Induced Mappings on Boolean Algebras of Clopen Sets and on Projections of the C^{*}-Algebra $C(X)$

Ahmed Al-Rawashdeh and Wasfi Shatanawi

Abstract

For a compact space X, any group automorphism φ of $C\left(X, \mathbb{S}^{1}\right)$ induces a mapping Θ on the Boolean algebra of the clopen subsets of X. We prove that the disjointness of Θ equivalent to θ_{φ} is an orthoisomorphism on the sets of projections of the C^{*}-algebra $C(X)$, when $\varphi(-1)=-1$. Indeed, Θ is a Boolean isomorphism iff θ_{φ} preserves the product of projections. If X is equipped with a probability measure μ, on a certain σ-algebra of X, we show (under some condition) that Θ preserves the disjoint of clopen subsets, up to sets of measure zero, or equivalently, the mapping θ_{φ} is μ-orthoisomorphism on the projections of the C^{*}-algebra $C(X)$.

Key Words: Unitary, Projections, Almost Isomorphisms, Boolean Algebra, Clopen Subset.

1. Introduction

For a unital C^{*}-algebra $\mathfrak{A}, \mathcal{P}(\mathfrak{A}), \mathcal{U}(\mathfrak{A})$ denotes the sets of projections, unitaries of \mathfrak{A} respectively. If X is a compact Hausdorff space, then $C(X)$ denotes the C^{*}-algebra of continuous complex-valued functions on X, and $C\left(X, \mathbb{S}^{1}\right)$ is the set of all continuous functions on X with values in the unit circle \mathbb{S}^{1}. The set of all closed and open subsets of X (the clopen subsets) is denoted by $C O(X)$. For any set B, by B^{c} we mean the complement of B.

Let A and B be two unital C^{*}-algebras. A projection orthoisomorphism mapping is defined by H. Dye in [5], as a one-to-one correspondense θ between the projections of A
and B, which preserves the orthogonality, i.e. if p and q are projections of A such that $p q=0$, then $\theta(p) \theta(q)=0$.

If φ is a group isomorphism between the unitary groups of A and B, then φ maps the self-adjoint unitaries of A onto the self-adjoint unitaries of B, and therefore H. Dye in [5] defines a natural mapping θ_{φ} between the sets of projections of A and B via

$$
1-2 \theta_{\varphi}(p)=\varphi(1-2 p)
$$

Then a natural question arises here; for which C^{*}-algebra have we that the induced map θ_{φ} is an orthoisomorphism [1, Introd. Q.3]? This problem was already solved in the case of von Neumann factors by H. Dye, when he proved the following main lemma.

Lemma 1.1 [5, Lemma 13] Let M and N be two factors. If φ is an isomorphism between $\mathcal{U}(M), \mathcal{U}(N)$ and M is not of type $I_{2 n}(n \geq 1)$, then θ_{φ} is an orthoisomorphism.

Another positive answer is given in [1, Chapt. 5], where the author shows that for a large class of simple, unital C^{*}-algebras, the map θ_{φ} is always an orthoisomorphism. This class includes in particular, the Cuntz algebras $\mathcal{O}_{n}, 2 \leq n \leq \infty$, and the simple unital AF-algebras having 2-divisible $K_{0}-$ group.

In this paper, we study the case of the non-simple, commutative C^{*}-algebra $C(X)$ of continuous complex-valued functions on a compact subset X of \mathbb{R}.

Remark 1.2 Recall that if A is a simple, unital C^{*}-algebra, and φ is a group automorphism of the unitary group of A, then by the simplicity of A, we must have $\varphi(-1)=-1$, as also same holds in the case of factors discussed (see [5]). As we are working on the non-simple C^{*}-algebra $C(X)$, we shall only consider automorphisms φ of $C\left(X, \mathbb{S}^{1}\right)$, which satisfy $\varphi(-1)=-1$.

