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Abstract

Variety of Banach algebras is a non-empty class of Banach algebras in which

there exist a family of laws such that all of its members satisfy all of the laws. In

this paper, we have used merely mathematical items such as Banach algebras and

varieties including Banach algebras in order to change the space of all varieties of

Banach algebras into a compact metric space. We prove some theorems in the metric

space of zero at infinity varieties, define the ∗-varieties of ∗-algebra and prove many

theorems about ∗-varieties of C∗-algebras.
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1. Introduction

Throughout this paper, by a polynomial we mean a polynomial in several non-
commuting variables without constant term. For each Banach algebra A and polynomial
p, we define

‖p‖A = sup{‖p(x1, ..., xn)‖ : xi ∈ A, ‖xi‖ ≤ 1}.
By a law we mean a formal expression ‖p‖ ≤ K, where K ∈ R and p is a polynomial.

We say that A satisfies the above law, if ‖p‖A ≤ K. ‖p‖ ≤ K is homogeneous, if p is a
homogeneous polynomial.
Let v be a variety and let {Lα}α∈I be the families of laws which determine v. We define

|p|v = inf{K : ∃α ∈ I; (‖p‖ ≤ K) ∈ Lα}
2000 AMS Mathematics Subject Classification: Primary 46H99, secondary 54E45.
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where p is a polynomial. The family {|p|v}p is a family of laws which determine v.
By means of the mapping p → |p|v, we can compare the elements of the lattice of all
varieties. An H-variety is one generated by a family of homogeneous laws. If A is a
Banach algebra, the smallest variety containing A is denoted by v(A), called the variety
generated by A. Each variety v is singly generated, i.e., there exists a Banach algebra A
such that v = v(A). The class of all varieties with inclusion is a complete lattice. In this
paper, we regard two Banach algebras identical if they are isometric and isomorphic.

2. The Lattice of Varieties

In this section, we shall introduce some main results about varieties, for proofs of
which the reader can refer to [3], [4] and [6].

The following theorem shows that the variety of all IQ-algebras and all IR-algebras
is generated by C(complex numbers) and B(H), respectively.

Theorem 2.1 ([3]). The variety of all IQ-algebras and all IR-algebras is generated by
C(complex numbers) and B(H), respectively, where H is the separable infinite dimen-
sional Hilbert space.

The following theorem explains why we can let a variety be defined by condition on
all polynomials.

Theorem 2.2 ([4], Theorem2.3). A non-empty class of Banach algebras is a variety if
and only if it is closed under closed subalgebras, quotient algebras, products( direct sum)
and images under isometric isomorphisms.

Let A be a Banach algebras. Then S(A), Q(A) and P (A) denote, respectively, the
class of all Banach algebras isometrically isomorphic to closed subalgebras of A, quotient
algebras of A and direct sums of copies of A.

To show some useful relationships in order to obtain the characteristics of the varieties
of Banach algebras we have the following theorem.

Theorem 2.3 ([6], Theorem2.1). Let A be a Banach algebra. Then

v(A) = QSP (A).
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Each variety is determined by a family of laws. But among such families one is particular
noteworthy; namely, the family of laws with minimal right-hand sides K. The function
giving these right-hand sides is as the following.

For each variety v and polynomial p,

|p|v = sup{‖p‖A : A ∈ v}.

The following theorem shows that this supremum is always obtained.

Theorem 2.4 ([6], Theorem2.4). For each variety v, there is an A ∈ v such that for all
polynomials p

|p|v = ‖p‖A.

An easy corollary of the above theorem is as follows: Let v1 and v2 be two varieties.
Then v1 ⊆ v2 if and only if, for each polynomial p

|p|v1 ≤ |p|v2

We note that, partially ordered by inclusion principle, the class of all varieties is a
complete lattice.

Lemma 2.5 ([6], Lemma2.7). Let {Aα}α∈I be a family of Banach algebras and A =
⊕α∈IAα. Then the supremum of {v(Aα)}α∈I in the lattice of varieties is v(A).

