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The Generalized Hyers–Ulam–Rassias Stability of a

Cubic Functional Equation

Abbas Najati

Abstract

In this paper, we obtain the general solution and the generalized Hyers–Ulam–

Rassias stability for a cubic functional equation

f(mx+ y) + f(mx − y) = mf(x+ y) +mf(x − y) + 2(m3 − m)f(x)

for a positive integer m ≥ 1.
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1. Introduction

In 1940, S. M. Ulam [18] gave a wide ranging talk before the mathematics club
of the University of Wisconsin, in which he discussed a number of important unsolved
problems. Among those was the question concerning the stability of homomorphisms:
Let G1 be a group and let G2 be a metric group with the metric d(., .). Given ε > 0,
does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then does there exist a homomorphismH : G1 →
G2 with d(h(x), H(x)) < ε for all x ∈ G1? In other words, we are looking for situations
when the homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then
there exists a true homomorphism near it. If we turn our attention to the case of
functional equations, we can ask the question: When the solutions of an equation differing
slightly from a given one must be close to the true solution of the given equation. For
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Banach spaces the Ulam problem was first solved by D. H. Hyers [7] in 1941, which states
that if δ > 0 and f : X → Y is a mapping with X, Y Banach spaces, such that

∥∥∥f(x + y) − f(x) − f(y)
∥∥∥

Y
≤ δ (1.1)

for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that

∥∥∥f(x) − T (x)
∥∥∥

Y
≤ δ

for all x ∈ X. Th. M. Rassias [15] succeeded in extending the result of Hyers by weakening
the condition for the Cauchy difference to be unbounded. In recent decades, the stability
problems of several functional equations have been extensively investigated by a number of
authors [2, 5, 9, 13]. The stability phenomenon that was introduced and proved by Th. M.
Rassias in his 1978 paper is called the Hyers–Ulam stability. The terminology generalized
Hyers–Ulam stability, originates from these historical backgrounds.These terminologies
are also applied to the case of other functional equations. For more detailed definitions
of such terminologies, we refer the reader to [8, 10, 16]. The functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y) (1.2)

is related to a symmetric biadditive function [1, 14]. It is natural that each equation is
called a quadratic functional equation. In particular, every solution of the quadratic
equation (1.2) is said to be a quadratic function. It is well known that a function f

between real vector spaces is quadratic if and only if there exists a unique symmetric
biadditive function B such that f(x) = B(x, x) for all x (see [1, 14]). The biadditive
function B is given by

B(x, y) =
1
4

(
f(x + y) − f(x − y)

)
.

A Hyers–Ulam stability problem for the quadratic functional equation (1.2) was proved
by F. Skof for functions f : E1 → E2, where E1 is a normed space and E2 a Banach space
(see [17]). P. W. Cholewa [3] noticed that the theorem of Skof is still true if the relevant
domain E1 is replaced by an abelian group. In the paper [4], S. Czerwik proved the
Hyers–Ulam–Rassias stability of the quadratic functional equation (1.2). A. Grabiec [6]
has generalized these results mentioned above. K. W. Jun and Y. H. Lee [12] proved the
Hyers–Ulam–Rassias stability of the pexiderized quadratic equation (1.2). In [11], K. W.
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Jun and H. M. Kim introduced the functional equation

f(2x + y) + f(2x − y) = 2f(x+ y) + 2f(x − y) + 12f(x), (1.3)

which are somewhat different from (1.2).
It is easy to see that the function f(x) = cx3 is a solution of the above functional

equation. Thus, it is natural that equation (1.3) is called a cubic functional equation and
every solution of the cubic functional equation (1.3) is said to be a cubic function.

Now, we introduce the following functional equations, which are somewhat different
from (1.3):

f(mx + y) + f(mx − y) = mf(x + y) + mf(x − y) + 2(m3 −m)f(x), (1.4)

where m is a positive integer and m ≥ 2. For m = 2, we obtain equation (1.3).
In this paper, we establish the general solution and the generalized Hyers–Ulam–

Rassias stability problem for the equation (1.4), which are equivalent to (1.3).