Let φ be an automorphism of the unitary group $\mathcal{U}(C(X))=C\left(X, \mathbb{S}^{1}\right)$ of $C(X)$. Suppose $\varphi(-1)=-1$, as in Remark (1.2). This automorphism φ induces a bijective map θ_{φ} on the sets of projections $\mathcal{P}(C(X))$ of the C^{*}-algebra $C(X)$. If $p \in \mathcal{P}(C(X))$, then $p=\chi_{o}$, where o is a clopen subset of X (see [4, IX.3]). Therefore, we define a map Θ^{φ} (induced by θ_{φ}) on the Boolean algebras (for more details about Boolean algebras, see [6]) of the clopen subsets $C O(X)$ of X. This gives the link between the C^{*}-algebra $C(X)$ and the Boolean algebra $C O(X)$, which is studied in the first part of this paper. We prove

AL-RAWASHDEH, SHATANAWI

that θ_{φ} is an orthoisomorphism if and only if the mapping Θ preserves the disjointness of clopen subsets of X. Moreover, that Θ is a Boolean isomorphism is equivalent to θ_{φ} preserving the product of projection $\mathcal{P}(C(X))$.

If X is a connected space (i.e. $C(X)$ has only the trivial projections 0 and 1), then Θ preserves the disjoint of the clopen subsets. Therefore, we consider the case where X is not a connected space. Recall that, if X is the Cantor ternary set, then $C(X)$ is an AF-algebra; more generally, if X is a second countable space, then $C(X)$ is an AF-algebra iff X is a totally disconnected space [7, 5.B]. Moreover, let us recall Stone's representation theorem:

Theorem 1.3 [8] If B is a Boolean algebra, then there exists a totally disconnected compact Hausdorff space X such that B is isomorphic to the Boolean algebra of clopen subsets of X.

In the second part of this paper (Section 3), we consider X to be a compact subset of \mathbb{R}, a σ-algebra \mathcal{A} of subsets of X, which contains the Borel subsets of X, and μ to be any probability measure on \mathcal{A}. We define the μ-orthoisomorphism map (or almost orthoisomorphism) on $\mathcal{P}(C(X))$; we find a condition on φ, in order that θ_{φ} becomes μ-orthoisomorphism, by imitating the technique used in proving the following theorem proved by the author.

Theorem 1.4 [1, Theorem (5.1.0.2)] Let A, B be simple, unital C^{*}-algebras, and φ be an isomorphism from $\mathcal{U}(A)$ to $\mathcal{U}(B)$. If there exist faithful, normalized traces τ_{A} and τ_{B} on A and B, respectively, such that

$$
\tau_{A}(u)=\tau_{B}(\varphi(u)), \text { for every self-adjoint } u \in \mathcal{U}(A)
$$

then θ_{φ} is a projection orthoisomorphism.

So finally, we prove (under some conditions on φ) that if o_{1} and o_{2} are disjoint clopen subsets of X, then $\Theta\left(o_{1}\right) \Theta\left(o_{2}\right)=\chi_{o}$, such that $\mu(o)=0$, i.e. Θ preserves disjoint of clopen subsets of X, up to sets of measure zero.

AL-RAWASHDEH, SHATANAWI

2. On The Boolean Algebra $C O(X)$

By direct computation, one can easily deduce the following: If o, o_{1} and o_{2} are clopen subsets of X, then $\chi_{o_{1} \cap o_{2}}=\chi_{o_{1}} \chi_{o_{2}}, \chi_{o^{c}}=1-\chi_{o}, \chi_{o_{1} \cup o_{2}}=\chi_{o_{1}}+\chi_{o_{2}}-\chi_{o_{1} \cap o_{2}}$; and hence if o_{1} and o_{2} are disjoint clopen sets, then $\chi_{o_{1} \cup o_{2}}=\chi_{o_{1}}+\chi_{o_{2}}$.

Let φ be a group automorphism of $\mathcal{U}(C(X))$. Therefore φ induces a natural mapping θ_{φ} on the set of projections $\mathcal{P}(C(X))$ via

$$
1-2 \theta_{\varphi}(p)=\varphi(1-2 p) .
$$

Then θ_{φ} induces a mapping Θ on the Boolean algebra of the clopen subsets $C O(X)$ of X, which is defined as follows.