We shall denote the variety of all Banach algebras by 1. Let Nn(for each n ∈ N ,
n �= 1) be the variety determined by the law

‖X1...Xn‖ = 0

The following theorem explains the maximum and minimum of the class of all varieties.

Theorem 2.6 ([6], Theorem3.3). Let L be the class of all varieties, then N2 is the
minimum of L, and L\{N2, 1}, has no maximum and minimum.

The following theorem shows that there is an uncountable chain between any variety
and H- variety.

Theorem 2.7 ([6], Theorem4.2). Let v1 be a variety, v2 an H- variety, and v1 ⊆ v2.
If there exists a homogeneous polynomial p0 such that |p0|v1 < |p0|v2, there will be an
uncountable chain between v1 and v2.
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An immediate corollary is as follows. Between any two H-varieties there is an un-
countable chain of H-varieties which can be expressed in the following theorem.

Theorem 2.8 ([6], Theorem4.4). Let A and B be two Banach algebras obeying sets of
algebraic identities

∑
A and

∑
B, respectively, such that∑

A\∑
B �= ∅ and

∑
B\∑

A �= ∅, there is a pair of uncountable chains between
inf{H(A), H(B)} and sup{H(A), H(B)}.

The following theorem shows existence of an uncountable anti-chain of varieties of
Banach algebras.

Theorem 2.9 ([6], Theorem4.5). There exists an uncountable family of varieties {vα}α∈I

such that if α, β ∈ I and α �= β, vα is not a subset of vβ and vβ is not a subset of vα.

So it can be concluded that the lattice of all varieties is long and wide.
We can show that there is no H-variety between the varieties, of IQ-algebras and IR-

algebras. The following theorem can be considered, to show this fact, while it explains
that such a restriction to homogeneous polynomials is not possible in the characterization
of the IQ-algebras and IR-algebras.

Theorem 2.10 ([6], Theorem4.7). Between the varieties of all IQ-algebras and IR-
algebras there is no H-variety.

3. The Metric Space of Varieties

Now we shall show that the lattice of all varieties is a metric space. It is known
that each variety can be determined just by non-homogeneous polynomials, but it is not
possible to determine all of the varieties just by homogeneous polynomials. To start,
we need to have definitions for unit disk of the set of all polynomials, the set of all
homogeneous polynomials, the set of all non homogeneous polynomials and zero at infinity
variety.

Definition 3.1 If we consider L the lattice of all varieties, and LH the lattice of all
H-varieties. P the set of all polynomials, PH the set of all homogeneous polynomials.
PNH the set of all non homogeneous polynomials, we can define

P1 = {p ∈ P : |p|1 < 1}
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PH1 = {p ∈ PH : |p|1 < 1}

PNH1 = {p ∈ PNH : |p|1 < 1}.

Let v ∈ L. We define Φv : P1 → C as

Φv(p) = |p|v.

It is easy to show that the mapping v → Φv from L into l∞(P1, C) is one to one.
Hence l∞(P1, C) induces the following metric to L:

dL(v, w) = d(Φv,Φw) = ‖Φv −Φw‖

= supp∈P1
|Φv(p)− Φw(p)| = supp∈P1

||p|v − |p|w|.

Therefore (L, dL) is a metric space.

Similarly (LH , dH) with

dH(v, w) = supp∈PH1
||p|v − |p|w|,

and (L, dNH) with

dNH(v, w) = supp∈PH1
||p|v − |p|w|

are metric spaces.

Definition 3.2 Let 0 ≤ x ≤ 1 and v �= N2 be a variety. vx can be defined as the variety
determined by the laws

‖p‖ ≤ xi−1|p|v,

where p is a homogeneous polynomial of degree i > 1.

Definition 3.3 We say that a variety v is zero at infinity if for each ε > 0 there exists
N > 0 such that for all p ∈ PH1 , if deg(p) > N then |p|v < ε.

