Turk J Math 31 (2007) , 363 – 369. © TÜBİTAK

On Cartan Spaces with (α, β) -metric

H. G. Nagaraja

Abstract

É. Cartan [2] has originally introduced a Cartan space, which is considered as dual of Finsler space. H. Rund [10], F. Brickell [1] and others studied the relation between these two spaces. The theory of Hamilton spaces was introduced and studied by R. Miron ([8], [9]). He proved that Cartan space is a particular case of Hamilton space. T. Igrashi ([5], [6]) introduced the notion of the (α, β) metric in Cartan spaces and obtained the metric tensor and the invariants ρ and r which characterize the special classes of Cartan spaces with (α, β) -metric. This paper presents a study of Cartan spaces with (α, β) -metric admitting h-metrical d-connection. We prove the conditions for these spaces to be locally Minkowski and conformally flat.

Key Words: Cartan space, (α, β) -metric, h-metrical d-connection, Conformally flat.

1. Introduction

Let M be a real smooth manifold and (T^*M, π, M) its cotangent bundle. Let $C^n = (M, K(x, p))$, where $K : T^*M \to R$ is a scalar function which is differentiable on $T^*\widetilde{M} = T^*M - \{0\}$, and is homogeneous on the fibres of T^*M . The hessian of K^2 , i.e. $g^{ij}(x, p) = \frac{1}{2}\dot{\partial}^i\dot{\partial}^j K^2$, where $\dot{\partial}^i = \frac{\partial}{\partial p_i}$, is positively defined on $T^*\widetilde{M}$. Here C^n is called the Cartan space and the functions K(x, p) and $g^{ij}(x, p)$ are called, respectively, the fundamental function and the metric tensor of the Cartan space C^n .

The reciprocal $g_{ij}(x,p)$ of $g^{ij}(x,p)$ is given by $g_{ij}(x,p)g^{ij}(x,p) = \delta_j^k$, where $g_{ij}(x,p)$ 2000 Mathematics Subject Classification: 53C60, 53B40

and $g^{ij}(x,p)$ are both symmetric and homogeneous of order 0 in p_j .

A Cartan space $C^n = (M, K)$ is said to be with (α, β) -metric if K(x, p) is a function of the variables $\alpha(x, p) = (a^{ij} p_i p_j)^{\frac{1}{2}}$, $\beta(x, p) = p_i b^i(x)$, where $a^{ij}(x)$ is a Riemannian metric and $b^i(x)$ is a vector field depending only on x. Clearly K must satisfy the conditions imposed to the fundamental function of a Cartan space.

In this paper, we consider the Cartan spaces with (α, β) -metric admitting h-metrical d-connection in section 2 and their conformal change in section 3. The fundamental tensor $g^{ij}(x,p)$ and its reciprocal $g_{ij}(x,p)$ of the Cartan space $C^n = (M, K(\alpha, \beta))$ are given by [6] the relation

$$g^{ij} = \rho a^{ij} + \rho b^i b^j + \rho_{-1} \left(b^i p^j + b^j p^i \right) + \rho_{-2} p^i p^j, \tag{1.1}$$

where ρ , ρ_0 , ρ_{-1} , ρ_{-2} are the invariants given by

$$\rho = \frac{1}{2} \alpha^{-1} K_{\alpha}, \ \rho_{-1} = \frac{1}{2} \alpha^{-1} K_{\alpha\beta}, \ \rho_{-2} = \frac{1}{2} \alpha^{-2} (K_{\alpha\alpha} - \alpha^{-1} K_{\alpha})$$

$$\rho_{0} = \frac{1}{2} K_{\beta\beta},$$
(1.2)

and

$$g_{ij} = \sigma a_{ij} - \sigma_0 b_i b_j + \sigma_{-1} (b_i p_j + b_j p_i) + \sigma_{-2} p_i p_j$$
(1.3)

where

$$\sigma = \frac{1}{\rho}, \, \sigma_0 = \frac{\rho_0}{\rho \tau}, \, \tau = \sigma + \sigma_0 B^2 + \rho_{-1} \beta, \, \sigma_{-1} = \frac{\rho_{-1}}{\rho \tau}, \, \sigma_{-2} = \frac{\rho_{-2}}{\rho \tau}, \tag{1.4}$$

and where $B^2 = b^i b_i$.