Definition 2.1 If φ is a group automorphism of $\mathcal{U}(C(X))$, then the following commutative diagram defines the map Θ^{φ} (or simply, Θ) on the Boolean algebra $C O(X)$:

$$
\text { i.e. } o \in C O(X) \Longleftrightarrow \chi_{o} \in \mathcal{P}(C(X)) \text {, and } \chi_{\Theta(o)}=\theta_{\varphi}\left(\chi_{o}\right) \text {. }
$$

Now let us establish some basic properties of the induced map Θ^{φ} on the Boolean algebras $C O(X)$, which are similar to those results established for θ_{φ} in [3]. As the induced $\operatorname{map} \theta_{\varphi}$ is a bijective map from its definition, consequently, we have the following result.

Proposition 2.2 The induced Θ is a bijective map on the Boolean algebra $C O(X)$.

Proof Is obvious.

In the following proposition, we establish a functorial property of the map $\varphi \mapsto \Theta$.
Proposition 2.3 (i) If φ and ψ are two automorphisms of $C\left(X, \mathbb{S}^{1}\right)$, then $\Theta^{\psi \varphi}=\Theta^{\psi} \Theta^{\varphi}$. (ii) If ι is the identity map of $C\left(X, \mathbb{S}^{1}\right)$, then Θ^{ι} is the identity map on $C O(X)$.
(iii) If φ is an automorphisms of $C\left(X, \mathbb{S}^{1}\right)$, then $\left(\Theta^{\varphi}\right)^{-1}=\Theta^{\varphi^{-1}}$.

Proof (i) Let φ and ψ be two automorphisms of $C\left(X, \mathbb{S}^{1}\right)$. It is enough to prove $\chi_{\Theta \psi \varphi}=\chi_{\Theta^{*} \Theta^{\varphi}}$. If $o \in C O(X)$, then

$$
\begin{aligned}
\chi_{\Theta \psi \varphi}(o) & =\theta_{\psi \varphi}\left(\chi_{o}\right) \\
& =\theta_{\psi}\left(\theta_{\varphi}\left(\chi_{o}\right)\right) \quad \text { by [3, Prop. (3.1.0.4)(i)] } \\
& =\theta_{\psi}\left(\chi_{\Theta^{\varphi}(o)}\right) \\
& =\chi_{\Theta^{\psi} \Theta^{\varphi}(o)} .
\end{aligned}
$$

(ii) If $o \in C O(X)$, then $\chi_{\Theta^{\iota}(o)}=\theta_{\iota}\left(\chi_{o}\right)=\chi_{o}$ as θ_{ι} is the identity map on the sets of projections by [3, Prop. (3.1.0.4); (ii)], therefore $\Theta^{\iota}(o)=o$.
(iii) If $o \in C O(X)$, then also by [3, Prop. (3.1.0.4); (iii)] we have

$$
\chi_{\left(\Theta^{\varphi}\right)^{-1}(o)}=\left(\theta_{\varphi}\right)^{-1}\left(\chi_{o}\right)=\theta_{\varphi^{-1}}\left(\chi_{o}\right)=\chi_{\Theta^{\varphi^{-1}}(o)}
$$

Hence the proposition has been checked.

Consequently, we have proved the following corollary.
Corollary 2.4 The group of all automorphisms φ of $C\left(X, \mathbb{S}^{1}\right)$ induces a group of mappings θ^{φ} of the Boolean algebra $C O(X)$.

Remark 2.5 For the rest of this paper, if φ is an automorphism of the unitary group $C\left(X, \mathbb{S}^{1}\right)$ of $C(X)$, then as mentioned in Remark (1.2), φ is assumed to satisfy $\varphi(-1)=$ -1. Therefore, from [2] or [3, Lemma (3.1.0.3)(6)] we have that $\theta_{\varphi}(1)=1$ and $\theta_{\varphi}(1-p)=$ $1-\theta_{\varphi}(p)$, for any projection p of $C(X)$. In the case of factors which is discussed in [5], $\varphi(-1)=-1$ is already satisfied, as well as in the case of simple C^{*}-algebras.