2. Solution of Equation (1.4)

Let R
+ denote the set of all nonnegative real numbers and let both E1 and E2 be real

vector spaces. We present the general solution of equation (1.4).

Theorem 2.1 A function f : E1 → E2 satisfies the functional equation (1.3) if and
only if f : E1 → E2 satisfies the functional equation (1.4). Therefore, every solution of
functional equations (1.4) is also a cubic function.

Proof. Let f : E1 → E2 satisfy the functional equation (1.3). Putting x = y = 0 in
(1.3), we get f(0) = 0. Set x = 0 in (1.3) to get f(−y) = −f(y). Letting y = x and
y = 2x in (1.3), respectively, we obtain that f(2x) = 8f(x) and f(3x) = 27f(x) for all
x ∈ E1. By induction, we lead to f(kx) = k3f(x) for all positive integer k. Replacing y

by x+ y in (1.3), we have

f(3x+ y) + f(x− y) = 2f(2x + y) − 2f(y) + 12f(x) (2.1)

for all x, y ∈ E1. Once again Replacing y by y − x in (1.3), we have

f(x + y) + f(3x− y) = 2f(y) + 2f(2x− y) + 12f(x) (2.2)

for all x, y ∈ E1. Adding (2.1) to (2.2) and using (1.3), we obtain

f(3x + y) + f(3x − y) = 3f(x+ y) + 3f(x− y) + 48f(x) (2.3)
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for all x, y ∈ E1. By using the above method, by induction, we infer that

f(mx + y) + f(mx − y) = mf(x + y) +mf(x − y) + 2(m3 −m)f(x) (2.4)

for all x, y ∈ E1 and each positive integer m ≥ 3.
Let f : E1 → E2 satisfy the functional equation (1.4) with the positive integer m ≥ 3.

Putting x = y = 0 in (1.4), we get f(0) = 0. Set x = 0 in (1.4) to get f(−y) = −f(y).
Let k be a positive integer. Replacing y by kx+ y in (1.4), we have

f((m + k)x+ y) + f((m − k)x− y) (2.5)

= mf((k + 1)x+ y) −mf((k − 1)x+ y) + 2(m3 −m)f(x)

for all x, y ∈ E1. Replacing y by y − kx in (1.4), we have

f((m − k)x+ y) + f((m + k)x− y) (2.6)

= mf((k + 1)x− y) −mf((k − 1)x− y) + 2(m3 −m)f(x)

for all x, y ∈ E1. Adding (2.5) to (2.6), we obtain
[
f((m+ k)x+ y) + f((m + k)x− y)

]
+

[
f((m − k)x+ y) + f((m − k)x− y)

]
= m

[
f((k + 1)x+ y) + f((k + 1)x− y)

]
−m

[
f((k − 1)x+ y) + f((k − 1)x− y)

]
+ 4(m3 −m)f(x)

(2.7)

for all x, y ∈ E1 and for all integer k ≥ 1. Let ϕn(x, y) = f(nx + y) + f(nx− y) for each
integer n ≥ 0. Then (2.7) means that

ϕm+k(x, y) + ϕm−k(x, y) = mϕk+1(x, y)−mϕk−1(x, y) + 4(m3 −m)f(x) (2.8)

for all x, y ∈ E1 and for all integer k ≥ 1. For k = 1 and k = m in (2.7), we obtain

