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Black Box Groups

Şükrü Yalçınkaya

Abstract

We propose a uniform approach for recognizing all black box groups of Lie type

which is based on the analysis of the structure of the centralizers of involutions.

Our approach can be viewed as a computational version of the classification of

the finite simple groups. We present an algorithm which constructs a long root

SL2(q)-subgroup in a finite simple group of Lie type of odd characteristic, then we

use the Aschbacher’s “Classical Involution Theorem” as a model in the recognition

algorithm and we construct all root SL2(q)-subgroups corresponding to the nodes

in the extended Dynkin diagram, that is, we construct the extended Curtis - Phan -

Tits system of the finite simple groups of Lie type of odd characteristic. In particular,

we construct all subsystem subgroups which can be read from the extended Dynkin

diagram. We also present an algorithm which determines whether the p-core (or

“unipotent radical”) Op(G) of a black box group G is trivial or not, where G/Op(G)

is a finite simple classical group of odd characteristic p, answering a well-known

question of Babai and Shalev.

1. Introduction

A black box group X is a device or an algorithm (‘oracle’ or ‘black box’ ) which produces
(nearly) uniformly distributed independent random elements from some finite group X.
These elements are encoded as 0–1 strings of uniform length N ; given strings representing
x, y ∈ X, the black box can compute strings representing xy and x−1, and decide whether
x = y in time bounded from above by a constant. In this setting, one is usually interested
in finding probabilistic algorithms which allow us to determine, with probability of error
ε, the isomorphism type of X in time O(log(1/ε) ·(log |X|)c). Note that we have an upper
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bound for the order of the group |X| � 2N . See [12, 6] for thorough discussion of the
subject.

A Monte–Carlo algorithm is a randomized algorithm which gives a correct output to
a decision problem with probability strictly bigger than 1/2. The probability of having
incorrect output can be made arbitrarily small by running the algorithm sufficiently many
times. A Monte–Carlo algorithm with outputs “yes” and “no” is called one-sided if the
output “yes” is always correct. A polynomial time algorithm is an algorithm whose
running time is polynomial in the input length. A Monte–Carlo algorithm which runs in
polynomial time in the input length is called aMonte–Carlo polynomial time algorithm. A
special subclass of Monte–Carlo algorithm is a Las Vegas algorithm which either outputs
a correct answer or reports failure. A detailed comparison of Monte–Carlo and Las Vegas
algorithms, both from practical and theoretical point, can be found in [5].

In this paper our goal is to present a structural approach to the recognition of black
box groups. Our methods develops a remarkable analogy between the classification
of the finite simple groups and the recognition of black box groups (Section 2). The
conjugacy classes of involutions and their centralizers, which played a prominent role in
the classification of the finite simple groups, are the main focus of our methods.

Isomorphisms and homomorphisms of black box groups are understood as isomor-
phisms and homomorphisms of their underlying groups. However we reserve the term
black box subgroup for a subgroup of a black box group endowed with its own black box
oracle.

The important examples of black box groups are permutation groups and matrix
groups over finite fields. Practically, the recognition problem is interesting when the
input group is big. For example, given two square matrices x and y of size 100×100 over
a finite field, it is unrealistic to list all elements in the group X generated by x and y and
determine the isomorphism class of X by inspection. But this can often be done, with
an arbitrarily small probability of error, by studying a sample of random products of the
generators x and y. The algorithms are implemented in the software packages GAP [44]
and MAGMA [19].

If the group representation is known, for example, generators of a group may be given
as permutations on some set or matrices over finite fields, the algorithms, in many cases,
depend on the representation of the given group. For example, there is a huge library of
permutation group algorithms in literature running in nearly linear polynomial time in
the input length (for example, constructing centralizers of elements, center of the group
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etc.), see the book by Seress [70] for an exposition of such algorithms. In the matrix
group setting, there is an ambitious on-going project called “computational matrix group
project” which is focused on the construction of composition series of a given matrix
group over finite fields. Leedham–Green outlined in [53] how a composition series for a
matrix group X � GLn(q) can be computed by using Aschbacher’s classification theorem
on the structure of maximal subgroups of GLn(q) [3], for the recent advances see [63].

1.1. Order oracle

Almost nothing can be said about a black box group without access to additional infor-
mation. In some cases (for example, when our black box is given as a permutation group
of computationally feasible degree) we can use the order oracle, that is, we can determine
the orders of elements x ∈ X. Note that the order of an element can be easily computed
from its cycle structure in a permutation group. We can also determine the order of an
element when we are given a reasonably small superset π of prime integers dividing the
order |X| of X as well as reasonable bounds for |X|. In this case we can make the list of
all divisors d of |X| and try all of them by checking whether xd = 1; the minimal such d
is, of course, the order of x. In the case of matrix groups X � GLn(Fq) this means that
we have to factorize |GLn(Fq)| into primes, which is as hard as the general factorization
problem [6].

In the present paper we do not need to find the exact orders of the elements. Instead,
we work with a milder assumption that a computationally feasible global exponent E for
X, that is, a reasonably sized natural number E such that xE = 1 for all x ∈ X is given as
an input. We do not assume that we know the exact factorization of E into primes since
then the orders of the elements can be computed. Note that having such an exponent
for a black box group X, we can immediately determine, in certain cases, whether X is
isomorphic to a known finite group G, for example, if we find an element x ∈ X satisfying
x|G| �= 1 then, clearly, X � G. To check whether x|G| �= 1, we use square-and-multiply
method, which involves only O(log |G|) multiplications in the group.

1.2. Random elements and product replacement algorithm

One of the biggest problems about black box groups is to construct uniformly distributed
random elements in the group. The commonly used solution is the “the product replace-
ment algorithm” [30]. Let Γk(G) be the graph whose vertices are generating k-tuples of
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elements in G and edges are given by the following transformations:

(g1, . . . , gi, . . . , gk) → (g1, . . . , gi · g±1
j , . . . , gk)

(g1, . . . , gi, . . . , gk) → (g1, . . . , g±1
j · gi, . . . , gk)

Note that i �= j above, and therefore these transformations map a generating k-tuple
to generating k-tuple. A ‘random’ element in G can be produced by applying these
transformations randomly and returning a random component of the resulting generating
k-tuple. The connectivity of the graph Γk(G) and the mixing time of this algorithm are the
central issues to construct random elements in this way, see [65] for a detailed discussion.

The mixing time for a random walk on a graph Γ is, basically, the minimal number
of steps such that after these steps the distribution of the end points of the random walk
on Γ is close to the uniform distribution. It is proved in [64] that the mixing time for a
random walk on Γk(G) is polynomial in k and log |G| when k is sufficiently large. Indeed,
when k = Θ(log |G| log log |G|) the mixing time of the walk is O(log9 |G|(log log |G|)5).
An important observation by Lubotzky and Pak on the free groups Fk gives a much better
bound for the mixing time.

Theorem 1.1 [59] If Aut(Fk) has Kazhdan’s property (T), then for every finite group
G generated by k elements the mixing time of a random walk on Γk(G) is bounded by
c(k) log |G| where c(k) is a constant depending only on k.

Hence the problem is reduced to the following conjecture.

Conjecture 1.2 Aut(Fk) satisfies Kazhdan’s (T) property for k � 4.

A topological group G is said to have Kazhdan’s (T) property, if there is a compact
subset Q ⊂ G such that

inf
ρ

inf
v �=0

max
q∈Q

||ρ(q)(v) − v||
||v|| > 0

where ρ runs over all unitary representations of G without fixed non-zero vectors. In the
case of Aut(Fk), we have discrete topology and compact subsets of Aut(Fk) are precisely
the finite subsets.

Observe that the graph Γk(G) is not always connected, for example, ifG = Zp×· · ·×Zp

(k-times), then Γk(G) has p − 1 components of equal size, see [35]. Although Γk(G) is
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not always connected, there are positive answers when k is big enough, for example,
it is easy to see that if we take k � d(G) + d̄(G), where d(G) is the minimal number
of generators for G and d̄(G) is the maximal size of the minimal generating set for G,
then Γk(G) becomes a connected graph, see [65, Proposition 2.2.2]. However, it is still
unknown for a finite simple group G, whether Γk(G) is connected for k � 3 or not. Note
that d(G) � 2 for finite simple groups. Pak proved in [65] that, for a fixed k � 3, there
are large connected components for large simple groups G, that is, there exist connected
components Γ′

k(G) ⊂ Γk(G) such that

|Γ′
k(G)|

|Γk(G)| → 1 as |G| → ∞.

The product replacement algorithm was implemented in GAP and it has very suc-
cessful practical performance, see [30] for more details.

