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Equilibria in a Dipersal Model for Structured

Populations

Maref Y. M. Alzoubi

Abstract

We derive a model for structured population with a two-phase life cycle. Growth

and reproduction occur during the first phase. The first phase is followed by a

dispersal phase in which individuals are allowed to move throughout a habitat. Also,

we prove the existence of a branch of positive equilibria using bifurcation results of

Rabinowitz.
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1. Introduction

Dispersal within a population is one of the most notable characteristics of individuals.
Individuals move in their habitat for several reasons, including crowding, environmental
fluctuations, diseases, etc., and this movement can greatly affect the dynamics of the
population. Therefore, it is important to take dispersal into account when studying
stability and persistence of populations. Dispersal was incorporated into population
models in the pioneering work of Skellam [22], Kierstead and Slobodking [10], Fisher
[5], Kolmogrov, Petrovsky and Piscounov [9]. Also, dispersal occurs in studies by Levin
[14], McMurtrie [18], Cohen and Murray [3], Hamilton and May [6], MacArthur and
Wilson [17], Levin and Segel [16], Vance [23], Ellner [4], Liven, Cohen, and Hastings [15],
and Okubo [19].
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In the earlier studies of dispersal there was an emphasis on continuous time growth
models based on reaction-diffusion equations. However, the cycle of many populations
involves two phases. The year of these populations is divided into two distinct stages:
the growth phase, in which the population grows and produces newborns and a dispersal
phase, in which the newborns disperse. Examples of such populations include annual
plants and many insects. Such life cycle characteristics motivated Kot and Schaffer [11]
to model these kinds of populations by integrodifference equations that are continuous
in space, but discrete in time. They modeled the growth phase by a nonlinear operator
and the dispersal phase by a linear operator. They studied the trivial (or extinction)
equilibrium of the model resulting from the composition of these two operators. Harden,
Takac and Webb [7, 8] completed the study of the Kot-Schaffer model by proving several
results about the existence and stability of nontrivial equilibria. Mathematically, they
worked with nonlinear operators defined on the space of continuous functions. Van Kirk
and Lewis [24] proved that if the operators involved in Kot-Schaffer model are defined
and continuous on L2, then the results of Hardin et al. remain valid. Moreover, they
proved the existence of a branch of positive equilibria that bifurcates from the extinction
equilibrium.

In the Kot-Schaffer model individuals are treated as identical. However, in most
populations individuals can vary greatly with respect to characteristics that affect their
growth, reproduction and dispersal. Therefore, we are motivated to introduce a new
model for two-phase life cycle populations considered by Kot-Schaffer and Van Kirk-
Lewis. Our model [1] combines a “structured population” model of Jim Cushing [2]
with the discrete time dispersal model of Kot-Schaffer. In structured models individuals
are classified with respect to characteristics such as age, weight, body size, etc. and
the resulting classes are tracked dynamically. Our main purpose in this paper is to
prove the existence of a branch of equilibrium points to our model using bifurcation
theory techniques. Our results generalize and extend those of Van Kirk and Lewis in two
significant directions: our model is more general that includes demographic structure and
we prove that the bifurcating branch of positive equilibria extends globally by applying
the Rabinowitz bifurcation theory.
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2. Preliminaries

In this section, we introduce some definitions and results from the theory of functional
analysis that represent the main tools in our study.

Let F : E1 → E2, where E1 and E2 are real Banach spaces and F is a continuous
operator. Suppose the equation F (U) = 0 is satisfied by a curve of solutions C =
{U (t) : t ∈ [a, b]}. If for some s ∈ (a, b), F has zeros not lying on C in every neighborhood
of U (s), then (s, U (s)) is said to be a bifurcation point for F with respect to the curve
C. If F (fn) has a convergent subsequence in F (E1) for every bounded sequence fn in
E1, then F is called a compact operator. Equivalently, F is compact if F (C) is relatively
compact in E2 whenever C is a bounded subset of E1. F (C) is relatively compact in E2

