Turk J Math 31 (2007) , 409 – 414. © TÜBİTAK

Closure of Minimal Extensions

M. El Hajoui and A. Miri

Abstract

Let R be a commutative ring with a unit and M an R-module. In this paper we give a comparison between the \mathcal{F} -closure in M of an R-submodule having a minimal extension and the closure of this minimal extension for the same Gabriel topology defined on the ring R. If $J(R) \in \mathcal{F}$ we prove that both closures are the same. Moreover, if R is Artinian or semi-simple then the converse also holds.

Key Words: Jacobson radical and closure of minimal extensions.

1. Introduction and Preliminaries

Throughout this paper \mathcal{F} denotes a non-trivial Gabriel topology on a commutative ring R with unit, and J(R) its Jacobson radical (For more details on Gabriel topology, see [1], [2], [3], [4]).

If M is an R-module, then $N \leq M$ means that N is an R-submodule of M, and its closure with respect to the Gabriel topology \mathcal{F} in M will be denoted by $Cl_{\mathcal{F}}^{M}(N) = \{x \in$ $M : \exists I \in \mathcal{F} \mid Ix \subseteq N\}$, and if $N = Cl_{\mathcal{F}}^{M}(N)$, the submodule N is called \mathcal{F} -closed. An R-module M is \mathcal{F} -multiplication module if for each \mathcal{F} -closed submodule $N = Cl_{\mathcal{F}}^{M}(N)$ there exists an ideal $I \leq R$ such that $N = Cl_{\mathcal{F}}^{M}(IN)$ (see [1],[2]). We say that L is a minimal extension of N if N is a R-submodule of L and if there exists no R-submodule T of L such that $N \subsetneq T \subsetneq L$.

¹⁹⁹¹ AMS Mathematics Subject Classification: Primary.

2. The Minimal Extensions and Jacobson Radical

The following result which will be used later concerns the closure of an arbitrary extension.

Proposition 2.1 Let $N \leq L \leq M$ be three *R*-modules. Then,

 $Cl_{\mathcal{F}}^{L}(N) = L$ if and only if $Cl_{\mathcal{F}}^{M}(N) = Cl_{\mathcal{F}}^{M}(L)$.

Proof. If $Cl_{\mathcal{F}}^{L}(N) = L$ then we have $Cl_{\mathcal{F}}^{L}(N) = Cl_{\mathcal{F}}^{M}(N) \cap L = L$. Therefore $L \subseteq Cl_{\mathcal{F}}^{M}(N)$. Thus $Cl_{\mathcal{F}}^{M}(N) \subseteq Cl_{\mathcal{F}}^{M}(L)$, which implies that

$$Cl_{\mathcal{F}}^{M}(N) = Cl_{\mathcal{F}}^{M}(L).$$

Conversely, if $Cl^M_{\mathcal{F}}(N) = Cl^M_{\mathcal{F}}(L)$, then

$$Cl_{\mathcal{F}}^{M}(N) \cap L = Cl_{\mathcal{F}}^{L}(N) = Cl_{\mathcal{F}}^{M}(L) \cap L = L$$

The main result in this paper is the following:

Theorem 2.2 Let $N \leq L \leq M$ be three *R*-modules where *L* is a minimal extension of *N*. If $J(R) \in \mathcal{F}$, then $Cl_{\mathcal{F}}^M(N) = Cl_{\mathcal{F}}^M(L)$.

Proof. To prove this theorem, we first show the following result: Let $N \leq L \leq M$ be three *R*-modules with *L* a minimal extension of *N*, then $Cl_{\mathcal{F}}^{L}(N) = N$ if and only if for all *x* in $L \setminus N$ and for any ideal *I* in \mathcal{F} we have L = N + Ix.

Let us suppose by way of contradiction, that there exists an x in $L \setminus N$ and I in \mathcal{F} such that $N + Ix \subsetneq L$. But $N \subseteq N + Ix$ and since L is a minimal extension of N then N = N + Ix, which implies that $Ix \subseteq N$ and therefore $x \in Cl_{\mathcal{F}}^{L}(N) = N$, this is a contradiction. Conversely, suppose that for any x in $L \setminus N$ and any ideal I in \mathcal{F} , we have L = N + Ix. Then if $x_0 \in Cl_{\mathcal{F}}^{L}(N)$ and $x_0 \notin N$ then there exists J in \mathcal{F} such that $Jx_0 \subseteq N$, but $x_0 \in L \setminus N$, then $L = N + Jx_0$ and hence $L \subseteq N + Jx_0 \subseteq N$, wish is impossible.