On the theoretical side, Babai proposed an algorithm which constructs nearly uni-
formly distributed elements [4]. This algorithm first constructs a new generating set
of O(log |G|) elements in O(log5 |G|) multiplications and then uses this set to produce
sequence of nearly uniformly distributed elements in O(log |G|) multiplications for each
element. The main drawback of this algorithm is that O(log5 |G|) number of steps needed
in the preprocessing step which is not suitable for practical purposes. Here an algorithm
outputs nearly uniformly distributed elements if it produces each group element with
probability (1 ± ε)/|G| where ε � 1/2.

1.3. Three types of problems

There are basically three types of recognition algorithms for a given black box group X:

• Verification problem: Determine whether X ∼= G for a known finite group G.

• Probabilistic recognition: Determine the isomorphism type of X with given degree
of certainty.

• Constructive recognition: Constructs an isomorphism X → G to a known group G.

1.3.1. Verification problem

One of the simplest ways to test whether a black box group X is isomorphic to a given
group G is to look for an element of order not present in G. If such an element is found,
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then we definitely know that X � G. These computations can be carried out, in general,
by working with global exponents, that is, if we can find an element x ∈ X such that
xE �= 1 where E be a global exponent for G, then we deduce that X � G. This type
of computations will be used frequently to determine the isomorphism type of a given
classical group, see Section 5.3.

As pointed out in [18, Section 1.3] we shall discuss the similarity between the use of
involutions in the verification problems and the classical Miller–Rabin primality test [68],
see also [52, Section V.1], which is based on the fact that a number n is prime if and only
if (Z/nZ)∗ is the cyclic group of order n − 1. Let X = (Z/nZ)∗ be a black box group.
To produce random uniformly distributed independent elements from X we use standard
random number generators. Now we want to determine whether X ∼= Zn−1. Notice that
the group Zn−1 contains only one involution. On the other hand, if n = pl11 · · ·plkk is the
prime factorisation of n then

(Z/nZ)∗ = (Z/pl11 Z)∗ × · · · × (Z/plkk Z)∗,

and by using the Chinese Remainder Theorem we can lift the involutions −1 modplii
to involutions in (Z/nZ)∗ which shows that the involutions in (Z/nZ)∗ generate an
elementary abelian subgroup of order 2k.

By using E = n− 1 as a global exponent for X we can easily compute involutions in
Zn−1. Indeed, we can factorise n− 1 into a power of 2 and an odd factor: n− 1 = 2l ·m,
m odd. Obviously, at least half of the elements in Zn−1 are of even order, so, with
probability at least 1/2, xm is a non-trivial 2-element. The last non-identity element in
the sequence of squares

xm, (xm)2, . . . , (xm)2
l

has order 2; we denote it i(x) and call the involution produced by x. For the sake of
completeness of this definition, we set i(x) = 1 if x is of odd order.

If (Z/nZ)∗ � Zn−1, this procedure is likely to fail due to the fact that, for most

integers n, (xm)2
l �= 1 mod n with probability at least 1/2. In the worst case scenario,

that is, when n is a so-called Carmichael number, the probability of producing ±1 can
be shown to be less than 1

2k−1 � 1
2 . Hence we come to the following formulation of the

Miller-Rabin primality test.

repeat for random x ∈ (Z/nZ)∗:
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• compute i(x).

• if the computation of i(x) fails or i(x) �= ±1, return

n is not prime

• if i(x) = ±1 for l random values of x, return

n is prime with probability of error � 1
2l .

1.3.2. Probabilistic recognition

The major breakthrough result in recognition algorithms for matrix groups was presented
by Neumann and Praeger in [61]. Their algorithm decides whether given a set of invertible
n × n matrices over Fq generates a subgroup containing SLn(q). The algorithm seeks
elements having certain special properties where SLn(q) has large proportion of such
elements. By using the classification of the maximal subgroups of GLn(q) [3], it can be
deduced that few subgroups of GLn(q) which do not contain SLn(q) have such elements
and these subgroups can be recognized by special routines. This is a Monte-Carlo
algorithm and the answer “X contains SLn(q)” is always correct. Later, this idea is
extended to all classical groups in their natural representation [28, 62]. A uniform
approach in recognition of all black box finite simple groups of Lie type is given in [9] by
using an order oracle. This algorithm produces sufficiently many uniformly distributed
elements and examines the divisibility of the orders of these elements by certain prime
divisors. This idea allows to identify all Lie type groups except for the groups PSp2n(q)
and Ω2n+1(q), q odd, since these two groups have virtually the same statistics of elements
orders especially over large fields. The algorithm distinguishing PSp2n(q) from Ω2n+1(q),
n � 3, is given in [1], and its idea is based on the structure of centralizers of involutions
and the conjugacy classes of involutions in these groups. Hence

Theorem 1.3 [1, 9] There is a polynomial-time Monte Carlo algorithm which, when
given a black-box group X = 〈S〉 known to be isomorphic to a finite simple group of Lie
type in given characteristic p, finds the standard name of X.

The assumption that we know the characteristic of the underlying field can be avoided
by using the algorithm in [50], see also [56].
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A natural next step is to identify a black box group which is not known to be simple or
not in advance, in other words, to determine whether the input group X is simple or not.
Babai and Shalev developed an algorithm for black box groups of characteristic p which
reduces the problem in Monte–Carlo polynomial time to the determination of whether
the maximal normal p-subgroup Op(X) (or “p-core”) is trivial or not [11]. They also
present an algorithm solving this problem in the class of groups X where X/Op(X) is a
unisingular simple groups of Lie type of characteristic p. A group X is called unisingular
in characteristic p if every non-trivial moduleM of characteristic p has the property that
every element of X has a non-zero fixed point in its action onM . It turns out that random
search works pretty well to find a p-element in the class of groups X where X/Op(X) is
a unisingular group of Lie type of characteristic p [11]. The simple unisingular groups of
Lie type are classified in [46].

Let ε = ±1 and (P)SLε
n(q) denote the groups PSLn(q) if ε = +1, and (P)SUn(q) if

ε = −1. Similarly, let Eε
6(q) denote E6(q) if ε = +1, and 2E6(q) if ε = −1.

Theorem 1.4 [46] Let G be a finite simple group of Lie type of characteristic p defined
over the field GF (q), where q = pk for some k � 1. Then G is unisingular if and only if
G is one of the following:

1. PSLε
n(p) with n|(p− ε);

2. Ω2n+1(p), PSp2n(p) with p odd;

3. PΩε
2n(p) with p odd and ε = (−1)n(p−1)/2;

4. 2G2(q), F4(q), 2F4(q), E8(q) with q arbitrary;

5. G2(q) with q odd;

6. Eε
6(p) with 3|(p− ε);

7. E7(p) with p odd.

A polynomial time algorithm for the determination of Op(X) �= 1 for the groups of
Lie type of odd characteristic is announced independently by Borovik [18], and Parker
and Wilson [66]. We present this algorithm for classical groups of odd characteristic in
this paper.
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1.3.3. Constructive recognition

The constructive recognition algorithms for the simple groups are essential in the matrix
group recognition project. A simple black box group X = 〈S〉 is said to be constructively
recognizable if there exists an algorithm (Monte–Carlo or Las Vegas) for the following
tasks:

1. Find the isomorphism type of X.

2. Find a new set S∗ such that X = 〈S∗〉 and an explicit isomorhism ϕ : X → G

specified by the image of S∗ where G is the standard copy of X.

3. For any x ∈ X, express x as a word in S∗.

4. Given g ∈ G, express g as word in ϕ(S∗).

An example of a constructive recognition algorithm for the group G = SLn(q) is
presented in [29] where the algorithm uses the fact that group is given in its natural
representation, that is, generators of the group are given as invertable n× n matrices of
determinant 1 over a field of size q. Its main idea follows the argument that SLn(q) is
generated by transvections, (or “unipotent elements”), and the algorithm first constructs
a transvection and then conjugating it suitably to obtain a set of transvections which
generate G. A black box group algorithm which recognizes GLn(2) constructively is
presented in [33]. Following this algorithm Kantor and Seress developed constructive
black-box group algorithms of all classical groups [49], but these algorithms are not
polynomial time algorithms in the input length, they are polynomial in q but the input
size involves only log q. They depend on the construction of unipotent elements found
after a random search in the group. However the share of p′-elements (or “semisimple
elements”) in a simple group of Lie type defined over a field Fq is 1−O(1/q) [45]. Therefore
the probability of a random element to be semisimple is close to 1 when the order of the
field is large, in other words, it is unrealistic to expect producing unipotent elements over
large fields by random search. Later the algorithms in [49] were upgraded to polynomial
time constructive recognition algorithms [22, 23, 24] by assuming additional oracles:
discrete logarithm oracle in F∗

q and SL2(q)-oracle. An SL2(q)-oracle is a deterministic
algorithm which computes an explicit isomorphism between SL2(q) and a black box group
isomorphic to SL2(q), in other words, it is a procedure for the constructive recognition
of SL2(q). Hence the constructive recognition algorithm for a finite simple group of Lie

179
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type is reduced to the constructive recognition of (P)SL2(q). In the matrix group case,
there is a polynomial time constructive recognition algorithm for SL2(q) based on discrete
logarithm oracle for F∗

q [31, 32] which completes the constructive recognition of classical
groups. In the case of a black box group, the polynomial-time constructive recognition
algorithm for classical groups still represents a hard problem.