if F (C) is compact.
Let R denotes the set of real numbers. We are interested in equations of the form

u = A (λ, u) , (2.1)

where λ ∈ R, E is real Banach space with norm ‖ . ‖ and A : R×E → E is compact and
continuous. Moreover, we assume A (λ, u) = λL (u) +H (λ, u), where H (λ, u) is o (‖u‖)
for u near 0 uniformly on bounded λ intervals and L is a compact linear operator on E.
Note that A (λ, u) = 0 for all λ ∈ R. Solutions of equation (2.1) of the form (λ, 0) with
λ ∈ R are called trivial solutions. Let r (L) = {µ ∈ R : ν = µL (ν) for some ν ∈ E\ {0}}
be the set of all reciprocals of the nonzero eigenvalues of L.

All possible bifurcation points of equation (2.1) with respect to the curve of trivial
solutions are from the set {(µ, 0) : µ ∈ r (L)}. Moreover, it is proved in Krasnosel’skii [12]
that if µ is a characteristic value of odd (geometric) multiplicity, then (µ, 0) is a bifurcation
point. Later on Rabinowitz [20] proved that the bifurcating branch of positive equilibria
from the bifurcation point (µ, 0) extends globally and connects to the boundary of the
domain of the operator A. We denote by S, the closure of the set of nontrivial solution
pairs (µ, u) of equation (2.1) Now, we list the main bifurcation theorems of Rabinowitz
[20].

Theorem 2.1. (Rabinowitz) If µ is a characteristic value of odd (geometric)multiplicity,
then S has a maximal subcontinuum Cµ such that (µ, 0) ∈ Cµ and Cµ either

1) meets infinity in R× E, or

2) meets
(−
µ, 0

)
, where µ �= −

µ is a characteristic value of odd multiplicity.
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If the operator A is not globally defined then we have the following result.

Theorem 2.2. (Rabinowitz) If Ω ⊆ R × E is a bounded open subset containing

(µ, 0), and A (λ, u) is compact and continuous on
−
Ω, and µ is a characteristic value of

odd (geometric) multiplicity, then S has a maximal subcontinuum Cµ ∈
−
Ω such that

(µ, 0) ∈ Cµ either

1) meets ∂Ω, or

2) meets
(−
µ, 0

)
where µ �= −

µ ∈ r (L) , and
(−
µ, 0

)
∈ Ω.

It is well-known that it is not an easy matter to find the geometric multiplicity of a
characteristic value of a linear operator L, but in most applications, the characteristic
values of interest are those of multiplicity one. In the case of a simple characteristic
value µ, if A (λ, u) is Fre’chet differentiable in u, near (µ, 0), then Cµ is given by the
parametrization (λ (ε) , u (ε)) = (µ+ O (1) , ευ+ O (|ε|)) for ε ≈ 0, where υ is an eigen-
vector corresponding to µ. For a proof of the existence of this parametrization (which is
called the Liapunov-Schmidt expansion) see E. Zeidler [25] (pp. 375–381) or Jim Cushing
[2]. Also, the curve Cµ has two portions parametrized by ε ≥ 0 and ε ≤ 0. Using this
parametrization Rabinowitz proved, in the case µ is a simple characteristic value, Cµ

can be decomposed into subcontinua C+
µ and C−

µ , which near (µ, 0) have only (µ, 0) as a
common point.

Theorem 2.3. (Rabinowitz) If µ is a simple characteristic value, then each of C+
µ and

C−
µ meets (µ, 0) and either
1) meets infinity in R ×E, or

2) meets
(−
µ, 0

)
, where µ �= −

µ ∈ r (L).