To prove Theorem 2.2, we suppose that $Cl_{\mathcal{F}}^{M}(N) \subsetneq Cl_{\mathcal{F}}^{M}(L)$. By Proposition 2.1, we have $Cl_{\mathcal{F}}^{L}(N) = N$ since $N \subseteq Cl_{\mathcal{F}}^{L}(N) \subsetneq L$ and L is a minimal extension of N. Let $x \in Cl_{\mathcal{F}}^{M}(L) \setminus Cl_{\mathcal{F}}^{M}(N)$, then there exists I in \mathcal{F} such that $Ix \subseteq L$ and $Ix \nsubseteq N$. So, we can

find an *i* in *I* such that $ix \in L \setminus N$. By the above result, we have L = N + J(R)ix and since $ix \in L$ then there exist *n* in *N* and λ in J(R) such that $ix = n + \lambda ix$, then $(1 - \lambda)ix = n$ thus $(1 - \lambda)ix \in N$, and since $(1 - \lambda)$ is invertible in *R* thus $ix \in N$, which is impossible. \Box

Corollary 2.3 Let R be a commutative ring with a unit such that $J(R) \in \mathcal{F}$, and let M be an R-module. Then an \mathcal{F} -closed R-submodule of M does not have a minimal extension in M.

Corollary 2.4 If R is a commutative ring with unit, $J(R) \in \mathcal{F}$ and M is an Artinian R-module, then the unique \mathcal{F} -closed R-submodule of M is M.

Proof. Let M be an Artinian R-module and N an R-submodule of M, \mathcal{F} -closed and $N \subsetneq M$, then N has a minimal extension L in M, and since $J(R) \in \mathcal{F}$, $Cl^M_{\mathcal{F}}(L) = Cl^M_{\mathcal{F}}(N) = N \subsetneq L \subseteq Cl^M_{\mathcal{F}}(L)$, which is absurd.

Conversely, if R is an Artinian or semi-simple ring, we have the following theorem.

Theorem 2.5 Let R be an Artinian or semi-simple ring. Then $J(R) \in \mathcal{F}$ if and only if for any R-modules $N \leq L \leq M$, where L is a minimal extension of N, we have $Cl_{\mathcal{F}}^{M}(N) = Cl_{\mathcal{F}}^{M}(L).$

Proof. By Theorem 2.2, if $J(R) \in \mathcal{F}$ then $Cl_{\mathcal{F}}^M(N) = Cl_{\mathcal{F}}^M(L)$.

Conversely: if R is an Artinian ring, suppose that $J(R) \notin \mathcal{F}$, then $Cl^R_{\mathcal{F}}(J(R)) \neq R$, and since R is Artinian, $Cl^R_{\mathcal{F}}(J(R))$ has a minimal extension I in R. By hypothesis we have $Cl^R_{\mathcal{F}}(Cl^R_{\mathcal{F}}(J(R))) = Cl^R_{\mathcal{F}}(I)$, but $Cl^R_{\mathcal{F}}(I) = Cl^R_{\mathcal{F}}(Cl^R_{\mathcal{F}}(J(R))) = Cl^R_{\mathcal{F}}(J(R)) \subsetneq I \subseteq Cl^R_{\mathcal{F}}(I)$. This is impossible.

If R is a semi-simple ring, then $J(R) = \bigcap_{i=1}^{n} \mathcal{M}_{i}$ where $(\mathcal{M}_{i})_{1 \leq i \leq n}$ is the family of all maximal ideals of R, then R is a minimal extension of every \mathcal{M}_{i} , by hypothesis $Cl_{\mathcal{F}}^{R}(\mathcal{M}_{i}) = R \ (i = 1, 2, ..., n)$, and since $Cl_{\mathcal{F}}^{R}(J(R)) = Cl_{\mathcal{F}}^{R}(\bigcap_{i=1}^{n} \mathcal{M}_{i}) = \bigcap_{i=1}^{n} Cl_{\mathcal{F}}^{R}(\mathcal{M}_{i}) = R$, so $J(R) \in \mathcal{F}$. \Box

Corollary 2.6 If R is a commutative ring with unit, and $J(R) \in \mathcal{F}$ then R has a proper ideal without a minimal extension.