The first constructive recognition algorithm for the black box groups Symn and Altn
appeared in [20] where the case X ∼= Symn is described and the modifications for the case
X ∼= Altn is sketched. The algorithm presented in [14] completes the above procedures, in
full details, for the constructive recognition of Symn and Altn. As it is quite elementary,
we present a constructive recognition algorithm for X ∼= Symk in [20] as an example,
where k = 2n for some n, the case k = 2n + 1 is similar. The algorithm uses Goldbach
Conjecture which has been confirmed for the numbers � 1014.

1. Find an element x ∈ X of order p1p2 where p1 + p2 = n and p1, p2 are distinct
primes. Then we can assume that y1 = xp2 = (1, 2, . . . , p1) and y2 = xp1 =
(p1 + 1, p1 + 2, . . . , n).

2. Find an element y ∈ X of order 2q1q2 where q1 and q2 are odd primes, and
q1 + q2 = n− 2. Then t = yq1q2 is a transposition.

3. Check whether ty1 �= y1t and ty2 �= y2t. If not, repeat Step 2. Such a transpo-
sition interchanges a point from the cycle y1 and a point from the cycle y2, so we
can assume that t = (p1, p1 + 1).

4. Notice that the element s = y1ty2 is an n-cylce, and we compute the transposition
t1 = ts

p1−1
. Hence there is a homomorhism ϕ : X → Symn sending s �→ (1, 2, . . . , n)

and t1 �→ (1, 2).

5. Compute tj = tsj−1, j = 2, 3, . . . , n− 1 and tn = tsn−1. We have ϕ(tj) = (j, j + 1),
j = 2, 3, . . .n− 1 and ϕ(tn) = (n, 1).

6. Identifying t1 ∼ (1, 2) and s ∼ (1, 2, . . . , n) under ϕ, determine the action of an
arbitrary element x ∈ X on the set {1, 2, . . . , n} in the following way: Compute
tx1 = (x(1), x(2)) and determine which of the elements tj commutes with the set
{x(1), x(2)}. Similarly, compute

{x(2), x(3)}, {x(3), x(4)}, . . . , {x(n), x(1)}.
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Notice that each two consecutive sets above have a common element. Hence x(j)
is determined for all j = 1, 2, . . . , n.

2. A uniform approach to recognition of black box groups of odd character-
istic

As discussed in the previous section, the existing constructive recognition algorithms
for black box classical groups depend on the discrete logarithm problem and the consruc-
tive recognition of SL2(q) which is based on a construction of a unipotent element. The
distribution of unipotent elements is close to 0 over large fields and it is not known a
way to construct a unipotent element over large fields except from random search. Fol-
lowing this observation, we will present an alternative uniform approach for recognizing
the simple groups of Lie type of odd characteristic which follows the computational ver-
sion of the classification of the finite simple groups. Similar to the inductive argument
on centralizers of involutions which plays a crucial role in the classification project, our
approach is based on a recursive construction of the centralizers of involutions in black
box groups [18, 21].

We propose the following plan for the recognition of the black box finite simple groups
of Lie type of known odd characteristic.

• Construct all root SL2(q)-subgroups in a given simple black box group of Lie type
of odd characteristic G corresponding to the nodes in the extended Dynkin diagram
of the corresponding algebraic group.

Observe that this procedure determines the isomorphism type of G uniquely, indeed
these groups are the root SL2(q)-subgroups in the Curtis–Phan–Tits presentation [34, 67,
73]. Fixing a Dynkin diagram of a simple algebraic group, the root SL2(q)-subgroups
corresponding to the nodes of the Dynkin diagram in the untwisted groups of Lie type
form the Curtis–Tits system while in the twisted case they form the Phan’s system. For
example, in the case of the Dynkin diagram of type An−1, the corresponding untwisted
and twisted simple groups of Lie types are PSLn(q) and PSUn(q) respectively and the root
SL2(q)-subgroups corresponding to the nodes of the Dynkin diagram are Ki = SL2(q),
i = 1, 2, . . . , n − 1. In the Curtis-Tits system for PSLn(q), the subgroups Ki satisfy
〈Ki, Ki+1〉 = SL3(q) and Ki commutes elementwise with Kj for |i − j| � 2 whereas in
the Phan system for PSUn(q) we have 〈Ki, Ki+1〉 = SU3(q) and again Ki commutes
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elementwise with Kj for |i− j| � 2, see Section 3.3 for the precise formulization.
Although this procedure is not a constructive recognition ofG, it allows us to construct

all subsystem subgroups of G which can be read from the extended Dynkin diagram. To
define a subsystem subgroup for the finite groups of Lie type and make the arguments
uniform, we introduce the following definition. Let G be a untwisted group of Lie type
of rank n, then we call a maximal split torus, which is of order (q − 1)n, a maximal
standard torus. For the twisted groups, except for PΩ−

2n(q), n even, and 3D4(q), we
define a maximal standard torus as a maximal torus of order (q+ 1)n where n is the Lie
rank of the corresponding simple algebraic group. For G = PΩ−

2n(q), n even, or 3D4(q),
tori of orders (q+ 1)n−1(q− 1) or (q− 1)(q3 − 1) will be called maximal standard tori of
G respectively. Except for Suzuki-Ree groups, a “subsystem subgroup” of a finite simple
group G of Lie type is a quasi-simple subgroup of G normalized by a maximal standard
torus. In this setting, the long root SL2(q)-subgroups are subsystem subgroups of finite
simple groups of Lie type of odd characteristic.

Note that this procedure is a computational version of Aschbacher’s “Classical In-
volution Theorem” [2]. Aschbacher’s characterization of Chevalley groups over fields of
odd order is based on the study of “2-components” in the centralizers of involutions.
Recall that a 2-component of a group G is a perfect subnormal subgroup L such that
L/O(L) is quasi-simple where O(L) is the maximal normal subgroup of L of odd order
and solvable 2-component of G is a subnormal subgroup L of G with O(L) = O(G) and
L/O(L) = (P)SL2(3). Aschbacher’s Classical Involution Theorem reads:

Let G be a finite group the generalized Fitting subgroup F ∗(G) simple. Let z be an
involution in G and K a 2-component or solvable 2-component of CG(z) of 2-rank 1
containing z. Then F ∗(G) is a Chevalley group of odd characteristic or the Mathieu
group M11.

The involutions satisfying the hypothesis of the above theorem are called classical involu-
tions. It turns out that the classical involutions in a finite quasi-simple group of Lie type
of odd characteristic are the involutions which belong to the long root SL2(q)-subgroups
(see Theroem 3.3). Taking the “Classical Involution Theorem” as a model, we extend
our setting to the black box groups X where X/Op(X) is a finite simple group of Lie
type of odd characteristic p. Observe that an involution i ∈ X belongs to a 2-component
or solvable 2-component of CX(i) of 2-rank 1 if and only if ī ∈ X/Op(X) belongs to a
2-component or solvable 2-component of CX/Op(X)(̄i) of 2-rank 1 since p is odd. Hence
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Aschbacher’s characterization fits into this setting, and we propose the following project
for the recognition of black box group X where X/Op(X) is a finite simple group of Lie
type of known odd characteristic p.

Procedure 1: Construct a subgroup K where K/Op(K) is a long root SL2(q)-
subgroup in X/Op(X).

Procedure 2: Determine whether Op(X) �= 1.

Procedure 3: Construct all subgroups K where K/Op(K) are root SL2(q)-
subgroups inX/Op(X) corresponding to the nodes in the extended Dynkin diagram
of the corresponding algebraic group.

3. Structure of groups of Lie type

In this section we summarize the basic properties of the finite groups of Lie type which
are needed in our algorithms, standard references are [26, 27, 71]. We use the following
notation. Let Ḡ denote a connected simple algebraic group over an algebrically closed
field of characteristic p, T̄ a maximal torus of Ḡ, Σ̄ a T̄ -root system, B̄ a Borel subgroup
containing T̄ , N̄ = NḠ(T̄ ) and W = N̄/T̄ the Weyl group of Ḡ. Let σ be a Frobenious
endomorphism of Ḡ, then the fixed point set, Ḡσ, is finite and let G = Op′

(Ḡσ), normal
subgroup of Ḡσ generated by the p-elements of Ḡσ. We also assume that the characteristic
p of the underlying field is odd.