3. Main Results

The Model Derivation: Suppose that the individuals of a population are catego-
rized into a finite number of classes (e.g., by chronological age or some measure of body
size). Let Ω ∈ Rn be a compact subset which denotes the spatial habitat where the
population lives and disperses. Assume that the individuals are not allowed to leave Ω.
Let xi (t, s), for i = 1, 2, ...,m, denote the density of individuals at the location s ∈ Ω who

belong to the i−th class at time t = 0, 1, .... Let −→x (t, s) = (x1 (t, s) , ..., xm (t, s))T where
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xi : I×Ω −→ R+, and I is the set of nonnegative integers in the interval [0,∞). Here the
unit of time is equal to the dispersal period. Let tij (−→x (t, ν) , ν) be the expected fraction
of j-class individuals at position ν who survive and transfer to class i per unit of time.
Then at time t+ 1 the density of individuals in class i at position s is

m∑
j=1

∫
Ω

kij (s, ν) tij (−→x (t, ν) , ν)xj (t, ν)dν,

where the kernels kij (s, ν) give the probability that an individual at position ν at time t
will settle at position s by the end of the dispersion period.

Let fij (−→x (t, ν) , ν) be the expected number of surviving i-class offspring at place ν
per j−class individuals per unit of time. Then at time t + 1 the number of offspring in
the i-class at the position s is

m∑
j=1

∫
Ω

lij (s, ν)fij (−→x (t, ν) , ν)xj (t, ν)dν,

where lij (s, ν) is the probability that an i-class newborn of individual in the j-class at
position ν will settle at position s after the dispersion period. Now at time t+1 the total
number of individuals in class i at position s is given by the following equation:

xi (t+ 1, s) =
m∑

j=1

∫
Ω

kij (s, ν) tij (−→x (t, ν) , ν)xj (t, ν)dν

+
m∑

j=1

∫
Ω

lij (s, ν)fij (−→x (t, ν) , ν)xj (t, ν)dν, (3.1)

where i = 1, 2, ..., m. The system of equations (3.1) may be put in the matrix system

−→x (t + 1, s) =
∫

Ω

T (s, ν,−→x (t, ν))−→x (t, ν)dν +

∫
Ω

F (s, ν,−→x (t, ν))−→x (t, ν)dν (3.2)

where T = (kijtij) and F = (lijfij) for 1 ≤ i, j ≤ m. The functions tij and fij have
[0,∞)× Ω as their domains, and their ranges lie in [0,∞) and (0, 1] respectively.

In order to study the dynamical system defined by equation (3.2) we begin by studying
the existence of solutions of the following autonomous equilibrium equation:
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−→x (s) =
∫

Ω

T (s, ν,−→x (ν))−→x (ν)dν +
∫

Ω

F (s, ν,−→x (ν))−→x (ν) dν. (3.3)

Since biologically only nonnegative solutions are of interest, we focus on solutions
lying in the positive cone K+ of Lm

2 (Ω). So we assume that the domain of the operator
defined by the right hand side of equation (3.3) is an open set G containing K+. We
denote the integral operator with kernels T (s, ν,−→x (ν)) and F (s, ν,−→x (ν)) by T and F

respectively. We assume the operator I −
−
T is invertible, where

−
T

(→
y

)
=

∫
Ω

T
(
s, ν,

→
0
)→
y (v) dν.

The inverse of the operator I −
−
T is called the resolvent of

−
T . It is well known that

the resolvent of a linear operator of integral type is a linear operator of integral type, see
Riesz and Nagy [21]. Let R denotes the resolvent of the Fredholm linear integral operator
−
T , then R is given by the linear integral operator R

(→
y

)
=

∫
Ω
r (s, ν)

→
y (v) dν . Let

−
F

(→
y

)
=

∫
Ω F

(
s, ν,

→
0
) →
y (v) dν . We normalize the fij’s in such a way that fij = nφij,

and write
−
F = n

−
Φ, where n ∈ R1 is the so-called “inherent net reproductive number”