Proof. By absurdity, let us suppose that all proper ideals of R have a minimal extension in R. \mathcal{F} is not trivial; thus there is an ideal I which does not belong to \mathcal{F} , then $Cl_{\mathcal{F}}^{R}(I) \neq R$ and hence the ideal $Cl_{\mathcal{F}}^{R}(I)$ has an minimal extension J in R. But $J(R) \in \mathcal{F}$; then $Cl_{\mathcal{F}}^{R}(Cl_{\mathcal{F}}^{R}(I)) = Cl_{\mathcal{F}}^{R}(J) = Cl_{\mathcal{F}}^{R}(I) \subsetneq J$, which is absurd.

If $N \leq L \leq M$ are three *R*-modules, where *L* is a minimal extension of *N*. The following proposition states two properties on *R*-modules that are between $Cl_{\mathcal{F}}^{M}(N)$ and $Cl_{\mathcal{F}}^{M}(L)$.

Proposition 2.7 Let $N \leq L \leq M$ be three *R*-modules where *L* is a minimal extension of *N* and N_0 a submodule of *M* such that $Cl_{\mathcal{F}}^M(N) \leq N_0 \leq Cl_{\mathcal{F}}^M(L)$. We have:

i- If $Cl^M_{\mathcal{F}}(N) \neq N_0$ then $L \subseteq N_0$.

ii- If $Cl_{\mathcal{F}}^{M}(N) \neq N_{0}$ and N_{0} is \mathcal{F} -closed in M then $N_{0} = Cl_{\mathcal{F}}^{M}(L)$.

Proof. i- Let us suppose that $Cl_{\mathcal{F}}^{M}(N) \subsetneq N_{0}$, then there exists $x \in N_{0} \setminus Cl_{\mathcal{F}}^{M}(N)$, then $x \in Cl_{\mathcal{F}}^{M}(L)$ then there exists I in \mathcal{F} such that $Ix \subseteq L$ and $Ix \nsubseteq N$. Let λ in I such that $\lambda x \in L \setminus N$, and since $Cl_{\mathcal{F}}^{M}(N) \subsetneq N_{0} \subseteq Cl_{\mathcal{F}}^{M}(L)$ then $Cl_{\mathcal{F}}^{M}(N) \neq Cl_{\mathcal{F}}^{M}(L)$. By Proposition 2.1, we have $Cl_{\mathcal{F}}^{L}(N) = N$, and also by the result proved in Theorem 2.2, then for any J in \mathcal{F} : $L = N + J\lambda x \subseteq N_{0}$. ii- If $Cl_{\mathcal{F}}^{M}(N) \neq N_{0}$. By i- $L \subseteq N_{0}$ then $Cl_{\mathcal{F}}^{M}(L) \subseteq Cl_{\mathcal{F}}^{M}(N_{0})$ however $Cl_{\mathcal{F}}^{M}(N_{0}) = N_{0}$ of or $Cl_{\mathcal{F}}^{M}(L) = N_{0}$.

Remark 2.8 For a Gabriel topology \mathcal{F} defined on R such that $J(R) \in \mathcal{F}$, the closure of an R-module and the closure of a minimal extension of this R-module are the same. But this result is not true in general as shown in the following example.

Example 2.9 Let R be a commutative ring with unit and R' an Artinian commutative domain. Consider the ring $B = R \times R'$, thus $P = R \times (0)$ is a prime ideal of B. Let \mathcal{A} be an ideal of R' minimal in the set $\{I \text{ ideal of } R' : (0) \neq I\}$, thus the ideal $Q = R \times \mathcal{A}$ is a minimal extension of P. If we consider the set $\mathcal{F} = \{I \text{ ideal in } B : I \notin P\}$ which defines a Gabriel topology on B, then $P \notin \mathcal{F}$ and $Cl^B_{\mathcal{F}}(P) = P$, and $Q \in \mathcal{F}$ and $Cl^B_{\mathcal{F}}(Q) = B$.