If G is untwisted, then we denote G by PSLn(q), PΩ2n+1(q), PSp2n(q), PΩ+
2n(q),

G2(q), F4(q) and En(q) for n = 6, 7, 8 where q is the order of the underlying field. For the
twisted groups, we write PSUn(q), PΩ−

2n(q), 2E6(q) where the Frobenious endomorphism
of the corresponding simple algebraic group induces a field automorphism of order 2 on
Fq2 and similarly we write G = 3D4(q) where we have a field automorphism of order 3
on Fq3 . We say that G is defined over a field of order q. It turns out that, except for the

Suzuki-Ree groups 2B2(2a+1/2), 2F4(2a+1/2), 2G2(3a+1/2), q is the order of the center of
a long root subgroup.

3.1. Maximal Tori

It is well known that there exist a maximal torus T̄ and Borel subgroup B̄ of Ḡ which
are σ-invariant and T̄ � B̄. Moreover Ḡσ permutes transitively the set of all such pairs
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(T̄ , B̄). The subgroups of the form G ∩ T̄ for some σ-invariant maximal torus T̄ of Ḡ is
called a maximal torus of G.

Recall that H1(σ,G) is the set of equivalence classes of G under the relation ∼σ

defined by

x ∼σ y if and only if y = gxg−σ for some g ∈ G. (3.1)

If x ∼σ y, then x and y are called σ-conjugate.

Theorem 3.1 ([27, Proposition 3.3.3]) The set of G-orbits on the set of σ-invariant
maximal tori of Ḡ is in bijective correspondence with H1(σ,W ).

Note that if σ fixes each element of W , which is the case if G is untwisted, then
H1(σ,W ) corresponds to the set of conjugacy classes of W .

Let S be the set of representatives of G-orbits on the set of σ-invariant maximal tori
of Ḡ. Then S ∩ G is the set of representatives of maximal tori of G whose elements
correspond to elements w ∈ W and they will be denoted by Tw. We will call these tori
maximal tori of G twisted by w. Note that if w ∼σ w

′ in the sense of Equation 3.1, then
Tw and Tw′ are G-conjugate.

The following lemma is crucial in our algorithms.

Theorem 3.2 ([27, Proposition 3.3.5, 3.3.6]) Let Ḡ be a simple algebraic group and T̄ be
a σ-invariant maximal torus of Ḡ such that T̄σ corresponds to an element w ∈ W . If q
is the number of elements of the base field on which G is defined, then the characteristic
polynomial of w evaluated at q gives the order of T̄σ. Moreover |N̄σ/T̄σ| ∼= |CW (w)| where
N̄ = NḠ(T̄ ).

The characteristic polynomials of w ∈W are given in [25] (see also Section 8 in [33])
and we give here the orders of maximal tori in classical groups.

• G = SLn(q) or SUn(q): Provided that l1 + · · · + lk = n, the orders of the maximal
tori in G are of the form

(ql1 − εl1 )(ql2 − εl2 ) · · · (qlk − εlk )/(q − ε).

Here ε = 1 if G = SLn+1(q) and ε = −1 if G = SUn+1(q).
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• G = Spin2n+1(q) or Sp2n(q): The orders of the tori in G are of the form

(ql1 − 1) · · · (qlr − 1)(qm1 + 1) · · · (qms + 1)

where (l1 + · · · + lr) + (m1 + · · · +ms) = n.

• G = Spin±
2n(q): The orders of the tori in G are of the form

(ql1 − 1) · · · (qlr − 1)(qm1 + 1) · · · (qms + 1)

where (l1 + · · · + lr) + (m1 + · · · +ms) = n. If G = Spin+
2n(q) then s is an even

integer and if G = Spin−
2n(q) then s is an odd integer.

In the case of SLn(q), the Weyl group W is isomorphic to Symn and a maximal torus
of order (ql1−1) · · · (qlk −1)/(q−1) corresponds to an element w ∈W where w = w1 · · ·wk

is the cycle decomposition of w and the cycles wi have lengths li for each i = 1, . . . , k. In
particular, if a maximal torus T corresponds to a n-cycle in W , then T is a cyclic group
of order qn − 1/q − 1 and the probability of producing a semisimple element in G which
is conjugate to an element in T is at least

|G|
|NG(T )|

|T |
|G| =

1
|CW (w)| =

1
n
.

3.2. Properties of root SL2(q)-subgroups

Let T be a maximal torus of G where T = T̄σ . For each root r ∈ Σ̄, there exists a T̄ -root
subgroup Ur of Ḡ and these root subgroups are permuted by σ. Let ∆ be a 〈σ〉-orbit
of a root subgroup of Ḡ, then the subgroup Op′

(〈∆〉σ) is called a T -root subgroup of G.
The properties of T -root subgroups are studied thoroughly in [69]. Here we take a torus
T̄ which is a σ-invariant maximal torus contained in a σ-invariant Borel subgroup of Ḡ.
These T -root subgroups of G correspond to the roots in the root system Σ of G, see [38,
Section 2.3] for the construction of root systems for the finite groups of Lie type, and G
is generated by these root subgroups Xr, r ∈ Σ. A root subgroup is called a long or short
root subgroup if the corresponding root is long or short respectively. The structure of
root subgroups in G is summarized in Table 1.

In this setting the root subgroups are not always abelian in finite simple groups of Lie
type. Let Mi = 〈Xri , X−ri〉, Zi = Z(Xri ) and Ki = 〈Zi, Z−i〉 where ri ∈ Σ. Then Xri is
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YALÇINKAYA

Table 1. The structure of root subgroups in G [38, Table 2.4]. Here Eqi is an elementary abelian

p-group of order qi.

Type r Remarks

Untwisted both Xr
∼= Eq

Twisted except PSU2n+1(q) long Xr
∼= Eq

Twisted except 3D4(q) short Xr
∼= Eq2

3D4(q) short Xr
∼= Eq3

PSU2n+1(q) long |Xr| = q3 and Z(Xr) ∼= Eq

2G2(q) |Xr| = q6 and Z(Xr) ∼= Eq2

a Sylow p-subgroup of Mi and Zi is a Sylow p-subgroup of Ki. Moreover Xri
∼= Zi

∼= Eq

and Ki
∼=Mi

∼= SL2(q) except for the groups given in Table 2.
The subgroup Ki is called long or short root SL2(q)-subgroup if the corresponding

root ri ∈ Σ is a long or short root respectively.

Table 2. Short root SL2(q)-subgroups in G [2, Table 14.4].

r

G(q) r Kr Mr

PSU2n+1(q) long SL2(q) PSU3(q)

PSUn(q) short PSL2(q2) PSL2(q2)

Ω2n+1(q) short PSL2(q) PSL2(q)

PΩ−
2n(q) short PSL2(q2) PSL2(q2)

2E6(q) short SL2(q2) SL2(q2)
3D4(q) short SL2(q3) SL2(q3)

We have the following fundamental theorem for long root SL2(q)-subgroups in simple
groups of Lie type of odd characteristic.

Theorem 3.3 ([2, Theorem 14.5]) Let G be a finite simple group of Lie type defined over
a field of odd order q. With the notation as above, let ri be a long root, K = Ki, and
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〈z〉 = Z(K). Then

(1) K ∼= SL2(q).

(2) Op′
(NG(K)) = KL where [K,L] = 1 and L is the Levi factor of the parabolic

subgroup NG(Zi).

The following two lemmas are the key results to test whether a given subgroup
isomorphic to SL2(q) is a long root SL2(q)-subgroup in G.

Lemma 3.4 Let K be a long root SL2(q)-subgroup of G and z ∈ Z(K). Then K = Kg

for any g ∈ CG(z)′′.

Lemma 3.5 [75] Let G be a finite simple group of Lie type defined over a field of order q
different from 3D4(q) and G2(q). Let K be a short root SL2(q)-subgroup of G and z ∈ K
be an involution. Then there exists g ∈ CG(z)′′ such that K �= Kg.

3.3. Curtis-Phan-Tits presentation

Finite groups of Lie type have a special presentation called the Steinberg-presentation
[71] which is based on the relations on their root subgroups. Steinberg proved that if G
is a finite group generated by the set {xr(t) | r ∈ Σ, t ∈ Fq}, where Σ is an irreducible
root system of rank at least 2, subject to the relations

xr(t + u) = xr(t)xr(u), (3.2)

[xr(t), xs(u)] =
∏

γ = ir + js, i, j ∈ N∗

r, s ∈ Σ, r �= ±s

xγ(ci,j,r,stiuj), (3.3)

hr(t)hr(u) = hr(tu) tu �= 0, (3.4)

where
hr(t) = nr(t)nr(−1),

nr(t) = xr(t)x−r(−t−1)xr(t),
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then G/Z(G) is a finite simple group of Lie type with root system Σ.
The analogue of the Steinberg presentation holds also for twisted groups of Lie type

where the defining relations are much more sophisticated, a detailed discussion can be
found in [38, Section 2.4, 2.9].