(i.e., the expected number of offspring per newborn per its lifetime). This number is

defined as follows: Assume the operator
−
F

(
I −

−
T

)−1

has a positive, strictly dominant,

simple eigenvalue n with nonnegative eigenvector υ ≥ 0, then n is called the inherent

net reproductive number. This definition of n is a generalization of the definition for the

non-spatial case given in [1]. Note that
−
Φ

(
I −

−
T

)−1

has a dominant eigenvalue equal to

1. If we expand both of T and Φ about −→x =
→
0 , we can rewrite equation (3.3) as follows:

−→x (s) −
∫

Ω

T
(
s, ν,

→
0
) →
x (ν)dν =

n

∫
Ω

Φ
(
s, ν,

→
0
) →
x (ν) dν + h (n,−→x (ν)) , (3.4)
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where h
(
n,

→
x

)
� o (‖x‖) for →

x ≈

→
0 and uniformly on bounded n intervals. Here, ‖→x‖

is given with respect to Lm
2 (Ω) norm. Let Φ′

(→
0
) (→

x
)
=

∫
Ω
Φ

(
s, ν,

→
0
) →
x (ν) dν , then

equation (3.4) may be written in the following equivalent form:

→
x (s) = n

∫
Ω

r (s, u)Φ′
(→
0
) (→

x (u)
)
du+

∫
Ω

r (s, u)h
(
n,

→
x (u)

)
du,

or

→
x = nL

(→
x

)
+H

(
n,

→
x

)
, (3.5)

where

L
(→
x

)
=

∫
Ω

r (s, u)Φ′
(→
0
) (→

x
)
du

H
(
n,

→
x

)
=

∫
Ω

r (s, u)h
(
n,

→
x

)
du.

The nonlinear eigenvalue problem (3.5) is of the form that studied by Rabinowitz.
Our goal is to verify that this equation satisfies all the conditions that allow us to use the
Rabinowitz Theorems stated in section 2. To this end, we mention some definitions and
facts: A kernel of an integral operator is said to be admissible if it generates a compact
linear operator. A nonnegative admissible kernel k (s, t) is said to be of positive type if
for each nonnegative continuous function φ (s), not identically zero, there exist an iterated
kernel k(n) (s, t) such that

∫
G
k(n) (s, t)φ (t) dt > 0, (s ∈ G). Here, k(n) is defined as

k(n) (s, t) =
∫

G

· · ·
∫

G

k (s, t1) · · ·k (tp−1, t)dt1 · · ·dtp−1,

where t1,...,tp−1 are from G. A sufficient condition for the kernel k (s, t) to be of positive
type is that k(n) (s, s) > 0; for some n ≥ 1. So, every Fredholm linear operator with
positive kernel is of positive type. The nonlinear operator A : L2 (Ω) → L2 (Ω) is of
Hammerstein type if it has the form

A (x (v)) =
∫

Ω

k (u, v) f (x (v) , v) dv,
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where f : R × Ω → R, and k : Ω × Ω → R. This operator may be considered as a
composition of the Fredholm linear operator

B =
∫

Ω

k (u, v)φ (v) dv

and the nonlinear substitution operator F (x) = f (x (v) , v), where B, F : L2 (Ω) →
L2 (Ω), and f : R× Ω → R.

A necessary and sufficient condition for the substitution operator F to act from L2 (Ω)
to itself is that f is continuous and |f (x, v)| ≤ a (v) + b |x| for some a (v) ∈ L2 (Ω)
and constant b > 0. Moreover, if F acts from L2 (Ω) to itself, then it is bounded
and continuous. These facts can be found in Krasnoselśkii [12]. We conclude that
q (x) = F (x)x, x ∈ L2 (Ω) is bounded and continuous operator, whenever |f (x, v)| ≤ C,
C is a constant, f : R×Ω → R is continuous, and for Ω ⊆ Rn is compact.

We are interested in studying the dynamical system (3.2), of our model, under the
following assumptions:

I) The functions fij : Rm
+ × Ω → R+ are bounded and Ck for some k ≥ 1, and all i

and j, where 1 ≤ i, j ≤ m,

II) The functions tij : Rm
+ × Ω → (0, 1] are Ck for some k ≥ 1, and all i and j, where

1 ≤ i, j ≤ m,

III) The kernels kij and lij belong to the functional space L2 (Ω× Ω) for all i and j
where 1 ≤ i, j ≤ m,

IV) The kernels kij and lij are of positive type.

