Quasi-Permutation Representations of Groups of Order 64

Houshang Behravesh and Ghodrat Ghaffarzadeh

Dedicated to the memory of Brian Hartley

Abstract

In [1], we gave algorithms to calculate $c(G), q(G)$ and $p(G)$ for a finite group G. In this paper, we will calculate $c(G), q(G), p(G)$ for non-abelian groups G, where $|G|=64$.

Key Words: Quasi-permutation representations, 2-groups, Character theory.

1. Introduction

By a quasi-permutation matrix we mean a square matrix over the complex field \mathbb{C} with non-negative integral trace. Thus every permutation matrix over \mathbb{C} is a quasipermutation matrix. For a given finite group G, let $p(G)$ denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let $q(G)$ denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field \mathbb{Q}, and let $c(G)$ denote the minimal degree of a faithful representation of G by complex quasi-permutation matrices. See [1]. It is easy to see that, for any finite group G

$$
c(G) \leq q(G) \leq p(G)
$$

[^0]Now we would like to state a problem from Prof. Brian Hartley (1992-94).

Problem : Let G be a finite p-group. Find G such that

$$
c(G) \neq q(G) \neq p(G)
$$

In fact it is easy to prove that, when p is an odd prime, then

$$
c(G)=q(G)
$$

So in this case a good question to be asked is:
For a p-group G with p an odd prime, when is $q(G) \neq p(G)$?
Now let $p=2$. In [2] we showed that, when G is a generalized quaternion group then

$$
2 c(G)=q(G)=p(G)
$$

So in this case a good question to be asked is:

$$
\text { For a 2-group } G \text {, when is } c(G)<q(G)<p(G) \text { ? }
$$

When G is a finite abelian group, then $c(G), q(G)$ and $p(G)$ are given in [3]. Also $c(G)$, $q(G)$ and $p(G)$ are given in [4], for non-abelin groups of order ≤ 32. So in this paper, we will calculate $c(G), q(G), p(G)$ for non-abelian groups G, where $|G|=64$. We will show that for 2-groups of order less than or equal to 64 at least two of $c(G), q(G)$ and $p(G)$ always coincide. In fact, we verify by direct calculation that $q(G)=p(G)$ for all nonabelian groups of order 64 . However, the question of whether or not there is a 2 -group G with strict inequalities $c(G)<q(G)<p(G)$ is still open.

2. Groups of order 64

Since in this section we will use the classification of finite groups of order 64 from GAP [8], so we will use the numbering of our groups of order 64 as they appear in the library of small groups in GAP.

For the calculation of $q(G)$ we need the Schur index of irreducible characters. This will be calculated by using the following results.

Lemma 2.1 Let G be a 2-group and $\chi \in \operatorname{Irr}(G)$. Then $m_{\mathbb{Q}}(\chi)=m_{\mathbb{R}}(\chi)$.

Proof. See [[7], Satz 1].

Lemma 2.2 Let G be a finite group and $\chi \in \operatorname{Irr}(G)$. Let

$$
\nu(\chi)=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{2}\right)
$$

Then

$$
\nu(\chi)= \begin{cases}1 & \text { if } \chi=\bar{\chi} \text { and } m_{\mathbb{R}}(\chi)=1 \\ -1 & \text { if } \chi=\bar{\chi} \text { and } m_{\mathbb{R}}(\chi)=2 . \\ 0 \text { if } \chi \neq \bar{\chi} & \end{cases}
$$

Proof. See [[5], page 191, Lemma 33.4].

Note : By Lemmas 2.1 and 2.2 one can calculate the Schur index of any irreducible character of a 2-group by calculating $\nu(\chi)$. Note that calculating $\nu(\chi)$ it is not so easy.

Lemma 2.3 Let G be a 2-group with an irreducible character of degree 2. Then $\operatorname{det} \chi$ is the principle character if and only if the Schur index $m_{\mathbb{Q}}(\chi)=2$.

Proof. See [[6], Theorem 3].

Theorem 2.4 Let G be a group of order 64. Then the following table holds.