The following theorem (known as the Curtis-Tits presentation) shows that the es-
sential relations in the Steinberg presentation are the ones involving rank 1-subgroups
corresponding to fundamental roots in Σ. Note that, if G is untwisted, then we have

〈Xr , X−r〉 ∼= (P)SL2(q)

where Xr = 〈xr(t) | t ∈ Fq〉 for any r ∈ Σ. Note also that the nodes in the Dynkin diagram
are labelled by the elements in Π. Therefore the Curtis-Tits presentation involves the
pairs of fundamental roots which are edges or nonedges in the Dynkin diagram. More
precisely;

Theorem 3.6 [72, Theorem 2] Let Σ be an irreducible root system of rank at least 3 with
fundamental system Π and Dynkin diagram ∆. Let G be a finite group and assume that
the following are satisfied

1. G = 〈Kr | r ∈ Π〉, Kr = 〈Xr , X−r〉 = (P)SL2(q), for all r ∈ Π.

2. Hr = NKr (Xr) ∩NKr (X−r) � NG(Xs) for all r, s ∈ Π.

3. [Kr, Ks] = 1 if r and s are not connnected in ∆.

4. 〈Kr , Ks〉 ∼= (P)SL3(q) if r and s are connected with a single bond.

5. 〈Kr , Ks〉 ∼= (P)Sp4(q) if r and s are connected with a double bond.

Then there exists a group of Lie type G̃ with a root system Σ and a fundamental system
Π, and a surjective homomorphism ϕ : G→ G̃ mapping the X±r onto the corresponding

fundamental root subgroups of G̃. Moreover kerϕ � Z(G) ∩H where H = 〈Hr | r ∈ Π〉.

Example 3.7 [71, p. 72] Let G = SLn(q), n � 3 and xij(t) = I + tEij where Eij is the
matrix whose (i, j)-entry is 1 and the others are 0. Then Steinberg-presentation of G is

G = 〈xij(t) | 1 � i, j � n, i �= j, t ∈ Fq〉

subject to the following relations

188
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1. xij(t + u) = xij(t)xij(u),

2. [xij(t), xjk(u)] = [xik(tu)] if i, j, k are different,

3. [xij(t), xkl(u)] = 1 if j �= k, i �= l.

In the Curtis-Tits presentation of G we use only the generators xij(t) where | i−j |� 2.
Hence the number of relations is considerably less than the number of relations in
Steinberg-presentation.

Phan proved similar results for the twisted groups of Lie type in [67]. Bennet and
Shpectorov proved Phan’s theorem with weaker assumptions for the groups G = SUn(q):

Theorem 3.8 [17] Let G be a finite group containing subgroups Ki
∼= SU2(q), i =

1, 2, . . . , n and Ki,j, 1 � i < j � n, such that the following hold:

1. If | i− j |> 1 then Ki,j is a central product of Ki and Kj.

2. For i = 1, 2, . . . , n − 1, Ki and Ki+1 are contained in Ki,i+1 which is isomorphic
to SU3(q) or PSU3(q). Moreover Ki and Ki+1 are the stabilizers of a non-singular
vector in Ki,i+1.

3. The subgroups Ki,j , 1 � i < j � n, generate G.

If q > 3, then G is isomorphic to a factor group of SUn+1(q).

It is easy to see that the subgroups Ki, i = 1, 2, . . . , n in Theorem 3.8 play the role
of the subgroups corresponding to the nodes in the Dynkin diagram of PSLn+1(q) as in
the Curtis-Tits presentation. Moreover each subgroup Ki is normalized by a maximal
standard torus in G.

The relation between the Curtis-Tits theorem and Phan’s theorems are discussed
thoroughly in [16] and new Phan type presentation for the untwisted groups of Lie type
has been constructed [39, 40, 41, 42].

Besides involving less relations than Steinberg presentation, the main advantage of
Curtis-Tits presentation from the computational point of view is to allow us to work
with the root SL2(q)-subgroups instead of unipotent elements. Recall that the existing
constructive recognition of black box group algorithms are using either unipotent elements
or the constructive recognition of the subgroups isomorphic to SL2(q) which is only
possible if one can construct unipotent elements. Recall also that the construction of
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the unipotent elements over big fields is almost impossible by random search. Therefore
the natural approach in the recognition of black box groups is to construct root SL2(q)-
subgroups and check the relations between them, that is, the relations in the Curtis-Tits
presentation.

3.4. The structure of the centralizers of involutions

The fundamental result on the structure of centralizers of involutions in Lie type groups
of odd characteristic is the following result, see [38, Chapter 4] for a complete description.

Theorem 3.9 [38, Theorem 4.2.2] Let G be a simple group of Lie type of odd character-
istic p, i ∈ G an involution, C = CG(i) and L = Op′

(C). Then there exist a subgroup
T � C such that the following conditions satisfied.

1. L is a central product L = L1 · · ·Ls where s � 0 and Lk is a (quasi-)simple group
of Lie type of characteristic p for each k = 1, . . . , s.

2. T is an abelian p′-subgroup normalizing each Lk.

3. Setting C◦ = LT , we have C/C◦ is an elementary abelian 2-subgroup.

The subgroup L = Op′
(C) will be called semisimple socle of CG(i). It follows

immediately from Theorem 3.9 that the second derived subgroup CG(i)′′ is the semisimple
socle of CG(i). Passsing to the groups with a non-trivial p-core we have the following.

Lemma 3.10 Let X be a finite group where X/Op(X) is a finite simple group of Lie type
over a field of odd size q > 3 and let i ∈ X be an involution. Then (CX(i)/Op(CX(i)))′′

is the semisimple socle of CX(i)/Op(CX(i)).

It is worth to give the list of classical involutions and their centralizers, see Theorem
3.3; In Table 3, we write G1◦nG2 which is meant to be (G1×G2)/N for some cyclic group
N of order n intersecting with G1 and G2 trivially. We write 1

mG to denote the quotient
group G/Y where Y � Z(G), |Y | = m and Z(G) is cyclic. Note that the center of
G = Spin+

2n(q), n even, is an elementary abelian group of order 4. Therefore 1
2
Spin+

2n(q)
is not uniquely defined for n even and we define it as follows. There is an involution
z ∈ Z(G) such that G/〈z〉 ∼= SO+

2n(q). For the other involutions z1, z2 ∈ Z(G)\{z}, we
have G/〈z1〉 ∼= G/〈z2〉 which is not isomorphic to SO+

2n(q) and we denote these quotient
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Table 3. The semisimple socles of the centralizers of the classical involutions.

G L = Op′
(CG(i))

PSLε
n(q) SL2(q) ◦2 SLε

n−2(q)

PSp2n(q) SL2(q) ◦2 Sp2n−2(q)

Ω2n+1(q) (SL2(q) ◦2 SL2(q)) ◦2 Ω2n−3(q)

PΩε
2n(q) (SL2(q) ◦2 SL2(q)) ◦2 Ωε

2n−4(q)

G2(q) SL2(q) ◦2 SL2(q)
3D4(q) SL2(q) ◦2 SL2(q3)

F4(q) SL2(q) ◦2 Sp6(q)

Eε
6(q) SL2(q) ◦2

1
(q−ε,3)

SLε
6(q)

E7(q) SL2(q) ◦2
1
2Spin+

12(q)

E8(q) SL2(q) ◦2 E7(q)

groups as 1
2
Spin+

2n(q). Notice that 1
2
Spin+

12(q) appears as the component in the centralizer
of a classical involution in the groups E7(q).

4. Centralizers of involutions in black box groups

4.1. Construction of CG(i) in a black box group

Let X be a black box finite group and E = 2km be an exponent for X with m odd. We
shall first produce an involution from a random element x ∈ X. For this task, we need
an element of even order and we follow the same argument as in Section 1.3.1.

A precise lower bound for the share of elements of even order in the groups of Lie
type of odd characteristic is given by the following theorem:

Theorem 4.1 [47] Let G be a finite group having a simple homomorphic image that is
neither cyclic nor Lie type of characteristic 2. Then the share of elements having an even
order is at least 1/4.

Let t be an involution and x a random element in X. Set z = ttx.
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• If the order m of z is odd, then consider y = z(m+1)/2. Now observe that yx−1 ∈
CX(t) and denote ζt1(x) = yx−1.

• If z is of even order, then i(z) ∈ CX(i) where i(z) is the involution produced from
z. Denote ζt0(x) = i(z).

Here the superscript t indicates the dependence of the map ζk, k = 0, 1, on the
involution t.

Thus we have a map ζt = ζt0 � ζt1 defined by

ζt : X −→ CX(t)

x �→
{
ζt1(x) = (ttx)(m+1)/2 · x−1 if o(ttx) is odd
ζt0(x) = i(ttx) if o(ttx) is even.