Lemma 3.1. Given the assumptions I-IV, the matrix operators T and Φ are compact.

Proof. Assumptions I and II above imply that fij and tij are bounded and continuous

functions on Rm
+ × Ω for all i and j, where 1 ≤ i, j ≤ m, so tij

(→
x (v) , v

)
xj (v) and

fij

(→
x (v) , v

)
xj (v) are continuous and bounded operators on L2 (Ω)

m for all i and j

where 1 ≤ i, j ≤ m. Also, all of the kernels kij and lij satisfy the assumptions III and
IV, so they generate compact linear operators. Thus, the operators from L2 (Ω)

m into
L2 (Ω) that are defined by the integrals

∫
Ω

kij (s, ν) tij
(→
x (ν) , ν

)
xj (ν)dν
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and ∫
Ω

lij (s, ν)fij

(→
x (ν) , ν

)
xj (ν)dν

are completely continuous operators of Hammerstein type for all i and j where 1 ≤ i, j ≤
m. Therefore, for all i where 1 ≤ i ≤ m the operators

m∑
j=1

(∫
Ω

kij (s, ν) tij
(→
x (ν) , ν

)
xj (ν)dν +

∫
Ω

lij (s, ν)fij

(→
x (ν) , ν

)
xj (ν)dν

)

are completely continuous, and so the matrix operators

T =
∫

Ω

T
(
s, v,

→
x

)→
x (v) dv and Φ =

∫
Ω

Φ
(
s, v,

→
x

) →
x (v) dv

are compact. The proof is complete. ✷

Lemma 3.2. Given assumptions I-IV, equation (3.5) satisfies all the conditions of
Theorem 2.2 of Rabinowitz.

Proof. The linear operators
−
T ,

−
Φ are completely continuous being they have positive

kernels. Then from equation (3.4) we conclude that h(n,
→
x (s)) is completely continuous.

Since
−
T is completely continuous linear operator, the resolvent R is continuous. Thus

R
−
Φ is compact because it is a composition of a continuous and a compact operator, and

so R
−
Φ is completely continuous. Also, the operator H

(
n,

→
x

)
= R

(
h(n,

→
x)

)
is com-

pletely continuous because it is a composition of a continuous operator after a completely

continuous operator. Moreover, H ≈ o
(
‖→x‖

)
is higher order than linear near

→
x ≈

→
0 ,

uniformly on compact n intervals.

From our assumptions the kernels T
(
s, v,

→
0
)
and Φ

(
s, v,

→
0
)
are positive, which im-

plies that
−
T , R and

−
Φ are linear operators of positive type. Thus, L = R

−
Φ is compact

and of positive type. By the classical theorem of Krein-Rutman, L has a positive, simple,
strictly dominant eigenvalue µ associated with a nonnegative eigenfunction. Moreover,
this eigenfunction is the only nonnegative eigenfunction of L. The proof is complete. ✷
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Since in biological applications we are interested in solutions that belong to the positive
cone K+ of L2 (Ω)

m, we will restrict our domain to an open set of L2 (Ω)
m that contains

the positive cone K+. Now, we state and prove our main result regarding the existence
of nonzero equilibrium points for the autonomous equilibrium equation (3.3) utilizing the
Rabinowitz Theory.

Theorem 3.3. Consider the system of equations (3.1) under the assumptions (I-

IV). There exist a continuum C+
µ of solution pairs (n,

→
x) such that (µ,

→
0 )∈ C+

µ and
C+

µ \ {R×K} �= φ contains only positive equilibria. Furthermore, one of the following
alternatives holds.

