid 22110 JORDAN e-mail: rahmed72@just.edu.jo Wasfi SHATANAWI Department of Mathematics The Hashemite university Zarqa, JORDAN e-mail: swasfi@hu.edu.jo

451

Received 22.08.2006