Here o(x) is the order of the element x ∈ X. Note that one can test whether an
element x ∈ X has odd or even order by raising it to the odd part m of the exponent E
and compare it with 1. Moreover, if o(x) is odd then x(m+1)/2 = x(o(x)+1)/2. Therefore
we can construct ζt0(x) and ζt1(x) without knowing the exact order of ttx.

Observe that if c ∈ CX(t), then

ζt1(cx) = (ttcx)(m+1)/2 · x−1c−1 = (ttx)(m+1)/2 · x−1c−1

= ζt1(x) · c−1,

ζt0(xc) = i(t · txc) = i(tc · txc) = i((t · tx)c) = i(ttx)c

= ζt0(x)c.

Therefore if the elements x ∈ X are uniformly distributed and independent inX, then

• the distribution of the elements ζt1(x) in CX(t) is invariant under the right multi-
plication of the elements in CX(t), in other words, if S ⊂ CX(t) and c ∈ CX(t),
then

P (ζt1(x) ∈ S) = P (ζt1(x) ∈ Sc).

• the distribution of the elements ζt0(x) in CX(t) is invariant under the conjugation
action of CX(t) on itself, in other words

P (ζt0(x) ∈ S) = P (ζt0(x) ∈ Sc).
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Hence we have the following important result for the construction of the centralizers
of involutions in black box groups.

Theorem 4.2 [18] Let X be a finite group and t ∈ X be an involution. If the elements
x ∈ X are uniformly distributed and independent in X, then

1. the elements ζt1(x) are uniformly distributed and independent in CX(t), and

2. the elements ζt0(x) form a normal subset of involutions in CX(t).

We will use both of the functions ζt0 and ζt1 in the recursive steps to generate CX(t).
It follows directly from Theorem 4.2 that the image of the function ζt1 is CX(t) and the
image of ζt0 generates a normal subgroup in CX(t).

4.2. The use of the maps ζi0 and ζ
i
1

If there is a good proportion of elements in a group G for which the map ζi1 is defined,
then, following Theorem 4.2, the map ζi1 is an ideal black box in the construction of
CG(i). The generation of finite (quasi)simple groups by random elements is studied in
[36, 48, 57] and combining the results we have that randomly chosen two elements in a
finite simple group G generate G with probability tends to 1 as the order of G tends to
infinity.

In a finite simple group G of Lie type of odd characteristic, an estimate for the
distribution of the elements g ∈ G where iig has odd order for an involution i ∈ G is
announced indepently by Borovik [18] and Parker and Wilson [66].

Theorem 4.3 [18, 66] Let G be a finite simple group of Lie type of odd characteristic and
Lie rank n. If i is an involution in G, then the product iig has odd order with probability
c/n for some positive constant c.

It may happen, in some cases, that the map ζ1 is not efficient to generate the
centralizers of involutions. For example, let Y = PSL2(q) and q is a big odd prime
power, then random elements are regular semisimple with probability very close to 1,
and hence belong to a cyclic torus of order (q ± 1)/2. Note that one of the tori has even
order and at least half of its elements have even order. Therefore the probability that the
elements having even order in Y is close to 1/4, see also Theorem 4.1. All involutions
in Y are conjugate and the product of two random involutions is regular semisimple.
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Therefore the product of two random involutions in Y has even order with probability
close to 1/4. Now let t be an involution in X = Y ×· · ·×Y (n times) acting non-trivially
on each component, then one has to do these computations componentwise and therefore
the product of two random involutions has odd order with probability close to 1/4n. This
shows that when n is a big number, then the map ζ1 is rarely defined for such involutions
in which case the map ζ0 is defined for almost all x ∈ X and we use the map ζ0. It turns
out that, in a group of Lie type of odd characteristic, the image of the map ζ0 generates
sufficiently big subgroup for most of the purposes.

Let i ∈ G be any fixed involution. We define

♥i(G) = 〈ζi0(g) | g ∈ G〉.

We use here the convention that ζi0(g) = 1 if iig has odd order.

Theorem 4.4 [75] Let G be a finite quasi-simple group of Lie type over a field of odd
characteristic p and i ∈ G be an involution.

1. If G is classical then ♥i(G) contains the semisimple socle of CG(i) except for the
groups (P)Sp2n(q) and the classical involutions.

2. If G is exceptional then ♥i(G) contains at least one component in CG(i).

In the symplectic groups the description is as follows:

Lemma 4.5 [75] Let G = (P)Sp2n(q), q > 3 and i be a classical involution.

1. If n � 3, then ♥i(G)′ ∼= Sp2n−2(q).

2. If G = Sp4(q), then ♥i(G) = Z(G).

3. If G = PSp4(q), then ♥i(G) � E(CG(i)) where E(CG(i)) is the semisimple socle of
CG(i).

The proof of Theorem 4.4 follows mainly from the famous Glauberman Z∗-theorem
[37]. We illustrate this result in the easiest case where the rest of the proof follows the
same idea. Let G = SLn(q) and i = (−1,−1, 1, . . . , 1) ∈ G be an involution. Then
CG(i)′ = SL2(q)×SLn−2(q). It is easy to see that the involution j = (1,−1,−1, 1, . . . , 1)
is conjugate to i, say j = ig for some g ∈ G, and j ∈ CG(i). Now ζi0(g) = iig does
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not centralize neither of the components in CG(i)′ and hence CG(i)′ � ♥i(G) since
♥i(G) ✂CG(i).

The values of the map ζi0 belong to the union of the conjugacy classes of involutions
in CG(i):

S = i♥i(G)
1 ∪ · · · ∪ i♥i(G)

k

with the probability distribution invariant under the conjugation from the elements in
CG(i). If G is a finite simple group and S is a normal subset then a result of Liebeck
and Shalev [58, Theorem 1.1] asserts that there exists a constant c such that Sn = G for
any n � c log |G|/ log |S|. If G is a direct product of simple groups, then one has to take
a normal subset which is a direct product of normal subsets in the components, and, by
Theorem 4.4, we have a similar estimate for direct product of simple groups of Lie type
of odd charactersitic.

5. The algorithms

In this section we present black box group algorithms for the groups X where
X/Op(X) are simple groups of Lie type of odd characteristic p. If X/Op(X) is a quasi-
simple group of Lie type with non-trivial center, then we can find Z(X) by a Monte–Carlo
polynomial time algorithm in [11]. Therefore our algorithms can be extended to the quasi-
simple groups of Lie type over a field of odd order q > 3.

We first present an algorithm which constructs a long root SL2(q)-subgroup in a finite
simple groups of Lie type of odd characteristic in Section 5.1. This algorithm can be
easily extended to an algorithm for the groups with non-trivial p-core which constructs
a subgroup K � X such that K/Op(K) is a long root SL2(q)-subgroup in X/Op(X).
Once we constructed such a subgroup, we reduce the problem of determining whether
Op(X) �= 1 to this subgroup, and by using recursive arguments on the centralizers of
classical involutions we decide whether Op(X) �= 1 in Section 5.2. The construction of
a long root SL2(q)-subgroup in simple groups of Lie type of odd characteristic gives rise
to a probabilistic recognition of classical groups and we present this algorithm in Section
5.3. Finally we discuss the construction of the Curtis-Tits system in simple groups of Lie
type of odd characteristic in Section 5.4.
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5.1. Construction of a long root SL2(q)-subgroup in simple groups of Lie type

In this section let G denote a finite simple group of Lie type of odd characteristic. Our
aim is to present the following algorithm.

Algorithm 5.1 “Construction of a long root SL2(q)-subgroup in a finite simple group of
Lie type”

Input: A black box group isomorphic to a finite simple group G of Lie type defined
over a field of odd size q > 3 except PSL2(q) and 2G2(q).

Output: A black box subgroup K � G which is a long root SL2(q)-subgroup in G.

Note that if G is isomorphic to PSL2(q) or 2G2(q), then there is no subgroup in G
isomorphic to SL2(q). Therefore it is natural to exclude these groups in Algorithm 5.1.

Let G be a group and Gi � G, i = 1, . . . , n. Assume that

G = 〈Gi | i = 1, . . . , n〉

and Gk commutes with Gl elementwise for any k �= l. Then we say that G is commuting
products of Gi for i = 1, . . . , n.

We split Algorithm 5.1 into four pieces:

1. Construct commuting products of (P)SL2(q) in G, say L.

2. Construct a component K = SL2(q) in L. If SL2(q) does not appear as a component
in L, return to Step 1.

3. Find the size of the underlying field in K found in the previous step.

4. Check whether K is a long root SL2(q) or not.

Note that the long root SL2(q)-subgroups in simple groups of Lie type of odd charac-
teristic are indeedisomorphic to SL2(q) by Theorem 3.3. Therefore if we have commuting
products of PSL2(q) in Step 2, then we conclude that the commuting products of PSL2(q)
do not contain a long root SL2(q)-subgroup as a component and we return to Step 1 for
the construction of new commuting products of (P)SL2(q).