1) C+
µ \

{(
µ,

→
0
)}

is unbounded in R×K+ and contains only positive solution pairs,

2) C+
µ contains a nonextinction solution

(
µ∗,

→
x
∗) ∈ R× ∂K,

→
x
∗ �=

→
0 .

Proof. We have proved that under the assumptions (I-IV) the system of equations
(3.1) satisfies all the conditions of Theorem 2.2. From alternative 1 of Theorem 2.2 we
conclude that either C+

µ meets ∞ in K+ or meets ∂G. But for C+
µ to meet ∂G, it must

either contains
(
µ∗,

→
x
∗) ∈ R×K+,

→
x
∗ �=

→
0 , or

(−
µ,

→
0
)
∈ R×K+, where µ �= −

µ ∈ r (L).

Since the eigenfunction associated with the dominant eigenvalue of L is the only nonnega-

tive eigenfunction of L, C+
µ cannot contain a point

(−
µ,

→
0
)
where

−
µ �= 0 is a characteristic

value of L. Also this rules out alternative 2 of Theorem 2.2. The proof is complete. ✷

In fact, this theorem emphasizes the existence of a branch of positive equilibrium

points that bifurcates from the point
(
µ,

→
0
)
and connects to the boundary of the positive

cone of the eigenvalue problem given by equation (3.3) and this boundary cannot contain

a point
(−
µ,

→
0
)
where

−
µ �= 0 is a characteristic value of L.

4. Concluding Remarks

We modeled the growth and dispersal of populations that are classified into different
categories by individual characteristics such as body size, weight, age, etc. Our model
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is described by a system of integro-difference equations. We proved the existence of a
branch of positive solutions that bifurcates from the extinction equilibrium at the critical
value n = 1 of the inherent net reproductive number. The system of integro-difference
equations involves nonlinear integral operators of Hammerstein’s type acting from Lm

2

to Lm
2 . We remark that it is perhaps of mathematical interest to extend our study to

integral operators acting from Lm
p to Lm

q , under suitable assumptions on p and q (see
[12] or [13]). However, we know of no biological reasons to do this in the applications.
Therefore, we restricted our attention to p = q = 2.

In our model we assumed that Ω is a compact subset of Rn that represents a homo-
geneous habitat. An interesting question is: how does the habitat affect the population
dynamics? Since the habitat is the place where the population lives, many properties of
the habitat can have a significant effect on the population, such as the habitat size, the
habitat boundaries, the number of patches in the habitat and the amount of resources
available. Many researchers studied such properties and their effect on population dy-
namics, including; Kierstead and Slobodkin [10], Hardin et al. [7, 8] and Van Kirk and
Lewis [24]. A question we can address with our model is how the dynamics of a struc-
tured population can be affected by the properties of the habitat and whether results for
non-structured populations remain valid for structured populations.

We assumed in our model that individuals are allowed to disperse within a habitat.
It is also important to compare among different dispersal strategies and their effect on
the survival of spatially heterogeneous populations. Dispersal strategies determine how
individuals disperse within the habitat and where they settle at the end of the dispersal
period. If we consider a heterogeneous habitat with locations that are unsuitable for
survival then clearly all the dispersers who settle in such locations are lost. There are
many dispersal strategies to consider, such as stay-in-place, go-everywhere-uniformly and
diffusion-type strategies. The modeling of these different strategies in our model is by
means of different dispersal kernels. Studies of dispersal strategies of non-structured
populations appear in the work of Hardin et al. [8] and Leven, Cohen and Hastings [15]
and others.

All the above questions can be addressed using our model. Moreover, since our model
is structured we can relate these problems to specific life cycle characteristics, such as
maturation periods, maximal body size etc.

Finally, we mention that in [1], we proved that the stability of the positive solutions
near the extinction equilibrium is related to the direction of bifurcation in the sense that
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if the bifurcation is to the right, then these positive solutions are stable, and if it is to
the left they are unstable. Also, we showed how the spectrum of positive branch can be
studied by means of the inherent net reproductive number at equilibrium.
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