The Cartan tensor C^{ijk} is given by

$$C^{ijk} = -\frac{1}{2} [r_{-1}b^{i}b^{j}b^{k} + \{\rho_{-1}a^{ij}b^{k} + \rho_{-2}a^{ij}p^{k} + r_{-2}b^{i}b^{j}p^{k} + r_{-3}b^{i}p^{j}p^{k} + i/j/k\} + r_{-4}p^{i}p^{j}p^{k}],$$
(1.5)

where

$$r_{-1} = \frac{1}{2} K_{\beta\beta\beta}, r_{-2} = \frac{1}{2} \alpha^{-1} K_{\alpha\beta\beta}, r_{-3} = \frac{1}{2} \alpha^{-2} (K_{\alpha\alpha\beta} - \alpha^{-1} K_{\alpha\beta})$$

$$r_{-4} = \frac{1}{2} \alpha^{-3} \{ K_{\alpha\alpha\alpha} - 3\alpha^{-1} K_{\alpha\alpha} + 3\alpha^{-2} K_{\alpha} \}.$$
(1.6)

Let ':' denote the covariant differentiation with respect to Christoffel symbols γ_{jk}^{i} constructed from a_{ij} . Since $a^{ij}_{:k} = 0$ and $p_{i:k} = 0$, if $b^{i}_{:k} = 0$, then $g^{ij}_{:k} = 0$. Using the Christoffel symbols $\Gamma_{jk}^{i}(p) = \frac{1}{2}g^{ir}(\partial_{j}g_{rk} + \partial_{k}g_{jr} - \partial_{r}g_{jk})$ constructed from $g_{ij}(x, p)$, we can define canonical N-connection

$$N_{ij} = \Gamma^k_{ij} p_k - \frac{1}{2} \Gamma^k_{hr} p_k p^r \dot{\partial}^h g_{ij}.$$
 (1.7)

We consider the canonical d-connection

$$D\Gamma = (N_{jk}, H^i_{jk}, C^{jk}_i) \tag{1.8}$$

where

$$H_{jk}^{i} = \frac{1}{2}g^{ir}(\partial_{j}g_{rk} + \partial_{k}g_{jr} - \partial_{r}g_{jk}).$$
(1.9)

The *d*-tensor field of type (2,1) C_i^{jk} is given by

$$C^{jk}{}_{i} = -\frac{1}{2}g_{ir}\,\dot{\partial}^{r}g^{jk} = g_{ir}C^{rjk},\tag{1.10}$$

Let '|k' denote the *h*-covariant differentiation with respect to $D\Gamma$.

Definition 1.1 A d-connection $D\Gamma$ of a Cartan space C^n with (α, β) -metric is called the *h*-metrical d-connection if it satisfies the conditions

- h-deflection tensor $D_{ij}(=p_{i|j})=0;$
- $\alpha^{ij}{}_{|k} = 0;$
- $g^{ij}_{\ |k} = 0.$

2. Cartan Spaces with (α, β) -metric admitting *h*-metrical d-connection

If the connection $D\Gamma$ is *h*-metrical, then $\alpha_{|h} = 0$, from which we get that

$$0 = K_{|h} = \alpha_{|h} K_{\alpha} + \beta_{|h} K_{\beta} = \beta_{|h} K_{\beta}$$

and

$$\beta_{|h} = b^i{}_{|h}p_i = 0 \tag{2.1}$$

From (1.1), we have

$$g^{ij}{}_{|k} = b^{i}{}_{|k}(\rho_0 b^j + \rho_{-1} p^j) + b^{j}{}_{|k}(\rho_0 b^i + \rho_{-1} p^i) = 0$$

Transvecting the above with p_i , and by virtue of (2.1) we get

$$b^{j}_{|k}(\rho_{0}\beta + \rho_{-1}\alpha) = 0,$$

which gives $b^{j}_{|k} = 0$.