In the case of black box groups X where X/Op(X) is isomorphic to a finite simple
group over a field of odd size q > 3, the algorithm is as follows.
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Algorithm 5.2 “Main Algorithm”

Input: A black box group X where X/Op(X) is isomorphic to a finite simple group
over a field of odd size q > 3.

Output: A black box group K where K/Op(K) is a long root SL2(q)-subgroup in
X/Op(X).

The structure of Algorithm 5.2 is exactly the same as the structure of Algorithm 5.1.

5.1.1. Constructing commuting products of (P)SL2(q)

In this section we apply the results and the observations in Section 4.2 to present the
following algorithm.

Algorithm 5.3 “Construction of a commuting product of (P)SL2(q)-subgroups”

Input: A black box group isomorphic to a finite simple group G of Lie type defined
over a field of odd size q except PSL2(q) and 2G2(q).

Output: A black box group which is commuting products of (P)SL2(qk) for various
k � 1.

Observe that recursive construction of the semisimple socles of the centralizers of
involutions in G ends with a commuting products of (P)SL2(q) where q may vary. The
computation goes as follows. We first produce a non-trivial involution i = i(g) from a
random element g ∈ G by using the arguments in Section 1.3.1. Then we construct a
sufficiently large subset S ⊂ G consisting of random elements and generate a subgroup of
CG(i) by using the image of the map ζi = ζi0�ζi1 on S. Note that if ζi1 is rarely defined for
the subset S, then ζi0 is defined for almost all elements in S. The image of ζi0 generate a
subgroup containing component(s) in the semisimple socle of CG(i) by Theorem 4.4 and
the arguments in Section 4.2 except that G = Sp4(q) in which case the involution i ∈ G
is a classical involution and we can assume that the map ζi1 is defined for most of the
elements of S by Theorem 5.7. Hence we can construct a subgroup in CG(i) containing a
quasi-simple subgroup. Note that the second derived subgroup CG(i)′′ is the semisimple
socle of CG(i), see the remark after Theorem 3.9, and we compute derived subgroups of
black box groups in polynomial time by an algorithm in [7]. Hence we have subgroup L
which is a commuting product of quasi-simple groups of Lie type of characteristic p by
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Theorem 3.9. Now we search for a non-central involution j ∈ L. If we can not construct
a non-central involution in L in reasonable number of times, then we conclude that L is a
direct product of SL2(q) by a result in [43] and we return this subgroup. If a non-central
involution j ∈ L is found, then we construct CL(j) by using the same arguments.

Note that if CG(j) is solvable of length at most 2, that is, CG(j)′′ = 1, for a pseudo-
involution (resp. an involution) j ∈ G in a quasi-simple (resp. simple) group G of Lie
type over a field of odd size q > 3, then G ∼= SL2(q) (resp. PSL2(q)).

Now we have two cases: Either CL(j)′′ = 1 or �= 1. If CL(j)′′ = 1, which is the case
if L is a central product of several SL2(q) or direct product of PSL2(q) and j acts as
a pseudo-involution or an involution in all components respectively, then we return the
subgroup 〈jL〉′. If CL(j)′′ �= 1, then we conclude that CL(j)′′ is the semisimple socle of
CL(j) and we set G := CL(j)′′ and repeat the process for this subgroup.

It is clear that a centralizer of an involution contains a maximal torus T of G,
and the semisimple socle is normalized by T , see Theorem 3.9. Hence the commuting
products of (P)SL2(q) obtained by the recursive construction of centralizers of involutions
is normalized by a maximal torus of G.

5.1.2. Constructing SL2(q)

We continue Algorithm 5.3 with the following algorithm.

Algorithm 5.4 “ Construction of SL2(q)”

Input: A black box group L which is isomorphic to commuting products of (P)SL2(ql)
for various l.

Output: A black box group isomorphic to SL2(qk) for some k appearing as a factor in
the commuting product or return the statement “L is a direct product of PSL2(q)”.

As the involution in SL2(q) is central, we are going to use pseudo-involutions to
construct a component in L. We will call an element j a pseudo-involution in a quasimple
group G if j2 �= 1 but j2 ∈ Z(G). We define the maps ζ0 and ζ1 in the same way for the
pseudo-involutions and by a direct computation, we have 〈ζj1(G)〉′′ = 1 for G = SL2(q).

We define the 2-height of an integer n as the integer which is the maximum power of
2 dividing n. The 2-height of a group element is defined to be the 2-height of its order.

It is easy to see that random elements in L have different 2-heights with high prob-
ability. Therefore a pseudo-involution j ∈ L constructed from a random element acts
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non-trivially on fewer number of components with high probability. Hence 〈jL〉′ contains
fewer number of components and 〈ζj1(L)〉′′ contains the complement in L. If we can not
find a pseudo-involution, we conclude that L is direct products of PSL2(q) in which case
we return to Algorithm 5.3 to construct new commuting products of (P)SL2(q). Now
we set L = 〈jL〉′ and continue in this way until we get 〈ζj1(L)〉′′ = 1. If we always have

〈ζj1(L)〉′′ = 1 for different pseudo-involutions after reasonable number of times, then we
conclude that L = SL2(q).

5.1.3. Finding the order of the field

Algorithm 5.5 “Finding field order”

Input: A black box group K isomorphic to SL2(q).

Output: The order q of the underlying field.

Let K be a black box group isomorphic to SL2(q). The elements of K have order
dividing either q−1, q+1 or 2p where p is the characteristic of the field. The semisimple
elements belong to tori of order q±1. The probability of finding a generator in these tori
is

Φ(q ± 1)
q ± 1

� 1
eγ log log(q ± 1)

where Φ is Euler function, e is the base of the natural logarithm and γ is Euler con-
stant [60]. Therefore we can find an element of order q ± 1 with probability at least
1/eγ log log(q − 1).

Let E = pnm, (p,m) = 1, be a global exponent for the group G. We produce a set
S ⊂ K consisting of random elements. It is clear that gp(p

n−1) = 1 for each g ∈ S.

Starting from k = 1, we check whether gp(p
2k−1) = 1 for each g ∈ S. When we find

the smallest number k, 1 � k � n such that gp(p
k−1) = 1 for each g ∈ S, we deduce

that the order of the undelying field is q = pk. The probability of error is at most
(1 − 1/eγ log log(q ± 1))|S|.

Note that the order of the field found by Algorithm 5.5 is not necessarily the order
of the field on which G is defined, for example, let G = PSL4(q) and q ≡ −1 mod4, then
there exists an involution i ∈ G such that K = CG(i)′′ = PSL2(q2) and Algorithm 5.5
returns q2.
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5.1.4. A long root SL2(q)

Algorithm 5.6 “Checking whether a given SL2(q) is a long root SL2(q)”

Input: A black box subgroup K � G which is known to be isomorphic to SL2(q).

Output: The truth value of the statement: “K is a long root SL2(q)-subgroup in G”.

If K is a long root SL2(q)-subgroup, then K = Kg for any g ∈ CG(i)′′ by Lemma 3.4.
Assume that G �= G2(q) or 3D4(q). If K � G is not a long root SL2(q)-subgroup

but isomorphic to SL2(q), then we can find with high probability g ∈ CG(i)′′ such that
K �= Kg and again with high probability we can find an element h ∈ 〈K,Kg〉 whose
order does not divide |K|, in other words, we are in the setting of verification problem,
see Lemma 3.5. For example, let G = SLn(q), K = SL2(q2) and i ∈ K be the involution.
Then CG(i)′ ∼= SL4(q)×SLn−4(q), and 〈K,Kg〉 = SL4(q) with probability 1−O(1/q) for
random g ∈ CG(i)′, and there are sufficiently many elements in SL4(q) whose orders do
not divide |K|.

If G = G2(q) or 3D4(q), then we need to have a special procedure to conclude that a
given subgroup isomorphic to SL2(q) indeed corresponds to a long root SL2(q)-subgroup
in G. Note that there is only one conjugacy class of involutions in G. Let G =3 D4(q),
then CG(i) ∼= SL2(q) ◦2 SL2(q3) and SL2(q3) corresponds to a short root while SL2(q)
corresponds to a long root SL2(q)-subgroup. If G = G2(q) then CG(i) = SL2(q)◦2 SL2(q)
and one of the SL2(q)’s corresponds to a short root and the other corresponds to a long
root SL2(q)-subgroup. We refer to Algorithm 4.17 in [74] for the rest of the technical
details of the construction of a long root SL2(q)-subgroup.

Notice that the output “K is not a long root SL2(q)-subgroup” is always true.
Note that the long root SL2(q)-subgroups are normalized by a maximal standard torus

of G.

5.2. Recognition of the p-core

In the recognition algorithm for the p-core, we are going to use classical involutions and
the map ζ1. The distribution of the elements for which the map ζ1 is defined is given by
the following theorem.