3. The Minimal Extensions and \mathcal{F} -Multiplication Modules

Proposition 3.1 Let M be an \mathcal{F} -multiplication R-module. If $J(R) \in \mathcal{F}$ then every maximal R-submodule of M is \mathcal{F} -multiplication.

Proof. If N is a maximal R-submodule of M then M is a minimal extension of N. Moreover, $J(R) \in \mathcal{F}$ then $Cl^M_{\mathcal{F}}(N) = M$, and by Theorem 3.7 [1] N is \mathcal{F} -multiplication.

An *R*-module *M* is called a multiplication module if for every submodule $N \leq M$ there exists an ideal $I \leq R$ such that N = IM. Recall that an *R*-module *M* is called \mathcal{F} -cyclic if $M = Cl_{\mathcal{F}}^{M}(Rm)$ for some $m \in M$.

Proposition 3.2 Let M be an R-module, if $J(R) \in \mathcal{F}$ and M does not have any proper \mathcal{F} -multiplication R-submodules, then M is not a multiplication module.

Proof. By absurdity, let us suppose that M a multiplication R-module. Therefore it is \mathcal{F} -multiplication, and Theorem 2.5 [5] gives us the existence of a maximal R-submodule of M, that one notes by N, if $J(R) \in \mathcal{F}$ then $Cl^M_{\mathcal{F}}(N) = M$ and by Theorem 3.7[1] N is \mathcal{F} -multiplication, which is absurd.

Definition 3.3 An *R*-module *M* is called of finite length if there exists a sequence of *R*-submodules $(M_i)_{1 \le i \le n}$ of *M* verifying: $(0) = M_1 \subsetneq M_2 \subsetneq \ldots \subsetneq M_n = M$, with M_{i+1} minimal extension of M_i for $1 \le i \le n-1$.

Theorem 3.4 If M is an R-module of finite length and $J(R) \in \mathcal{F}$, then M is \mathcal{F} -multiplication.

Proof. Assume M is an R-module of finite length n. There exists a sequence of Rsubmodules $(M_i)_{1 \leq i \leq n}$ verifying: $(0) = M_1 \subsetneq M_2 \subsetneq \ldots \subsetneq M_n = M$, with M_{i+1} minimal extension of M_i for $1 \leq i \leq n-1$, in addition $J(R) \in \mathcal{F}$ thus $Cl_{\mathcal{F}}^{M_{i+1}}(M_i) =$ $M_{i+1} = Cl_{\mathcal{F}}^M(M_i) \bigcap M_{i+1}$, then $M_{i+1} \subseteq Cl_{\mathcal{F}}^M(M_i)$, and consequently $Cl_{\mathcal{F}}^M(M_{i+1}) \subseteq$ $Cl_{\mathcal{F}}^M(Cl_{\mathcal{F}}^M(M_i)) = Cl_{\mathcal{F}}^M(M_i)$ and hence $M = Cl_{\mathcal{F}}^M(M_n) \subseteq Cl_{\mathcal{F}}^M(M_{n-1}) \subseteq \ldots \subseteq Cl_{\mathcal{F}}^M((0))$,
then $Cl_{\mathcal{F}}^M((0)) = M$. Therefore M is \mathcal{F} -cyclic and by the Corollary 3.9 [1] M is \mathcal{F} multiplication.

References

- Escoriza J., Torrecillas B.: Multiplication modules relative to torsion theories, Comm.Algebra 23(11)4315-4331(1995).
- [2] Escoriza J., Torrecillas B.: Relative multiplication and Distributive modules, Comment.Math. Univ. Carolina 32(2)(1997)205-221.
- [3] Escoriza J., Torrecillas B.: Divisoriel multiplication rings, Notes in Math. 263, Marcel-Dekker(2004).
- [4] Stenström B.: Rings of Quotients, Springer, Berlin, 1975.
- [5] Abd El-Bast Z., Smith P.: Multiplication modules, Comm.Algebra 16(4), 755-779(1998).

M. EL HAJOUI, A. MIRI Université Mohammed V; Faculté des Sciences; Département de Mathématiques et Informatique; B.P 1014 Rabat-MAROC e-mail: hajoui4@yahoo.fr

414

Received 20.06.2006