ϕm+1 + ϕm−1 = mϕ2 + 4(m3 −m)f(x) (2.9)

and

ϕ2m = mϕm+1 −mϕm−1 + 4(m3 −m)f(x) (2.10)
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for all x, y ∈ E1. By the proof of the first part, since f : E1 → E2 satisfies the functional
equation (1.4) with the positive integer m ≥ 3, then f satisfies the functional equation
(1.4) with the positive integer k ≥ m. It follows from (2.9) and (2.10) that f satisfies the
functional equation (1.3) and

f((m− 1)x+ y) + f((m − 1)x− y)
= (m− 1)f(x+ y) + (m− 1)f(x − y) + 2((m− 1)3 − (m− 1))f(x)

(2.11)

for all x, y ∈ E1. ✷

Remark 2.2 If f : E1 → E2 satisfies the functional the functional equation (1.3), then
for each rational number λ, we have

f(λx + y) + f(λx − y) = λf(x + y) + λf(x − y) + 2(λ3 − λ)f(x) (2.12)

for all x, y ∈ E1.

3. Hyers–Ulam–Rassias stability

In this section, let X be a real vector space and let Y be a Banach space unless we
give any specific reference. We will investigate the Hyers–Ulam–Rassias stability problem
for the functional equation (1.4). Thus we find the condition that there exists a true cubic
function near an approximately cubic function.

Theorem 3.1 Let δ be a real number and let f : X → Y be a mapping for which there
exists a function ϕ : X ×X → [−δ,+∞) such that

ϕ̃(x) :=
∞∑

k=0

m−3kϕ(mkx, 0) < ∞, lim
n→∞

m−3nϕ(mnx,mny) = 0, (3.1)

and
∥∥∥f(mx + y) + f(mx − y) −mf(x + y)

−mf(x − y) − 2(m3 −m)f(x)
∥∥∥

Y
≤ δ + ϕ(x, y)

(3.2)
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for all x, y ∈ X, where m is a positive integer with m > 1. Then there exists a unique
cubic mapping T : X → Y such that

∥∥∥T (x)− f(x)
∥∥∥

Y
≤ δ

2(m3 − 1)
+

1
2m3

ϕ̃(x) (3.3)

for all x ∈ X.

Proof. Putting y = 0 in (3.2), we obtain

∥∥∥ 1
m3

f(mx) − f(x)
∥∥∥

Y
≤ 1

2m3
δ +

1
2m3

ϕ(x, 0), (x ∈ X). (3.4)

Replacing x by mx in (3.4), we get

∥∥∥ 1
m6

f(m2x)− 1
m3

f(mx)
∥∥∥

Y
≤ 1

2m6
δ +

1
2m6

ϕ(mx, 0), (x ∈ X). (3.5)

Hence by using induction, we infer that

∥∥∥m−3nf(mnx)−m−3(n−1)f(mn−1x)
∥∥∥

Y
≤ 1

2m3n
δ +

1
2m3n

ϕ(mn−1x, 0) (3.6)

for all x ∈ X and integers n ≥ 1. Therefore we have
∥∥∥∥∥

n∑
k=l+1

(
m−3kf(mkx)−m−3(k−1)f(mk−1x)

)∥∥∥∥∥
Y

≤
n∑

k=l+1

∥∥∥m−3kf(mkx)−m−3(k−1)f(mk−1x)
∥∥∥

Y

≤ δ
2

n∑
k=l+1

m−3k + 1
2

n∑
k=l+1

m−3kϕ(mk−1x, 0),

(3.7)

for all x ∈ X and integers n > l ≥ 0. Hence we obtain from (3.7) that
∥∥∥m−3nf(mnx)−m−3lf(mlx)

∥∥∥
Y

≤ δ
2

n∑
k=l+1

m−3k + 1
2

n∑
k=l+1

m−3kϕ(mk−1x, 0),
(3.8)

and by letting l = 0 in (3.8), we obtain

∥∥∥m−3nf(mnx)− f(x)
∥∥∥

Y
≤ δ

2

n∑
k=1

m−3k +
1
2

n∑
k=1

m−3kϕ(mk−1x, 0) (3.9)
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for all x ∈ X and integers n > l ≥ 0. Thus (3.8) implies that {m−3nf(mnx)}n is a Cauchy
sequence in Y for all x ∈ X. Since Y is complete, there exists a mapping T : X → Y

defined by

T (x) := lim
n→∞

m−3nf(mnx)

for all x ∈ X. Letting n → ∞ in (3.9), we get the inequality (3.3). It follows from (3.1)
and (3.2) that∥∥∥T (mx + y) + T (mx− y) −mT (x+ y) −mT (x − y) − 2(m3 −m)T (x)