Now, we prove the main theorem.
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4. Compact Metric Space of Varieties

Theorem 4.1 The set of all varieties is a complete metric space.

Proof. Let v ∈ L. We define ϕv : P → R+ as

ϕv(p) = |p|v.

The mapping ψ : v → ϕv from L into L∞(P1) is one to one. Hence L∞(P1) induces
the following metric to L:

dL(v, w) = d(ϕv, ϕw) = ‖ϕv − ϕw‖∞

ψ is well-defined. If v = w, then for all polynomials p ∈ P , we have |v|v = |p|w. The
mapping v → ϕv is continuous.

Let ϕ = {ϕv|v ∈ L}. We show that (ϕ, d) is a closed in L∞(P1) metric space.
Let {vn}∞n=1 be a sequence of varieties and {ϕvn}∞n=1 be a Cauchy sequence in ϕ

metric subspace.

Let ϕvn

|| ||∞−→ f , where f ∈ L∞(P1). We show that there exists ϕv ∈ ϕ, such that

f = ϕv. Since ϕvn

|| ||∞−→ f . Then we have, for each ε > 0, there exist N > 0, for all n, if
n ≥ N , Then ‖ϕvn −f‖∞ < ε. Thus supp|ϕvn(p)−f(p)| < ε and supp||p|vn −f(p)| < ε.
Therefore the sequence {|p|vn}∞n=1 is uniformly convergent. Let Mn(p) = supk≥n|p|vk

and {|p|vn}∞n=1 be an increasing sequence and v = ∨∞
n=1vn. For each ε > 0, there exits

N > 0, such that, |p|vn > |p|v − ε and for all n, if n ≥ N

|p|v − ε < |p|vn ≤Mn(p) ≤ |p|v < |p|v + ε.

Thus
|p|v − ε < Mn(p) ≤ |p|v < |p|v + ε.

Hence limn→∞Mn(p) = |p|v, but limn→∞Mn(p) = f(p).
Therefore f(p) = |p|v and f(p) = ϕv(p) for all polynomials p ∈ P1, giving f = ϕv.
Let {|p|vn}∞n=1 be a decreasing sequence and mn(p) = infk≥n|p|vk. We have,

limn→∞mn(p) = f(p).
For each ε > 0, there exist N1 > 0, such that, infn|p|vn + ε > |p|vN1

and for all n, if
n ≥ N1,

infk≥1|p|vk − ε < infk≥1|p|vk < mn(p) < |p|vN1
< infk≥1|p|vk + ε
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Therefore, for all polynomials p ∈ P1, we have limn→∞Mn(p) = infk≥1|p|vk. Hence
for all polynomial p ∈ P1, f(p) = infk≥1|p|vk and f is a non-negative real-valued function
on the set of all polynomials and a family of laws {‖p‖ ≤ f(p)}p determines a variety. But
the variety ∧k≥1vk is determined by a family of laws {‖p‖ ≤ infk≥1|p|vk}p∈P = {‖p‖ ≤
f(p)}p∈P

There exist a variety v′, v′ = {A|‖p‖A ≤ f(p)}p and |p|v′ = f(p), f = ϕv′ . Now,
let {|p|vn}∞n=1 be not monotone. Since {|p|vn}∞n=1 is convergent, hence {|p|vn}∞n=1 have a
decreasing subsequence or increasing subsequence.

Thus (ϕ, d) is a closed set in L∞(P1) metric space. Since L∞(P1) is a complete metric
space, (ϕ, d) is a complete metric subspace and (L, dL) is a complete metric space. ✷

Theorem 4.2 The subspace (L◦
H , dH) of zero at infinity H-varieties is closed in (L, dL).

Proof. Let {vn}∞n=1 be a sequence of zero at infinity varieties. Let vn
d−→ v.