Now we discuss the question whether the map Θ is a Boolean isomorphism, or under what conditions it becomes so? Also we give a characterization of Θ being a Boolean isomorphism in term of the induced map θ_{φ} on the projections of $C(X)$. Also a characterization of Θ preserving the disjointness of the clopen sets.

As the induced map θ_{φ} on the set of projections preserves the partition of the unity (i.e. if $p q=0$ and $p+q=1$, then $\theta_{\varphi}(p) \theta_{\varphi}(q)=0$), then consequently, we have the following proposition.

Proposition 2.6 Let φ be as in Remark (2.5). If o_{1} and o_{2} are two clopen subsets of X which form a partition of X, then $\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)=\emptyset$.

AL-RAWASHDEH, SHATANAWI

Proof Let $p=\chi_{o_{1}}$ and $q=\chi_{o_{2}}$. Then p and q are projections of $C(X)$ such that $p+q=1$ and $p q=0$. Therefore,

$$
\theta_{\varphi}(p) \theta_{\varphi}(q)=\theta_{\varphi}(p) \theta_{\varphi}(1-p)=\theta_{\varphi}(p)\left(1-\theta_{\varphi}(p)\right)=0
$$

Then we have

$$
\chi_{\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)}=\chi_{\Theta\left(o_{1}\right)} \chi_{\Theta\left(o_{2}\right)}=0
$$

and hence $\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)=\emptyset$, which ends the proof.

Proposition 2.7 Let φ be as in Remark (2.5). If o is a clopen subset of X, then $\Theta\left(o^{c}\right)=(\Theta(o))^{c}$.

Proof Let $o \in C O(X)$. It's enough to prove $\chi_{\Theta\left(o^{c}\right)}=\chi_{(\Theta(o))^{c}}$. This is equivalent to prove $\theta_{\varphi}\left(\chi_{o^{c}}\right)=1-\chi_{\Theta(o)}$. But

$$
\theta_{\varphi}\left(\chi_{o^{c}}\right)=\theta_{\varphi}\left(1-\chi_{o}\right)=1-\theta_{\varphi}\left(\chi_{o}\right) .
$$

Hence the proposition has been checked.

Now in the following lemma, we characterize the concept of orthoisomorphism on the sets of projections of the C^{*}-algebra $C(X)$. The characterization is valid for any automorphism φ of $C\left(X, \mathbb{S}^{1}\right)$, without any restrictions as in Remark (2.5).

Lemma 2.8 Let φ be any automorphism of $C\left(X, \mathbb{S}^{1}\right)$. Then θ_{φ} is an orthoisomorphism on the projections of $C(X)$ iff Θ preserves the disjoint of the clopen sets in the Boolean algebra $C O(X)$.

Proof Suppose that θ_{φ} is an orthoisomorphism. Let o_{1} and o_{2} be two disjoint clopen subsets of X. Then

$$
\begin{aligned}
o_{1} \cap o_{1}=\emptyset & \Leftrightarrow \chi_{o_{1}} \chi_{o_{2}}=0 \\
& \Leftrightarrow \theta_{\varphi}\left(\chi_{o_{1}}\right) \theta_{\varphi}\left(\chi_{o_{2}}\right)=0 \\
& \Leftrightarrow \chi_{\Theta\left(o_{1}\right)} \chi_{\Theta\left(o_{2}\right)}=0 \\
& \Leftrightarrow \chi_{\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)}=0 \\
& \Leftrightarrow \Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)=\emptyset .
\end{aligned}
$$

For the converse, suppose that Θ preserves the disjoint of clopen subsets of X. Let $p, q \in \mathcal{P}(C(X))$, such that $p q=0$. Then $p=\chi_{o_{1}}$ and $q=\chi_{o_{2}}$, for some $o_{1}, o_{2} \in C O(X)$. As $\chi_{o_{1} \cap o_{2}}=0$, then $o_{1} \cap o_{2}=\emptyset$; therefore, by assumption, we have $\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)=\emptyset$, and then

$$
0=\chi_{\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)}=\chi_{\Theta\left(o_{1}\right)} \chi_{\Theta\left(o_{2}\right)}
$$

thus we have $\theta_{\varphi}(p) \theta_{\varphi}(q)=0$.