G	$c(G)$	$q(G)=p(G)$	$(64,37)$	8	16	$(64,73)$	12	12	$(64,108)$	20	20
$(64,3)$	16	16	$(64,38)$	20	20	$(64,74)$	12	16	$(64,109)$	12	12
$(64,4)$	16	16	$(64,39)$	20	20	$(64,75)$	12	12	$(64,110)$	18	18
$(64,5)$	16	16	$(64,40)$	32	32	$(64,76)$	12	16	$(64,111)$	16	16
$(64,6)$	16	16	$(64,41)$	16	16	$(64,77)$	12	12,	$(64,112)$	16	16
$(64,7)$	16	16	$(64,42)$	16	16	$(64,78)$	16	16	$(64,113)$	16	16
$(64,8)$	16	16	$(64,43)$	16	32	$(64,79)$	12	16	$(64,114)$	24	24
$(64,9)$	16	16	$(64,44)$	20	20	$(64,80)$	12	16	$(64,115)$	12	12
$(64,10)$	16	16	$(64,45)$	16	16	$(64,81)$	16	20	$(64,116)$	12	12
$(64,11)$	16	16	$(64,46)$	16	16	$(64,82)$	24	24	$(64,117)$	12	12
$(64,12)$	16	16	$(64,47)$	20	20	$(64,84)$	14	14	$(64,118)$	12	12
$(64,13)$	16	16	$(64,48)$	20	20	$(64,85)$	12	12	$(64,119)$	12	12
$(64,14)$	16	16	$(64,49)$	32	32	$(64,86)$	20	20	$(64,120)$	12	20
$(64,15)$	16	16	$(64,51)$	32	32	$(64,87)$	14	14	$(64,121)$	12	12
$(64,16)$	16	16	$(64,52)$	32	32	$(64,88)$	12	12	$(64,122)$	12	20
$(64,17)$	16	16	$(64,53)$	32	32	$(64,89)$	20	20	$(64,123)$	12	12
$(64,18)$	16	16	$(64,54)$	32	64	$(64,90)$	10	10	$(64,124)$	16	16
$(64,19)$	16	16	$(64,56)$	14	14	$(64,91)$	16	16	$(64,125)$	16	16
$(64,20)$	12	12	$(64,57)$	16	16	$(64,92)$	10	10	$(64,126)$	12	16
$(64,21)$	16	16	$(64,58)$	12	12	$(64,93)$	10	18	$(64,127)$	12	16
$(64,22)$	20	20	$(64,59)$	12	12	$(64,94)$	16	16	$(64,128)$	12	12
$(64,23)$	12	12	$(64,60)$	12	12	$(64,95)$	14	14	$(64,129)$	12	12
$(64,24)$	12	12	$(64,61)$	12	12	$(64,96)$	14	14	$(64,130)$	12	12
$(64,25)$	16	16	$(64,62)$	16	16	$(64,97)$	20	20	$(64,131)$	12	12
$(64,27)$	20	20	$(64,63)$	16	16	$(64,98)$	12	12	$(64,132)$	12	20
$(64,28)$	16	16	$(64,64)$	20	20	$(64,99)$	12	12	$(64,133)$	12	20
$(64,29)$	20	20	$(64,65)$	12	12	$(64,100)$	12	20	$(64,134)$	8	8
$(64,30)$	16	16	$(64,66)$	12	12	$(64,101)$	10	10	$(64,135)$	16	16
$(64,31)$	32	32	$(64,67)$	12	12	$(64,102)$	16	16	$(64,136)$	16	16
$(64,32)$	8	8	$(64,68)$	16	16	$(64,103)$	14	14	$(64,137)$	8	16
$(64,33)$	16	16	$(64,69)$	12	12	$(64,104)$	12	12	$(64,138)$	8	8
$(64,34)$	8	8	$(64,70)$	12	12	$(64,105)$	20	20	$(64,139)$	16	16
$(64,35)$	16	16	$(64,71)$	12	12	$(64,106)$	14	14	$(64,140)$	12	12
$(64,36)$	16	16	$(64,72)$	12	16	$(64,107)$	14	14	$(64,141)$	12	12