∥∥∥
Y

= limn→∞m−3n
∥∥∥f(mn(mx+ y)) + f(mn(mx− y)) −mf(mn(x+ y))

−mf(mn(x− y)) − 2(m3 −m)f(mnx)
∥∥∥

Y

≤ limn→∞m−3n
(
δ + ϕ(mnx,mny)

)
= 0

for all x, y ∈ X. Hence, by Theorem 2.1, it proves that T : X → Y is a cubic mapping.
Let Q : X → Y be another cubic mapping satisfying (3.3). Then∥∥∥T (x)−Q(x)

∥∥∥
Y

= limn→∞m−3n
∥∥∥T (mnx)−Q(mnx)

∥∥∥
Y

≤ limn→∞m−3n
∥∥∥T (mnx)− f(mnx)

∥∥∥
Y

+ limn→∞m−3n
∥∥∥f(mnx)−Q(mnx)

∥∥∥
Y

≤ limn→∞m−3n
(

δ
m3−1 + 1

m3 ϕ̃(mnx)
)

= 1
m3 limn→∞

∞∑
l=n

m−3lϕ(mlx, 0) = 0.

So we have T (x) = Q(x) for all x ∈ X. This proves the uniqueness of T. ✷

Corollary 3.2 Let δ, ε, θ, p and q be real numbers such that δ, ε, θ ≥ 0, q > 0 and p, q < 3.
Suppose that f : X → Y is a mapping fulfilling∥∥∥f(mx + y) + f(mx − y) −mf(x + y) −mf(x − y)

−2(m3 −m)f(x)
∥∥∥

Y
≤ δ + ε‖x‖p

X + θ‖y‖q
X

(3.10)

for all x, y ∈ X, where m is a positive integer with m > 1. Then there exists a unique
cubic mapping T : X → Y such that

∥∥∥T (x)− f(x)
∥∥∥

Y
≤ δ

2(m3 − 1)
+

ε

2(m3 −mp)
‖x‖p

X (3.11)
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for all x ∈ X and for all x ∈ X \ {0} if p < 0.

Proof. In Theorem 3.1, let ϕ(x, y) = ε‖x‖p
X + θ‖y‖q

X . ✷

Theorem 3.3 Let f : X → Y be a mapping for which there exists a function ϕ : X×X →
[0,+∞) such that

ϕ̃(x) :=
∞∑

k=0

m3kϕ(
1
mk

x, 0) < ∞, lim
n→∞

m3nϕ(
1
mn

x,
1
mn

y) = 0, (3.12)

and
∥∥∥f(mx + y) + f(mx − y) −mf(x + y)

−mf(x − y) − 2(m3 −m)f(x)
∥∥∥

Y
≤ ϕ(x, y)

(3.13)

for all x, y ∈ X, where m is a positive integer with m > 1. Then there exists a unique
cubic mapping T : X → Y such that

∥∥∥T (x)− f(x)
∥∥∥

Y
≤ 1

2
ϕ̃(

1
m
x) (3.14)

for all x ∈ X.