Now recall that if p and q are commuting projections of a unital C^{*}-algebra A, then the symmetric difference projection of p and q, which is denoted by $p \Delta q$ (the same notation for symmetric difference of two sets), is defined by $p \Delta q=p+q-2 p q$. It is easy to prove that if o_{1} and o_{2} are clopen subsets of X, then $\chi_{o_{1}} \Delta \chi_{o_{2}}=\chi_{o_{1} \Delta o_{2}}$. As the induced $\operatorname{map} \theta_{\varphi}$ between the sets of projections preserves the symmetric difference ([5, Lemma 9], [3, Lemma (3.1.0.3)]), then we have the following lemma.

Lemma 2.9 Let φ be as in Remark (2.5). If o_{1} and o_{2} are two clopen subsets of X, then $\Theta\left(o_{1} \Delta o_{2}\right)=\Theta\left(o_{1}\right) \Delta \Theta\left(o_{2}\right)$, i.e. Θ preserves the symmetric difference of the clopen subsets.

Proof It is enough to prove $\chi_{\Theta\left(o_{1} \Delta o_{2}\right)}=\chi_{\Theta\left(o_{1}\right) \Delta \Theta\left(o_{2}\right)}$. As

$$
\begin{aligned}
\chi_{\Theta\left(o_{1} \Delta o_{2}\right)} & =\theta_{\varphi}\left(\chi_{o_{1} \Delta o_{2}}\right) \\
& =\theta_{\varphi}\left(\chi_{o_{1}} \Delta \chi_{o_{2}}\right) \\
& =\theta_{\varphi}\left(\chi_{o_{1}}\right) \Delta \theta_{\varphi}\left(\chi_{o_{2}}\right) \\
& =\chi_{\Theta\left(o_{1}\right)} \Delta \chi_{\Theta\left(o_{2}\right)},
\end{aligned}
$$

the lemma is checked.

As a consequence result of Lemma (2.9) and Lemma (2.8), we can easily prove.

Corollary 2.10 Let φ be as in Remark (2.5). If the map θ_{φ} is an orthoisomorphism between the sets of projections of $C(X)$, then the map Θ preserves the disjoint union of the clopen subsets of X.

Proof Let o_{1} and o_{2} be two disjoint clopen subsets of X. As $o_{1} \cup o_{2}=o_{1} \Delta o_{2}$, then by applying Lemma (2.9) together with Lemma (2.8), we prove $\Theta\left(o_{1} \cup o_{2}\right)=\Theta\left(o_{1}\right) \cup \Theta\left(o_{2}\right)$.

Now let's prove the following result, which shows that, if θ_{φ} is an orthoisomorphism between the sets of projections, then saying that the map Θ preserves the union of clopen subsets of X is equivalent to saying that the map Θ preserves the intersection of the clopen sets.

Lemma 2.11 Let φ be as in Remark (2.5) such that the induced map θ_{φ} is an orthoisomorphism. Let o_{1} and o_{2} be two clopen subsets of X. Then

$$
\Theta\left(o_{1} \cap o_{2}\right)=\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right) \quad \text { iff } \quad \Theta\left(o_{1} \cup o_{2}\right)=\Theta\left(o_{1}\right) \cup \Theta\left(o_{2}\right)
$$

Proof As $o_{1} \cup o_{2}=\left(o_{1} \Delta o_{2}\right) \cup\left(o_{1} \cap o_{2}\right)$ where the union in the right hand side is a disjoint union, then by Corollary (2.10)

$$
\begin{equation*}
\Theta\left(o_{1} \cup o_{2}\right)=\Theta\left(o_{1} \Delta o_{2}\right) \cup \Theta\left(o_{1} \cap o_{2}\right) \tag{1}
\end{equation*}
$$