Thus for each ε > 0, there exists N > 0, such that for all n ∈ N, if n ≥ N , then
supp∈P1

||p|vn − |p|v| < ε.
Since the metric spaces (L, dL) and (LNH , dNH) are equivalent,

supq∈PNH1
||q|vn − |q|v| < ε.

Let p be a homogeneous polynomial, where qi = p (i = 1, 2, ...). Since supq∈PNH1
||q|vn−

|q|v| < ε, for all q, such that qi = p, we have ||q|vn −|q|v| < ε. Thus |infq|q|vn
− inf|q|v| < ε

and ||p|vn − |p|v| < ε, ||p|vN − |p|v| < ε.
Since vN is a zero at infinity variety, for each ε > 0 there exists N1 > 0 such that for

all polynomials p ∈ PH1 , if deg(p) > N1, then |p|vN < ε. Thus |p|v < ε, and v is a zero
at infinity. ✷

Corollary 4.3 The set of all zero infinity varieties is a complete metric subspace.

Definition 4.4 Let v be zero at infinity variety. We define

[N2, v] = {w|N2 ⊆ w ⊆ v, w be a variety}.

It is obvious that, the members of [N2, v] are zero at infinity varieties.
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Theorem 4.5 Let v be zero at infinity. Then [N2, v] is a closed set.

Proof. Let {vn}∞n=1 be a sequence of zero at infinity varieties and for all n ∈ N,
vn ∈ [N2, v], hence N2 ⊆ vn ⊆ v. If v′ �⊂ v, then there exists c ∈ v′ such that c �∈ v. So
there exists p0 ∈ PH1 such that ‖p0‖c > |p0|v, and |p0|v′ ≥ ‖p0‖c > |p0 |v ≥ |p0 |vn .

Since vn
dH−→ v′. Therefore we have, for each ε > 0, there exists N > 0 such that

for all n, if n ≥ N , then supp∈P1
||p|vn − |p|v′| < ε. Thus for all polynomials p ∈ PH1

||p|vn − |p|v′| < ε.
Now if ε = |p0 |v′ − |p0 |v, then −(|p0 |v′ − |p0 |v) < |p0 |vn − |p0|v′ < |p0 |v′ − |p0|v. Thus

for all n ≥ N , |p0 |v < |p0 |vn . This is a contradiction. ✷

Corollary 4.6 Let v be zero at infinity variety. Then [N2, v] is a complete metric
subspace.

Proof. [N2, v] ⊆ L◦
H and [N2, v] is a closed set. ✷

Corollary 4.7 For all n ∈ N, n > 2, the closed intervals [N2, v] are the complete metric
subspaces.

Theorem 4.8 The sequence {Nn}∞n=1 is not convergent.

Proof. First we show that Nn �→ 1. For all polynomials p ∈ P1, we have

supp∈P1
||p|Nn − |p|1| ≥ ||p|Nn − |p|1|

if X1X2...Xn. Then there exists N > 0 such that for all n, n ≥ N

d(Nn, 1) ≥ ||X1X2...Xn|Nn − |X1X2...Xn|1| = |X1X2...Xn|1 = 1.

Let {Nn}∞n=1 be convergent. Let Nn → v. Then for each ε > 0 there exists N1 > 0, for
all n and for all p ∈ P1, if n ≥ N1, supp∈P1

||p|Nn − |p|1| < ε. For all polynomials p ∈ P1,
{|p|Nn}∞n=1 is increasing sequence. Thus |p|Nn → |p|VnNn . But ∨nNn = 1. Therefore
v = 1. ✷
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Theorem 4.9 Let {v′n}∞n=1, {vn}∞n=1 be two sequences of varieties, vn
d−→ v and v′n

d−→
v′. Then vn ∨ v′n d−→ v ∨ v′, and v ∨ v′ = infn≥1( supk≥nvk ∨ v′k).
Proof. For all polynomials p ∈ P1, we have,

|p|vn∨v′
n
= sup{|p|vn, |p|v′

n
}, |p|v∨v′ = sup{|p|v, |p|v′},

since vn
d−→ v. Hence for each ε > 0 there exists N1 > 0, such that for all polynomials