Proof. Putting y = 0 and replacing x by 1
m
x in (3.13), we obtain

∥∥∥m3f(
1
m
x) − f(x)

∥∥∥
Y
≤ 1

2
ϕ(

1
m
x, 0), (x ∈ X). (3.15)

Replacing x by 1
m
x in (3.15), we get

∥∥∥m6f(
1
m2

x)−m3f(
1
m
x)

∥∥∥
Y
≤ 1

2
m3ϕ(

1
m2

x, 0), (x ∈ X). (3.16)

Hence by using induction, we infer that

∥∥∥m3nf(
1
mn

x)−m3(n−1)f(
1

mn−1
x)

∥∥∥
Y
≤ 1

2
m3(n−1)ϕ(

1
mn

x, 0) (3.17)
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for all x ∈ X and integers n ≥ 1. Therefore we have∥∥∥∥∥
n∑

k=l+1

(
m3kf( 1

mk x)−m3(k−1)f( 1
mk−1 x)

)∥∥∥∥∥
Y

≤
n∑

k=l+1

∥∥∥m3kf( 1
mk x)−m3(k−1)f( 1

mk−1 x)
∥∥∥

Y

≤ 1
2

n∑
k=l+1

m3(k−1)ϕ( 1
mk x, 0),

(3.18)

for all x ∈ X and integers n > l ≥ 0. Hence we obtain from (3.18) that∥∥∥m3nf( 1
mn x)−m3lf( 1

ml x)
∥∥∥

Y

≤ 1
2

n∑
k=l+1

m3(k−1)ϕ( 1
mk x, 0),

(3.19)

and by letting l = 0 in (3.19), we obtain

∥∥∥m3nf(
1
mn

x)− f(x)
∥∥∥

Y
≤ 1

2

n∑
k=1

m3(k−1)ϕ(
1
mk

x, 0) (3.20)

for all x ∈ X and integers n > l ≥ 0. Thus (3.19) implies that {m3nf( 1
mn x)}n is a Cauchy

sequence in Y for all x ∈ X. Since Y is complete, there exists a mapping T : X → Y

defined by

T (x) := lim
n→∞

m3nf(
1
mn

x)

for all x ∈ X. Letting n → ∞ in (3.20), we get the inequality (3.14). Similar to the proof
of Theorem 3.1, it follows from (3.12) and (3.13) that∥∥∥T (mx + y) + T (mx− y) −mT (x+ y) −mT (x − y) − 2(m3 −m)T (x)

∥∥∥
Y

= limn→∞m3n
∥∥∥f(mx+y

mn ) + f(mx−y
mn ) −mf(x+y

mn )

−mf(x−y
mn )− 2(m3 −m)f( x

mn )
∥∥∥

Y

≤ limn→∞m3nϕ( x
mn ,

y
mn ) = 0

for all x, y ∈ X. Therefore T : X → Y is a cubic mapping.
To prove the uniqueness of T, let Q : X → Y be another cubic mapping satisfying

(3.14). Similar to the proof of Theorem 3.1, we have∥∥∥T (x)−Q(x)
∥∥∥

Y
= limn→∞m3n

∥∥∥f( 1
mnx)−Q( 1

mn x)
∥∥∥

Y

≤ 1
2 limn→∞m3nϕ̃( 1

mn+1 x) = 0
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So we have T (x) = Q(x) for all x ∈ X. This proves the uniqueness of T. ✷

Corollary 3.4 Let δ, ε, p and q be nonnegative real numbers such that p, q > 3. Suppose
that f : X → Y is a mapping fulfilling

∥∥∥f(mx + y) + f(mx − y) −mf(x + y) −mf(x − y)

−2(m3 −m)f(x)
∥∥∥

Y
≤ ε‖x‖p

X + θ‖y‖q
X

(3.21)

for all x, y ∈ X, where m is a positive integer with m > 1. Then there exists a unique
cubic mapping T : X → Y such that

∥∥∥T (x)− f(x)
∥∥∥

Y
≤ ε

2(mp −m3)
‖x‖p

X (3.22)

for all x ∈ X.