If Θ preserves the union of the clopen sets, then by Lemma (2.9), we have $\Theta\left(o_{1}\right) \cup$ $\Theta\left(o_{2}\right)=\left(\Theta\left(o_{1}\right) \Delta \Theta\left(o_{2}\right)\right) \cup \Theta\left(o_{1} \cap o_{2}\right)$ therefore,

$$
\Theta\left(o_{1} \cap o_{2}\right)=\left(\Theta\left(o_{1}\right) \cup \Theta\left(o_{2}\right)\right) \backslash\left(\Theta\left(o_{1}\right) \Delta \Theta\left(o_{2}\right)\right)=\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)
$$

On the other hand, if Θ preserves the intersection of clopen sets, then again by (1) and Lemma (2.9), we have

$$
\Theta\left(o_{1} \cup o_{2}\right)=\left(\Theta\left(o_{1}\right) \Delta \Theta\left(o_{2}\right)\right) \cup\left(\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)\right)=\Theta\left(o_{1}\right) \cup \Theta\left(o_{2}\right)
$$

Hence the lemma is checked.

Now let's give a characterization of Θ being a Boolean isomorphism on $C O(X)$ in terms of the induced map θ_{φ} on the set of projections $\mathcal{P}(C(X))$.

Theorem 2.12 Let φ be as in Remark (2.5). Then the map Θ on the Boolean algebra $C O(X)$ is a Boolean isomorphism iff the induced map θ_{φ} on the projections of the C^{*}-algebra $C(X)$ preserves the product of projections, and hence an orthoisomorphism.

Proof Suppose that Θ is a Boolean isomorphism on $C O(X)$. If $p, q \in \mathcal{P}(C(X))$, then $p=\chi_{o_{1}}$ and $q=\chi_{o_{2}}$. Moreover,

$$
\begin{aligned}
\theta_{\varphi}(p q) & =\theta_{\varphi}\left(\chi_{o_{1}} \chi_{o_{2}}\right) \\
& =\theta_{\varphi}\left(\chi_{o_{1} \cap o_{2}}\right) \\
& =\chi_{\Theta\left(o_{1} \cap o_{2}\right)} \\
& =\chi_{\Theta\left(o_{1}\right) \cap \Theta\left(o_{2}\right)} \\
& =\chi_{\Theta\left(o_{1}\right)} \chi_{\Theta\left(o_{2}\right)} \\
& =\theta_{\varphi}(p) \theta_{\varphi}(q) .
\end{aligned}
$$

Suppose that θ_{φ} preserves the product of projections in $\mathcal{P}(C(X))$, hence it is an orthoisomorphism. By Lemma (2.11) and Proposition (2.7), it is enough to prove that Θ preserves the intersection of the clopen sets, and this holds as

$$
\chi_{\Theta\left(o_{1} \cap o_{2}\right)}=\theta_{\varphi}\left(\chi_{o_{1}} \chi_{o_{2}}\right)=\theta_{\varphi}\left(\chi_{o_{1}}\right) \theta_{\varphi}\left(\chi_{o_{2}}\right)=\chi_{\Theta\left(o_{1}\right)} \chi_{\Theta\left(o_{2}\right)} .
$$

Hence the proof of the theorem is completed.

It is clear that if X and Y are homeomorphic topological spaces, then their Boolean algebras of clopen subsets $C O(X)$ and $C O(Y)$ are Boolean isomorphic. Also the C^{*}-algebras $C(X)$ and $C(Y)$ are *-isomorphic.

3. Almost Orthoisomorphism On Projections Of $C(X)$

Let X be a compact space, with a σ-algebra \mathcal{A} of subsets of X containing the Borel subsets of X, and μ be a probability measure on \mathcal{A}. Also let φ be an automorphism of $C\left(X, \mathbb{S}^{1}\right)$, as in Remark (2.5) i.e. $\varphi(-1)=-1$. In this section, we concentrate on some compact spaces X, such that under some conditions, we have that the induced map θ_{φ} is an orthoisomorphism (in some sense) on the sets of projections $\mathcal{P}(C(X))$; and as discussed in the previous part, we find a condition on φ in order that the map Θ preserves the disjointness of clopen subsets, up to sets of measure zero, i.e. if o_{1} and o_{2} are disjoint clopen subsets of X, then $\Theta\left(o_{1}\right) \Theta\left(o_{2}\right)$ equals to a clopen subset of measure zero.