$(64,142)$	12	12	$(64,172)$	16	24	$(64,204)$	10	14	$(64,234)$	16	16
$(64,143)$	12	20	$(64,173)$	12	12	$(64,205)$	14	14	$(64,235)$	12	16
$(64,144)$	12	12	$(64,174)$	12	12	$(64,206)$	12	12	$(64,236)$	16	16
$(64,145)$	12	20	$(64,175)$	12	20	$(64,207)$	14	14	$(64,237)$	16	16
$(64,146)$	12	12	$(64,176)$	20	20	$(64,208)$	14	18	$(64,238)$	12	16
$(64,147)$	12	12	$(64,177)$	12	12	$(64,209)$	18	18	$(64,239)$	8	16
$(64,148)$	12	20	$(64,178)$	12	20	$(64,210)$	16	16	$(64,240)$	16	16
$(64,149)$	12	12	$(64,179)$	12	16	$(64,211)$	10	10	$(64,241)$	16	16
$(64,150)$	12	12	$(64,180)$	20	24	$(64,212)$	10	14	$(64,242)$	16	16
$(64,151)$	12	20	$(64,181)$	12	16	$(64,213)$	12	12	$(64,243)$	16	16
$(64,152)$	16	16	$(64,182)$	12	16	$(64,214)$	12	16	$(64,244)$	16	24
$(64,153)$	16	16	$(64,184)$	18	18	$(64,215)$	12	12	$(64,245)$	16	32
$(64,154)$	16	32	$(64,185)$	32	32	$(64,216)$	12	12	$(64,247)$	12	12
$(64,155)$	12	16	$(64,186)$	18	18	$(64,217)$	12	20	$(64,248)$	18	18
$(64,156)$	12	16	$(64,187)$	18	18	$(64,218)$	12	12	$(64,249)$	16	16
$(64,157)$	12	16	$(64,188)$	18	34	$(64,219)$	16	16	$(64,250)$	12	12
$(64,158)$	12	16	$(64,189)$	32	32	$(64,220)$	16	16	$(64,251)$	12	12
$(64,159)$	12	16	$(64,190)$	16	16	$(64,221)$	16	16	$(64,252)$	12	20
$(64,160)$	12	24	$(64,191)$	16	32	$(64,222)$	16	24	$(64,253)$	18	18
$(64,161)$	16	16	$(64,193)$	12	12	$(64,223)$	16	16	$(64,254)$	10	10
$(64,162)$	16	16	$(64,194)$	12	12	$(64,224)$	12	16	$(64,255)$	10	18
$(64,163)$	16	16	$(64,195)$	14	14	$(64,225)$	12	16	$(64,256)$	16	16
$(64,164)$	16	16	$(64,196)$	10	10	$(64,226)$	8	8	$(64,257)$	16	16
$(64,165)$	16	16	$(64,197)$	10	14	$(64,227)$	12	12	$(64,258)$	16	16
$(64,166)$	16	24	$(64,198)$	12	12	$(64,228)$	12	12	$(64,259)$	16	32
$(64,167)$	16	16	$(64,199)$	12	12	$(64,229)$	12	12	$(64,261)$	10	10
$(64,168)$	16	16	$(64,200)$	12	20	$(64,230)$	8	12	$(64,262)$	10	14
$(64,169)$	24	24	$(64,201)$	12	12	$(64,231)$	12	12	$(64,263)$	12	12
$(64,170)$	16	16	$(64,202)$	10	10	$(64,232)$	16	16	$(64,264)$	10	10
$(64,171)$	16	16	$(64,203)$	10	10	$(64,233)$	16	16	$(64,265)$	10	10
									$(64,266)$	16	16

Proof. We used the GAP for the character tables and the subgroups and the core of subgroups. Also we used Lemmas 2.2 and 2.3 and $\nu(\chi)$ for Schur indices. Finally
we used [[1], Corollaries 2.4 and 3.11] for groups with cyclic center and [[1], Theorems 2.2 and 3.6] for groups with non-cyclic center in order to calculate $c(G), q(G)$ and $p(G)$.

Corollary 2.5 Let G be a finite group of order 64. Then $q(G)=p(G)$.
Proof. For abelian G this is proved in [3], and for non-abelian G this is established in Theorem 2.4

Acknowledgment. The authors are grateful to the referees for their valuable suggestions and comments. The paper was revised according to their suggestions.

References

[1] Behravesh, H.: Quasi-permutation representations of p-groups of class 2, J. London Math. Soc. (2) 55 (1997) 251-260.
[2] Behravesh, H.: Quasi-permutation representations of meacyclic 2-groups with cyclic center, Bulletin of the Iranian Mathemaical Society, Vol. 24, No. 1 (1998) 1-14.
[3] Behravesh, H.: The minimal degree of a faithful quasi-permutation representation of an abelian group, Galsgow Math. J., 39 (1997), 51-57.
[4] Behravesh, H. and Ghafarrarzadeh, G.: Characters and quasi-permutation representations of 2-groups of order ≤ 32, Far East J. Math. Sci. (FJMS) Vol. 23, No. 3 (2006) 361-367.
[5] Dornhoff, L.: Group representation theory, part A, Dekker, New York,1971.
[6] Iida, Y.: A note on the Schur index of an irreducible character of a 2-group, Soochow J. Math. Vol. 24, No. 2 (1998) 163-165.
[7] Roquette, P. : Realisierung von Darstellungen endlicher nilpotenter Gruppen, Archiv. der Math. 9 (1958) 241-250.
[8] Schonert et al, M.: GAP: Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, 1994.

Houshang BEHRAVESH and Ghodrat GHAFFARZADEH
Received 27.09.2007
Department of Mathematics
University of Urmia
Urmia-IRAN
e-mail:h.behravesh@mail.urmia.ac.ir or gh.ghafarzadeh@mail.urmia.ac.ir

[^0]: 2000 AMS Mathematics Subject Classification: 20C15, 20 B 05.