Proof. In Theorem 3.3, let ϕ(x, y) = ε‖x‖p
X + δ‖y‖q

X . ✷

Let f be a mapping from X to Y. For each positive integer m, let Dfm : X ×X → Y

be a mapping defined by

Dfm(x, y) = f(mx + y) + f(mx − y) −mf(x + y) −mf(x − y) − 2(m3 −m)f(x).

Proposition 3.5 Let δ be a nonnegative real number and let f : X → Y be an odd
mapping. Suppose that

∥∥∥Df2(x, y)
∥∥∥

Y
≤ δ (3.23)

for all x, y in X. Then there exists a sequence of nonnegative real numbers {δn}∞n=0 such
that

δ0 = δ, δ1 = 4δ, δ2 = 10δ, δm = 2δm−1 + (m+ 1)δ + δm−2 (m ≥ 3)

and
∥∥∥Dfm(x, y)

∥∥∥
Y
≤ δm−2, (m ≥ 2). (3.24)

404



NAJATI

Proof. Replacing y by y + x and y− x in (3.23), respectively, we get from (3.23) that
∥∥∥Df3(x, y)

∥∥∥
Y
≤ 4δ = δ1 (3.25)

for all x, y in X. Replacing y by y+x and y−x in (3.25), respectively, we get from (3.23)
that ∥∥∥Df4(x, y)

∥∥∥
Y
≤ 10δ = δ2 (3.26)

for all x, y in X. Replacing y by y+x and y−x in (3.26), respectively, we get from (3.23)
and (3.25) that

∥∥∥Df5(x, y)
∥∥∥

Y
≤ 28δ = 2δ2 + 4δ + δ1 = δ3 (3.27)

for all x, y in X. Therefore by using this method, by induction we infer (3.24). ✷

Corollary 3.6 Let f : X → Y be an odd mapping. Suppose that (3.23) holds. Then for
each positive integer m > 1, there exists a unique cubic mapping Tm : X → Y such that

∥∥∥Tm(x)− f(x)
∥∥∥

Y
≤ δm−2

2(m3 − 1)

for all x in X.

In the last part of this paper, let A be a unital Banach algebra with norm ‖.‖A, and
let X and Y be left Banach A–modules with norms ‖.‖X and ‖.‖Y, respectively. A cubic
function T : X → Y is called A–cubic if T (ax) = a3T (x) for all a ∈ A, x ∈ X.

The following corollary is a consequence of Theorem 3.1.

Corollary 3.7 Let ε, p and q be real numbers such that ε ≥ 0, q > 0 and p, q < 3. Suppose
that f : X → Y is a mapping fulfilling

∥∥∥f(amx + ay) + f(amx − ay) −maf(x + y) −maf(x − y)

−2(m3 −m)af(x)
∥∥∥

Y

≤ ε(‖x‖p
X
+ ‖y‖q

X
)

(3.28)

for all a ∈ A (‖a‖A = 1) and for all x, y ∈ X where m is a positive integer with m > 1.
Also, if for each fixed x ∈ X the mapping t �→ f(tx) from R to Y is continuous, then
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there exists a unique A–cubic function T : X → Y which satisfies equation (1.4) and the
inequality

∥∥∥T (x) − f(x)
∥∥∥

Y

≤ ε

2(m3 −mp)
‖x‖p

X
(3.29)

for all x ∈ X and for all x ∈ X \ {0} if p < 0.

Proof. In Theorem 3.1, let ϕ(x, y) = ε(‖x‖p
X

+ ‖y‖q
X
). By Theorem 3.1, it follows

from the inequality of the statement for a = 1 that there exists a unique cubic function
T : X → Y satisfying the inequality (3.29). Under the assumption that f(tx) is continuous
in t ∈ R for each fixed x ∈ X, by the same reasoning as the proof of [4], the cubic function
T : X → Y satisfies T (tx) = t3T (x) for all t ∈ R, x ∈ X. Also, T satisfies in the following
equation