Recall that a state (see $[7,6.3]$) on a C^{*}-algebra A is a linear map $s: A \rightarrow \mathbb{C}$ which is positive i.e. $s\left(a^{*} a\right) \geq 0$ and $\|s\|=1$. Moreover, by [7, Example 6.5], if μ is a probability
measure on X, then the map $s_{\mu}: C(X) \rightarrow \mathbb{C}$ defined by $f \mapsto \int_{X} f d \mu$ gives a state on $C(X)$ and hence define a normalized trace.

Let φ be as in Remark (2.5). We discuss whether the induced map θ_{φ} on $\mathcal{P}(C(X))$ is an orthoisomorphism. We are going to define a normalized faithful (in some sense) trace on $C(X)$, where φ is invariant under τ, in order to use [1, Theorem 5.1.0.2].

Definition 3.1 Let τ be a trace on $C(X)$. Then τ is called μ-almost faithful (μ-faithful), if $f \geq 0$ and $\tau(f)=0$ implies $f=0, \mu$-almost everywhere.

Definition 3.2 A mapping α on $\mathcal{P}(C(X))$ is called a μ-orthoisomorphism if for all $p, q \in \mathcal{P}(C(X)), p q=0$ implies $\alpha(p) \alpha(q)=0 \mu$-almost everywhere.

Let us prove the following.

Proposition 3.3 The mapping $\tau_{\mu}: C(X) \rightarrow \mathbb{C}$ which is defined by $f \mapsto \int_{X} f d \mu$ is a normalized μ-faithful trace on $C(X)$.

Proof It is clear that τ_{μ} is a normalized trace on $C(X)$. To prove that τ_{μ} is μ-faithful, let $f \in C(X)$, and suppose that $\tau_{\mu}\left(f^{*} f\right)=0$. Therefore

$$
\int_{X}|f|^{2} d \mu=0
$$

and then $|f|^{2}=0$ almost everywhere on X, hence the proposition has been proved.
Recall that if u is a self-adjoint unitary of $C(X)$, then $u \in C(X,\{1,-1\})$, then let's define the following.

Definition 3.4 Any self-adjoint unitary u of $C(X)$, associates the partition $\left\{X_{u}^{+}, X_{u}^{-}\right\}$ of X induced by u, where

$$
\begin{gathered}
X_{u}^{+}:=\{x \in X \mid u(x)=1\}, \\
X_{u}^{-}:=\{x \in X \mid u(x)=-1\} .
\end{gathered}
$$

Notice that if u is any self-adjoint unitary of $C(X)$, then both X_{u}^{+}and X_{u}^{-}are measurable subsets of X.

AL-RAWASHDEH, SHATANAWI

Remark 3.5 The only purpose from assuming the $\sigma-$ algebra \mathcal{A} containing the Borel sets of X, is to ensure that X_{u}^{+}and X_{u}^{-}are measurable subsets of X. So \mathcal{A} can be replaced by any σ-algebra which satisfies this condition.

In the proof of our result, we assume that φ satisfies the following condition: For any self-adjoint unitary u of $C(X)$

$$
\begin{equation*}
\mu\left(X_{u}^{+}\right)+\mu\left(X_{\varphi(u)}^{-}\right)=\mu\left(X_{\varphi(u)}^{+}\right)+\mu\left(X_{u}^{-}\right) \tag{2}
\end{equation*}
$$

It is clear that the identity automorphism of $\mathcal{U}(C(X))$, and the automorphism $u \mapsto \bar{u}$ both satisfy condition (2).

Now let's prove the following lemma.
Lemma 3.6 Let φ be as in Remark (2.5). If φ satisfies condition (2), then $\tau_{\mu}(\varphi(u))=$ $\tau_{\mu}(u)$, for all self-adjoint unitaries of $C(X)$.