p ∈ P1 and for n, if n ≥ N1, then supp∈P1
||p|vn−|p|v| < ε

4
. Also v′n

d−→ v′. Thus for each
ε > 0 there exists N2 > 0 such that for all polynomials p ∈ P1 and for all n,if n ≥ N2,
then supp∈P1

||p|v′
n
− |p|v′| < ε

4 . Let N = max{N1, N2}. Therefore for all n and for all
polynomials p ∈ P1, if n ≥ N , then

supp∈P1
||p|vn∨v′

n
− |p|v∨v′| = supp∈P1

|1
2
(|p|vn + |p|v′

n
) +

1
2
||p|vn − |p|v′

n
|

−1
2
(|p|v + |p|v′)− 1

2
||p|v − |p|v′||

< 4× ε

4
= ε.

✷

Theorem 4.10 The set of all varieties is totally bounded.

Proof. Let v ∈ L. We define ϕv : P → R+ as

ϕv(p) = |p|v.
The mapping v → ϕv from L into L∞(p1) is one to one. Hence L∞(p1) induces the

following metric to L:

dL(v, w) = d(ϕv, ϕw) = ‖ϕv − ϕw‖∞
Now, let {vn}∞n=1 be a sequence of varieties. For all polynomials p ∈ P1, {|p|vn}∞n=1

is bounded. Then the sequence {|p|vn}∞n=1 have a subsequence {|p|vnk
}∞k=1, which is con-

vergent, and also a Cauchy sequence. Thus the sequence {vnk}∞k=1 is Cauchy sequence. ✷
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Corollary 4.11 The set of all varieties is a compact metric space.

Corollary 4.12 The set of all zero at infinity varieties is a compact metric subspace.

Example 4.13 A sequence {Nn}∞n=1 is zero at infinity of varieties.
For each ε > 0 there exists N > 0 such that for all p ∈ PH1 , if deg(p) > N , then |p|Nn < ε.

If p = X1X2...Xm be homogeneous polynomials and deg(p) = m, if n > m > N , then
|p|Nn < ε.

Theorem 4.14 A sequence {Nn}+∞
n=1 is not a Cauchy sequence.

Definition 4.15 There exists ε > 0, for all N > 0, there exists, n,m such that if
n,m > N , then

supp∈PH1
||p|Nn − |p|Nm | �→ 0.

If p = X1X2...Xm be homogeneous polynomials and n > m, then

supp∈PH1
||p|Nn − |p|Nm | ≥ ||X1X2...Xm|Nn − |X1X2...Xm|Nm |.

|X1X2...Xm|Nn = 1 �→ 0.

5. The Connected Set of Zero at Infinity Varieties

Theorem 5.1 Let v be zero at infinity variety. Then {va|0 ≤ a ≤ 1} is path-connected,
subspace of metric space (LH , dH).

Proof. Let 0 ≤ a < a′ ≤ 1, va and v′a be two zero at infinity varieties. We define the
mapping

f : [0, 1] −→ {va|0 ≤ a ≤ 1}

as follows

f(t) = va+t(a′−a).
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We have f(0) = va and f(1) = v′a. Now we prove that f is continuous mapping of
[0, 1] onto {va|0 ≤ a ≤ 1}. Let for all n ∈ N, tn, t ∈ [0, 1] and tn −→ t.

Then

d(f(tn), f(t)) = supp∈PH1
||p|va+tn(a′−a)

− |p|va+t(a′−a)
|

= sup|[a+ tn(a′ − a)]i−1|p|v − [a+ t(a′ − a)i−1|p|v|

= sup|p|v|(a+ tn(a′ − a))i−1 − (a + t(a′ − a))i−1|

= supp∈PH1
|p|v|(a+ tn(a′ − a)− a − t(a′ − a))[(a+ tn(a′ − a))i−2+

(a+ tn(a′ − a)(a+ t(a′ − a)) + ...+ (a + t(a′ − a))i−2]|

= supp∈PH1
|p|v|(tn − t)(a′ − a)||a+ tn(a′ − a)i−2 + ...+ (a + t(a′ − a))i−2|

≤ supp∈PH1
|(tn − t)(a′ − a)|(i− 2)a′i−2 < |tn − t| supp∈PH1

(i− 2)a′i−2.