T (amx + ay) + T (amx− ay) = maT (x + y) + maT (x− y)
+2(m3 −m)aT (x)

(3.30)

for all a ∈ A (‖a‖A = 1) and for all x, y ∈ X. For each fixed a ∈ A (‖a‖A = 1), setting
y = 0 in (3.30), we have T (ax) = a3T (x) for all x ∈ X. The last relation is also true for
a = 0. Let a ∈ A (a = 0) and a1 = a

‖a‖A
. Since T is R–cubic and T (bx) = b3T (x) for all

x ∈ X and b ∈ A (‖b‖A = 1), then

T (ax) = T (‖a‖A.a1x) = ‖a‖3
A.a

3
1T (x) = a3T (x)

for all x ∈ X and a ∈ A. So the unique R–cubic function T : X → Y is also A–cubic, as
desired. This completes the proof of the corollary. ✷

The following corollary is a consequence of Theorem 3.3.

Corollary 3.8 Let ε, p and q be real numbers such that ε ≥ 0 and p, q > 3. Suppose that
f : X → Y is a mapping fulfilling

∥∥∥f(amx + ay) + f(amx − ay) −maf(x + y) −maf(x − y)

−2(m3 −m)af(x)
∥∥∥

Y

≤ ε(‖x‖p
X
+ ‖y‖q

X
)

(3.31)

for all a ∈ A (‖a‖A = 1) and for all x, y ∈ X, where m is a positive integer with m > 1.
Also, if for each fixed x ∈ X the mapping t �→ f(tx) from R to Y is continuous, then there
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exists a unique A–cubic function T : X → Y which satisfies Eq. (1.4) and the inequality

∥∥∥T (x) − f(x)
∥∥∥

Y

≤ ε

2(mp −m3)
‖x‖p

X
(3.32)

for all x ∈ X.

Proof. In Theorem 3.3, let ϕ(x, y) = ε(‖x‖p
X

+ ‖y‖q
X
). By Theorem 3.3, it follows

from the inequality of the statement for a = 1 that there exists a unique cubic function
T : X → Y satisfying the inequality (3.32). Under the assumption that f(tx) is continuous
in t ∈ R for each fixed x ∈ X, by the same reasoning as the proof of [4], the cubic function
T : X → Y satisfies T (tx) = t3T (x) for all t ∈ R, x ∈ X. Also, T satisfies in (3.30) for
all a ∈ A (‖a‖A = 1) and for all x, y ∈ X. Therefore the result follows by using the same
proof of Corollary 3.7. ✷
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Variables. Birkhäuser, Basel, 1998.

[9] Hyers, D. H., Isac, G., and Rassias, Th. M.: On the asymptoticity aspect of Hyers–Ulam

stability of mappings. Proc. Amer. Math. Soc. 126, 425–430 (1998).

[10] Hyers, D. H., Rassias, Th. M.: Approximate homomorphisms. Aequationes Math. 44, 125–

153 (1992).

[11] Jun, K.W., Kim, H. M.: The generalized Hyers–Ulam–Rassias stability of a cubic functional

equation. J. Math. Anal. Appl. 274, 867–878 (2002).

[12] Jun, K. W., Lee, Y. H.: On the Hyers–Ulam–Rassias stability of a pexiderized quadratic

inequality.Math. Ineq. Appl. 4, 93–118 (2001).

[13] Jung, S. M.: On the Hyers–Ulam–Rassias stability of a quadratic functional equation. J.

Math. Anal. Appl. 232, 384–393 (1999).

[14] Kannappan, Pl.: Quadratic functional equation and inner product spaces. Results Math.

27, 368–372 (1995).

[15] Rassias, Th. M.: On the stability of the linear mapping in Banach spaces. Proc. Amer.

Math. Soc. 72, 297–300 (1978).

[16] Rassias, Th. M.: On the stability of functional equations in Banach spaces. J. Math. Anal.

Appl. 251, 264–284 (2000).
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