Now from $a^{ij}_{|k} = 0$, we can get $H^i_{jk} = \gamma^i_{jk}$. Hence we have

$$b^i_{:k} = 0,$$
 (2.2)

and also the curvature tensor D_{hjk}^i of $D\Gamma$ coincides with the curvature tensor R_{hjk}^i of Riemannian connection $R\Gamma = (\gamma_{jk}^i, \gamma_{jk}^i y_i, 0).$

If $R_{hjk}^i = 0$ then $D_{hjk}^i = 0$. Thus we have the following proposition.

Proposition 2.1 A Cartan space C^n with (α, β) metric admitting a h-metrical d-connection is locally flat if and only if the associated Riemannian space is locally flat.

If the connection $D\Gamma$ is *h*-metrical, then $g^{ij}_{|h} = 0$, $\alpha_{|h} = 0$, $a^{ij}_{|h} = 0$, $b^k_{|h} = 0$, $p^k_{|h} = 0$, from which we get $r_{-1|h} = 0$, $r_{-2|h} = 0$, $r_{-3|h} = 0$ and $r_{-4|h} = 0$. Hence from (1.5), (1.6) and (1.10), we have

$$C^{ij}_{k|h} = 0.$$
 (2.3)

Definition 2.1 A Cartan space C^n is a Berwald space if and only if $C^{ij}_{k|h} = 0$.

Hence from (2.3) we have the following proposition.

Proposition 2.2 A Cartan space with (α, β) metric admitting a h-metrical d-connection is a Berwald space.

As it is well known [11] a locally Minkowski space is a Berwald space in which the curvature tensor vanishes.

Hence from Proposition (2.1) and Proposition (2.2), we have the following proposition.

Theorem 2.1 A Cartan space with (α, β) metric admitting a h-metrical d-connection is locally Minkowski if and only if the associated Riemannian space is locally flat.

3. Conformal Change of a Cartan Space

Let $C^n = (M, K)$ be an *n*-dimensional Cartan space with (α, β) -metric $K = K(\alpha, \beta)$. By a conformal change $\sigma : K \to \overline{K} : \overline{K}(\overline{\alpha}, \overline{\beta}) = e^{\sigma}K(\alpha, \beta)$, we have another Cartan space $\overline{C}^n = (M, \overline{K}(\overline{\alpha}, \overline{\beta}))$, where $\overline{\alpha} = e^{\sigma}\alpha$ and $\overline{\beta} = e^{\sigma}\beta$.

Putting $\alpha = (a^{ij}(x)p_ip_j)^{\frac{1}{2}}$ and $\beta = b^i(x)p_i$, we get $\overline{a}^{ij} = e^{2\sigma}a^{ij}$ and $\overline{b}^i = e^{\sigma}b^i$. Then the Christoffel symbols $\overline{\gamma}^i_{jk}$ constructed from \overline{a}^{ij} are written as

$$\overline{\gamma}^i_{jk} = \gamma^i_{jk} + B^i_{jk} \tag{3.1}$$

where $B^i_{jk} = \delta^i_j \sigma_k + \delta^i_k \sigma_j - \sigma^i a_{jk}, \, \sigma^i = \sigma_j a^{ij}.$

Taking covariant derivative of \overline{b}^i with respect to $\overline{\gamma}^i_{jk},$ we get

$$\overline{b}^{i}_{:k} = e^{\sigma} (b^{i}_{:k} + 2\sigma_k b^{i} + b^r \sigma_r \delta^{i}_k - \sigma^i b^r a_{rk}).$$

Transvecting the above by \overline{b}^k , and putting

$$M^{i} = \frac{1}{B^{2}} \left\{ b^{k} b^{i}_{:k} - \frac{b^{r}_{:r} b^{i}}{n+4} \right\},$$
(3.2)

we have $\sigma^i = \overline{M}^i - M^i$, from which we get $\sigma_i = \overline{M}_i - M_i$ Substituting this in (3.1) and putting

 $D_{hj}^i = \gamma_{hj}^i + \delta_h^i M_j + \delta_j^i M_h - M^i a_{hj}$, we have

$$\overline{D}_{hj}^i = D_{hj}^i. \tag{3.3}$$

 D_{hj}^i is a symmetric conformally invariant linear connection on M.