Proof If u is a self-adjoint unitary, then we have

$$
\begin{aligned}
\tau_{\mu}(\varphi(u)) & =\int_{X} \varphi(u) d \mu \\
& =\int_{X}(\varphi(u))^{+} d \mu-\int_{X}(\varphi(u))^{-} d \mu \\
& =\mu\left(X_{\varphi(u)}^{+}\right)-\mu\left(X_{\varphi(u)}^{-}\right) \\
& =\mu\left(X_{u}^{+}\right)-\mu\left(X_{u}^{-}\right), \quad \text { by condition }(2) \\
& =\int_{X} u d \mu \\
& =\tau_{\mu}(u)
\end{aligned}
$$

Hence the lemma is checked.

Now we are in the position to prove the following result.
Theorem 3.7 Let X be a compact subset of \mathbb{R}, with a σ-algebra \mathcal{A}, containing the Borel subsets of X (or as in Remark (3.5)), and μ be a probability measure on \mathcal{A}. Let φ be an automorphism of $C\left(X, \mathbb{S}^{1}\right)$, such that $\varphi(-1)=-1$. If φ satisfies condition (2), then the induced map θ_{φ} is μ-orthoisomorphism on $\mathcal{P}(C(X))$.

AL-RAWASHDEH, SHATANAWI

Proof Let $p, q \in \mathcal{P}(C(X))$ such that $p q=0$, and u, v be the self-adjoint unitaries $1-2 p, 1-2 q$ (respectively). If $x=\theta_{\varphi}(p) \theta_{\varphi}(q)$, then

$$
\begin{aligned}
x x^{*} & =\frac{1}{4}[(1-\varphi(u))(1-\varphi(v))] \\
& =\frac{1}{4}[1-\varphi(u)-\varphi(v)+\varphi(u v)] .
\end{aligned}
$$

Therefore, by Lemma (3.6), we have

$$
\begin{aligned}
\tau_{\mu}\left(x x^{*}\right) & =\frac{1}{4}\left[1-\tau_{\mu}(u)-\tau_{\mu}(v)+\tau_{\mu}(u v)\right] \\
& =\tau_{\mu}(p q) \\
& =0
\end{aligned}
$$

Then by Proposition (3.3), we have that $x=\theta_{\varphi}(p) \theta_{\varphi}(q)=0, \mu$-almost everywhere; hence the proof is completed.

Consequently, we have the following result of the map Θ on the Boolean algebra $C O(X)$.

Corollary 3.8 Let (X, μ) and φ be as in the previous theorem. If o_{1} and o_{2} are disjoint clopen subsets of X, then $\Theta\left(o_{1}\right) \Theta\left(o_{2}\right)=o$, such that $\mu(o)=0$, i.e. Θ preserves the disjoint of the clopen subsets of X, up to sets of measure zero.

Proof Direct from the previous theorem and Lemma (2.8).

References

[1] Al-Rawashdeh, A.: The Unitary Group As An Invariant of a Simple Unital C^{*}-Algebra, Ph.D Thesis, University of Ottawa, Canada (2003).
[2] Al-Rawashdeh, A., Giordano, T., Booth, A.: Unitary Groups As a Complete Invariant, to appear.
[3] Booth, A.: The Unitary Groups As a Complete Invariant for Simple Unital AF Algebras, Master Thesis, University of Ottawa (1998).
[4] Davidson, K.R.: C^{*}-Algebras by Example, Fields Institute Monographs, 6, Amer. Math. Soc., Providencs, RI (1996).

AL-RAWASHDEH, SHATANAWI

[5] Dye, H.: On the Geometry of Projections in Certain Operator Algebras, Ann. of Math., Second Series, 61, 73-89 (1955).
[6] Halmos, P.R.: Lectures On Boolean Algrbras, Springer (1974).
[7] de la Harpe, P., Jones, V.F.R.: An Introduction to C^{*}-Algebras, Université de Genève (1995).
[8] Stone, M.: The Theory of Representations For Boolean Algebras, Trans. Amer. Math. Soc. 4, 37-111 (1936).

Ahmed S. AL-RAWASHDEH
Received 22.08.2006
Department of Mathematics and Statistics
Jordan University of Science and Technology
Irbid 22110 JORDAN
e-mail: rahmed72@just.edu.jo
Wasfi SHATANAWI
Department of Mathematics
The Hashemite university
Zarqa, JORDAN
e-mail: swasfi@hu.edu.jo