Since (i− 2)a′i−2 is convergent, it is bounded. Thus

d(f(tn), f(t)) −→ 0.

✷

Theorem 5.2 Let L◦
H be the set of all zero at infinity varieties. Let α ∈ I and vα

a ∈ L◦
H ,

be zero at infinity variety. Let {vα
a |0 ≤ a ≤ 1} = cα. Then

⋃
α∈I cα is connected.

Proof. For any α, β ∈ I (α �= β), we have cα ∩ cβ �= ∅. Since if a = 0, then vα
0 = N2

and vβ
0 = N2 and

⋂
α∈I cα �= ∅. Therefore the theorem is proved.

Let
⋂

α∈I cα = ∅. Let there exists α0 ∈ I, such that for any α ∈ I, c′α = cα ∪ cαn .
Then for any α ∈ I, c′α is connected. We have
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⋂
α∈I

c′α = cα0 ∪ (
⋂
α∈I

cα) = cα0 �= ∅.

Thus
⋃

α∈I c
′
α = cα0 ∪ (

⋃
α∈I cα) =

⋃
α∈I cα and

⋃
α∈I cα is connected. ✷

Corollary 5.3 The set of all zero at infinity varieties is a connected set.

6. Laws of Variety of C∗-Algebras

In this section, we shall characterize varieties of C∗-algebras by inequalities on norms
of polynomials, and also we shall show that each variety of C∗-algebras is singly-generated.

Definition 6.1 An involution on an algebra A is a conjugate-linear map a −→ a∗ on A
such that a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. The pair (A, ∗) is called an involution
algebra, or a ∗-algebra. A Banach ∗-algebra is a ∗-algebra A together with a complete sub-
multiplicative norm such that ‖a∗‖ = ‖a‖ (a ∈ A). A C∗-algebra is a Banach ∗-algebra
for which ‖a∗a‖ = ‖a‖2 (a ∈ A). A closed ∗-subalgebra of a C∗-algebra is obviously a
C∗-algebra. We shall therefore call a closed ∗-algebra of a C∗-algebra a C∗-subalgebra. If
{Ai}i∈I is a family of C∗-algebra, the direct sum ⊕i∈IAi is a C∗-algebra with the point
wise-defined involution.

Definition 6.2 Let v be a family of C∗-algebras. We say that v is a variety of C∗-
algebra, if it is closed under taking, (i) direct sums, (ii) C∗-algebra, (iii) quotients (by
closed ideals) and (iv) ∗- isomorphic.

Throughout this paper, the word ”polynomials” is taken to mean a complex polynomial
in several non-commuting variables without constant term.

Definition 6.3 By a law we mean a formal expression ‖p‖ ≤ K, where p is a polynomial
and K ∈ R. If A is a Banach algebra we say that A satisfies the above law if ‖p‖A ≤ K,
which is a homogeneous law for p to be homogeneous polynomial.

Definition 6.4 Let v be a family of Banach algebras. We say that v is a variety of
Banach algebras, if it is closed under taking, (i) direct sums, (ii) closed subalgebras, (iii)
quotients (by closed ideal) and (iv) isometric isomorphic.
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Definition 6.5 Let v be a non-empty class of Banach algebras. We define û to be the
class all Banach algebras bi-continuously isomorphic to members of u.