Thus we have the following proposition.

Proposition 3.1 In a Cartan space with (α, β) -metric, there exists a conformally invariant symmetric linear connection D^i_{jk} .

If we denote by D_{hjk}^{i} the curvature tensor of D_{jk}^{i} , we have from (3.3)

$$\overline{D}_{hjk}^i = D_{hjk}^i. \tag{3.4}$$

Since $b^i_{:k} = 0$, we have $M^i = 0$. Hence $D^i_{jk} = \gamma^i_{jk}$ and $D^i_{hjk} = R^i_{hjk}$. Thus we have the next proposition.

Proposition 3.2 In a Cartan space C^n with (α, β) -metric admitting h-metrical d-connection, $M^i = 0$ and there exists a conformally invariant symmetric linear connection D^i_{jk} such that $D^i_{jk} = \gamma^i_{jk}$ and its curvature tensor $D^i_{hjk} = R^i_{hjk}$.

If the associated Riemannian space (M, α) is locally flat $(R_{hjk}^i = 0)$, then from (3.4) and Proposition (3.2), we have $\overline{D}_{hjk}^i = 0$, i.e. the space C^n is conformally flat.

Thus we conclude that.

Theorem 3.1 A Cartan space $C^n = (M, K(\alpha, \beta))$ with (α, β) metric admitting hmetrical d-connection is conformally flat if and only if associated Riemannian space is locally flat.

References

- Brickell, F.: A relation between Finsler and Cartan structures, Tensor, N.S. 25, 360-364 (1972).
- [2] Cartan, É.: Les éspaces metriqués fondés sur la notion d'aire, Actualités Sci. Ind., 72, Hermann, Paris, 1933.
- [3] Ichijyo, Y and Hashiguchi, M.: On the condition that a Randers space be conformally flat, Rep. Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.), 22, 07-14 (1989).
- [4] Ichijyo, Y and Hashiguchi, M.: On locally flat generalised (α, β)-metrics and conformally flat generalized Randers metrics, Rep. Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.), 27, 17-25 (1994).
- [5] Igrashi, T.: Remarkable connections in Hamilton spaces, Tensor, N.S., 55, 151-161 (1992).
- [6] Igrashi, T.: (α, β) -metric in Cartan spaces, Tensor, N.S., 55, 74-82 (1994).
- [7] Kitayama, M., Azuma, M., and Matsumoto, M. : On Finsler space with (α, β) -metric, Journal of Hokkaido University of Education, 46(1), 01-09 (1995).
- [8] Miron, M.: Cartan spaces in a new point of view by considering them as duals of Finsler spaces, Tensor, N.S. 46, 329-334 (1987).
- [9] Miron, M.: The Geometry of Cartan spaces, Progress of Math., 22, 01-38 (1988).
- [10] Rund, H.: The Hamiltonian-Jacobi theory in the calculus of variations, D. van Nostrand Co., London, 1966.

- [11] Singh, S.K.: Conformally Minkowski type Spaces and certain d-connections in a Miron space, Indian J. pure appl. Math. 26(4), 339-346 (1995).
- [12] Singh, S.K. : An h-metrical d-connection of a special Miron space, Indian. J. pure appl. Math. 26(4), 347-350 (1995).

H. G. NAGARAJA Department Of Mathematics, Central College, Bangalore University, Bangalore-560 001, Karnataka-INDIA e-mail: hgnraj@yahoo.com

Received 04.05.2006