Theorem 5.7 [75] Let G be a finite simple classical group of odd characteristic and i ∈ G
be a classical involution, then the product i · ig has odd order with probability bounded from

200
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below by constant.

Parker and Wilson obtained a similar estimate in their preprint [66] for the exceptional
groups of Lie type of odd characteristic.

Algorithm 5.8 “Recognition of the p-core”

Input: A black box group X with the property that X/Op(X) is a finite simple group
of Lie type of odd characteristic p.

Output: If Op(X) �= 1, then the algorithm finds a non-trivial p-element in Op(X)
with probability bounded from below by a constant. Otherwise it returns the state-
ment “Possibly, the p-core is trivial”.

Let X/Op(X) ∼= PSL2(q) and i ∈ X be an involution. Assume that Q = Op(X) �= 1.
It is easy to see that CQ(i) �= 1 and therefore Q1 = Op(CX(i)) �= 1. Now CX(i)/Q1 is
isomorphic to a dihedral group of order q±1. If Op(CX(i)′) = 1, then random elements in
CX(i) have orders which are multiple of p and we can find a p-element in Q1 by raising a
random element in CX(i) to the power q±1. Hence we can assume that Op(CX(i)′) �= 1.
Now CX(i)′/Op(CX(i)′) is isomorphic to a cyclic group of order (q ± 1)/2. Hence when
we take the power (q ± 1)/2 of random elements in CX(i)′ we can produce p-elements in
Op(Cx(i)′). Our approach in the general case is to reduce to problem to this case in all
finite simple groups of Lie type of odd characteristic p.

If X/Op(X) ∼= 2G2(q) and ī ∈ X/Op(X) is an involution, then CX/Op(X)(̄i) ∼=
〈̄i〉 × PSL2(q2) and hence we use the above method to determine whether Op(X) �= 1.

We first construct a subgroup K where K/Op(K) is a long root SL2(q)-subgroup in
X/Op(X) by using Algorithm 5.2. Then we construct CX(i) by using the map ζi1 where
i is a classical involution in K. The efficiency of the map ζi1 for classical involutions is
given by Theorem 5.7. We know that (CX(i)/Op(CX(i)))′′ is the semisimple socle of
CX(i)/Op(CX(i)) by Lemma 3.10 and we construct 2-components K and L of CX(i).
We can determine whether Op(K) �= 1 by using the argument above. If we find that
Op(K) = 1, and if Op(X) �= 1 then Op(L) �= 1. Therefore we set X := L and repeat this
procedure. If we always have Op(K) = 1 for all K constructed in this way, we deduce
that Op(X) = 1.
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5.3. Probabilistic recognition of classical groups

In this section we present an algorithm which determines the type (linear, symplectic,
unitary, orthogonal) of a given black box classical group which is based on properties of
long root SL2(q)-subgroups in classical groups. In particular, we present a black box group
algorithm distinguishing symplectic groups PSp2n(q) from othogonal groups PΩ2n+1(q)
with given degree of certainty where such an algorithm was first presented by Altseimer
and Borovik [1].

Theorem 5.9 Let G be a finite simple classical group, K a long root SL2(q)-subgroup
and g ∈ G. Then, with probability 1 −O(1/q), if

• G = PSLn(q) and n > 4, then 〈K,Kg〉 = SL4(q);

• G = PSUn(q) and n > 4, then 〈K,Kg〉 = SU4(q);

• G = PSp2n(q) and n > 2, then 〈K,Kg〉 = Sp4(q);

• G = PΩε
n(q) and n > 8, then 〈K,Kg〉 = Ω+

8 (q).

If the rank of the group is smaller in the above cases, then we have 〈K,Kg〉 = G with
probability 1 − O(1/q).

The algorithm is as follows.

Algorithm 5.10 “Determination of the type”

Input: A black box group G isomorphic to a finite simple classical group of odd
characteristic p.

Output: It finds the size of the underlying field, q, and returns one of the following
statements: “G is isomorphic to PSLn(q) for some n”, “G is isomorphic to PSUn(q)
for some n”, “G is isomorphic to PSp2n(q) for some n”, “G is isomorphic to PΩε

n(q)
for some n”.

The groups SL4(q), SU4(q), Sp4(q) and Ω+
8 (q) can be easily distinguished from each

other by the analysis on the orders of elements, hence the type of the group G is
determined by Theorem 5.9.
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5.4. Construction of Curtis-Phan-Tits system

In this section we present an algorithm which constructs all long root SL2(q)-subgroups
in a black box group G isomorphic to PSLn(q), n � 3, q � 5 which correspond to the
nodes in the extended Dynkin diagram of PSLn(q). The algorithm for PSUn(q) can be
read along the same steps by changing the notation SL to SU.

Algorithm 5.11 “Curtis-Tits system for PSLn(q)”

Input: A black box group G isomorphic to PSLn(q), q � 5 odd and n � 3.

Output: Some generators for long root SL2(q)-subgroups of G which correspond to
the nodes in the extended Dynkin diagram of G.

Assume that n � 4. We first construct a long root SL2(q)-subgroup K1 � G. The
main task here is to construct a long root SL2(q)-subgroup K2 � G which together with
K1 generate SL3(q). Recall that the long root SL2(q)-subgroups are normalized by a
maximal standard torus of G. Recall also that two random long root SL2(q)-subgroups
generate a subgroup isomorphic to SL4(q) with probability 1 − O(1/q) by Theorem 5.9.
Let i1 ∈ K1 be the involution. Then CG(i1)′′ = K1L1 where L1

∼= SLn−2(q). We
know by Theorem 4.4 that CG(i1)′′ � ♥i1 (G), which means that the map ζi10 produces
involutions with the property that they do not centralize K1 and L1. It turns out that
the distribution of the elements g ∈ G such that ζi10 (g) is an involution which does not
centralize K1 is bounded from below by constant and such an involution is necessarily a
classical involution [74]. Hence we can construct a classical involution i2 ∈ CG(i1) which
does not centralize K1. The long root SL2(q)-subgroup K2 can be easily constructed from
CG(i2)′′ = K2L2 and it is easy to see that 〈K1, K2〉 = SL3(q).

Let T1 < K1 be a torus of order q − 1, then there is a torus T2 < K2 of order q − 1
such that [T1, T2] = 1 and Ti < NG(Kj) for i, j = 1, 2.

Now we will construct a long root SL2(q)-subgroup K3 � L1 in the same way. Note
that [K1, L1] = 1, therefore we have [K1, K3] = 1. Hence we have constructed three long
root SL2(q)-subgroups K1, K2, K3 such that

• [K1, K3] = 1,

• 〈K1, K2〉 = 〈K2, L2〉 = SL3(q).

• Ti < NG(Kj) for i, j = 1, 2, 3.
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Continuing in this way, we will construct long root SL2(q)-subgroups K1, . . . , Kn−1

where

• [Ki, Kj] = 1 if |i− j| � 2,

• 〈Ki, Kj〉 = SL3(q) if |i− j| = 1.

• Ti < NG(Kj) for i, j = 1, . . . , n− 1

Notice that these subgroups correspond to the root SL2(q)-subgroups in the Curtis-
Tits presentation and hence they correspond to the nodes in the Dynkin diagram. The
maximal standard torus T normalizing each Kj is T = 〈Ti | i = 1, . . . , n− 1〉. In order
to construct the long root SL2(q)-subgroup Kn � G which corresponds to the extra node
in the extended Dynkin diagram, we first compute the involution in = i1 · · · in−1. It
is easy to see that in is a classical involution and it does not centralize K1 and Kn−1.
Hence the subgroup Kn, which can be constructed from CG(in)′′ = KnLn, is a long root
SL2(q)-subgroup corresponding to the extra node in the extended Dynkin diagram.
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Univ. Math. Res. Inst. Publ. 8 (2001).

[24] Brooksbank, P. A., Kantor, W. M.: Fast constructive recognition of black box orthogonal

groups. J. Algebra 300, 256–288 (2006).

[25] Carter, R.: Conjugacy classes in the Weyl group. In: Seminar on Algebraic Groups and

Related Finite Groups 297–318, Lecture Notes in Mathematics 131, Springer, Berlin, 1970.

[26] Carter, R.: Simple groups of Lie type. London-New York-Sydney. John Wiley & Sons. 1972.

[27] Carter, R.: Finite groups of Lie type: Conjugacy classes and complex characters. New York.

Wiley-Interscience. 1985.

[28] Celler, F., Leedham-Green, C. R.: A non-constructive recognition algorithm for the special

linear and other classical groups. In: Groups and Computation II (Eds.: L. Finkelstein and

W. M. Kantor) 61–67, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 28 (1997).

[29] Celler, F., Leedham-Green, C. R.: A constructive recognition algorithm for the special

linear group. In: The atlas of finite groups: ten years on 11–26, London Math. Soc. Lecture

Note Ser. 249, Cambridge Univ. Press, Cambridge (1998)

206
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