Theorem 6.6 Let v∗ be a non-empty class of C∗-algebras. Then v∗ is a variety of C∗-
algebras if and only if there exists a family of laws {‖p‖ ≤ KP }p such that

v∗ = {A : A is a C∗ − algebras, and ‖p‖ ≤ KP ∀p}
Proof. Let v∗ be a variety of C∗-algebras. Define

Kp = sup{‖p‖C : C ∈ v∗}

for all polynomials p. For each polynomial p and ε > 0, there is C(p, ε) ∈ v∗ such that
‖p‖C(p,ε) > Kp−ε. Let B = ⊕C(p, ε), then B ∈ v∗. ‖p‖B = sup‖p‖C(p,ε), so ‖p‖B = Kp

for all polynomials p. It is clear that

v∗ ⊆ {A : A is a C∗ − algebras, and ‖p‖ ≤ KP }

Now, suppose that A is a C∗-algebras such that for all p, ‖p‖A ≤ Kp = ‖p‖B. Let

X = BA1
1 and Γ = BX (direct sum of copies of B). Since B ∈ v∗, Γ ∈ v∗. We define

ζa ∈ Γ(a ∈ A1) by

ζa(x) = x(a) (x ∈ X).

Then ‖ζa‖∞ = 1. Let U0 be the ∗-subalgebra of Γ generated by

{ζa a ∈ A1} ∪ {ζ∗a : a ∈ A1}.

Define a ∗-homomorphism θ : U0 → A by θ(ζa) = a and θ(ζ∗a ) = a∗ we show that θ is
well defined. Each element of U0 is of the form

p(ζ′a1
...ζ′a1

)

where p = p(X1, ..., Xn) is a polynomial and ζ′ai
is ζ′ai

or ζ∗a′
i
. Let for each 1 ≤ i ≤ n,

a′i =




ai ζ′ai

= ζai

a∗i ζ′ai
= ζ∗ai

.
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We have

‖p(a′1, ..., a′n)‖ ≤ ‖p‖A ≤ ‖p‖B

= sup{‖p(x′(a1), ..., x′(an))‖ : x ∈ X}.

= sup{‖p(ζ′a1
, ..., ζ′a1

)‖ : x ∈ X}

= ‖p(ζ′a1
, ..., ζ′a1

)‖,

where

x′(ai) =




x(ai) ζ′ai

= ζai

(x(ai))∗ ζ′ai
= ζ∗ai

.

Hence θ : U0 → A is well-defined. Let U be the closure of U in Γ. Then θ extends
to a ∗-homomorphism of U onto A. Hence U/kerθ is ∗-isomorphic with A, A ∈ v∗. The
converse is straightforward. ✷

The proof of the above theorem shows that for each variety of C∗-algebras v∗ there is
B ∈ v∗ such that v∗ is generated by the laws {‖p‖ ≤ ‖p‖B}p and v∗ the smallest variety
of C∗-algebras containing B, i.e, v∗ = v∗(B). For v to be the variety of Banach algebras
generated by the some laws, we have the following theorem.

Theorem 6.7 Let v∗, w∗ be two varieties of C∗-algebras. Then
(i) v is the smallest variety of Banach algebras such that v∗ = v ∩ 1∗ where 1∗ is the

variety of all C∗ − algebras.
(ii) v∗ ⊆ w∗ if and only if v ⊆ w.

Proof. (i) It is clear that v∗ = v∩1∗. Let v′ be a variety of Banach algebras such that
v∗ = v′ ∩ 1∗. Let v∗ = v∗(A), so A ∈ v′. Since for all polynomials p, |p|v = ‖p‖A ≤ |p|v′,
that v ⊆ v′.

(ii)Let w∗ = w∗(B) and v∗ = v∗(A). Since A ∈ w∗, so for all polynomial p,
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|p|v = ‖p‖A ≤ ‖p‖B = |p|w
Hence v ⊆ w. The converse is evident. ✷

Corollary 6.8 Let A be a C∗-algebra. Let w be a variety of Banach algebras, such that
w ⊆ v(A) and w �= v(A). Then there exists a C∗-algebras B such that, B ∈ v(A)\w.

Proof. Straightforward. ✷
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