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Abstract

We suggest a new proof of Hartley’s theorem on representations of the general

linear groups GLn(K) where K is a field. Let H be a subgroup of GLn(K) and E

the natural GLn(K)-module. Suppose that the restriction E|H of E to H contains

a regular KH-module. The theorem asserts that this is then true for an arbitrary

GLn(K)-module M provided dimM > 1 and H is not of exponent 2. Our proof is

based on the general facts of representation theory of algebraic groups. In addition,

we provide partial generalizations of Hartley’s theorem to other classical groups.
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groups

1. Introduction

In 1986 Brian Hartley [4] obtained the following interesting result:

Theorem 1.1 Let K be a field, E the standard GLn(K)-module, and let M be an irre-
ducible finite-dimensional GLn(K)-module over K with dimM > 1. For a finite subgroup
H ⊂ GLn(K) suppose that the restriction of E to H contains a regular submodule, that
is, E ∼= KH ⊕ E1 where E1 is a KH-module. Then M contains a free KH-submodule,
unless H is an elementary abelian 2-groups.

His proof is based on deep properties of the duality between irreducible representations
of the general linear group GLn(K) and the symmetric group Sn. We give here another
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proof which seems to be more conceptual and more transparent in the sense that it is
based on general principles of representations theory of algebraic groups. We also expect
that our method will have further applications. Observe that we do not consider here the
exceptional case where H is of exponent 2, as it does not seem to be important to justify
an additional work required with our approach.

Theorem 1.1 cannot be generalized to other classical groups without a stronger as-
sumption imposed on H . Examples are available for H of order 3 and 5 (Proposition
6.2). However, we prove the following weaker version of Theorem 1.1:

Theorem 1.2 Let G = Sp2n(K) or Spinn(K) and let H ⊂ G be a subgroup of order
coprime to the characteristic of K. Let E be the natural G-module and let M be an
arbitrary irreducible G-module of dimension greater than 1. Suppose that E|H contains a
free submodule of rank 2. Then M |H contains a regular KH-submodule.

IfG = Sp2n(K) and charK �= 2 then Theorem 1.2 remains valid under assumption that
E|H contains a regular KH-submodule and H is cyclic. This is not true for orthogonal
groups. Our result in this case is the following:

Theorem 1.3 Let G = Spinm(K) where m > 6 and charK �= 2, and let E be the natural
module for G. Let g ∈ G be of odd order d and let Eg denote the subspace of vectors
in E fixed by g. Suppose that g has d distinct eigenvalues on E. Then g has d distinct
eigenvalues on every non-trivial irreducible G-module M except when d = 3 or 5 and
dimEg = m− d+ 1.

We only consider below the case where the ground field K is algebraically closed, and
representations of (and modules for) classical groups G in question are rational. The case
where K is infinite but not algebraically closed follows from this one due to a theorem
of Borel and Tits [1] as explained in [4, page 123]. If K is finite then every irreducible
representation of G extends to a rational representation of the respective classical group
over the algebraic closure of K. This is essentially a theorem of Steinberg [8, Theorem
43], see [4, page 114] for details.

2. Preliminaries

We first make easy reduction to a particular case of Theorem 1.1.

Lemma 2.1 It suffices to prove the theorem for n = |H |.
Proof. Indeed, express E = E1 ⊕ E2 where E1

∼= KH is a regular KH-module (so
dimE1 = |H |) and E2 is a complement. Then H ⊂ D := D1×D2 where Di

∼= GL(Ei) for
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i = 1, 2. Therefore, the restriction M |D contains an irreducible submodule L = L1 ⊗ L2

where Li is a Di-module and L1 is not 1-dimensional. Then L|H = L1|H ⊗ L2|H . As
the theorem is assumed to be true for E1, the restriction L1|H contains a regular KH-
submodule. Then this is so for LH and for MH . ✷

The following lemma by R. Bryant is stated in [4, page 116].

Lemma 2.2 Let G be a finite group of order n and let 1 ≤ m < n be an integer. Then
there is a subset R of G of size m such that xR = R implies x = 1 unless G has exponent
2 and m = 2 or n− 2.

Let Ω be a finite set of size n and let Ωm for 1 < m < n denote the set of all unordered

m-tuples of elements from Ω (so |Ωm| =
(
n

m

)
). Let G be a subgroup of Sn = Sym (Ω)

such that G has a regular orbit on Ω. We need a result stated as Proposition 2.3 which
easily follows from Bryant’s lemma but it has not been stated in [4].

Proposition 2.3 Let G be a finite group acting on a set Ω of size n. Suppose that G
has a regular orbit on Ω. Then G has a regular orbit on Ωm for 1 < m < n, except for
the case where G is of exponent 2, acts transitively on Ω and m = 2 or n− 2.

Proof. Suppose first that G is transitive on Ω, that is, n = |G|. Then the elements of
Ω can be labeled by elements of G, more precisely, Ω and G are isomorphic G-sets where
the action of G on itself is defined via the left multiplication. By Lemma 2.2, there is an
m-tuple R ⊂ Ωm such that xR = R for x ∈ G implies x = 1 unless G is of exponent 2
and m = 2 or n− 2. It follows that GR is a regular G-orbit on Ωm unless we are not in
the exceptional case.

Suppose next that G is intransitive. If m �= 2, n − 2 then the result immediately
follows from that for the transitive case. Let m = 2. Let a ∈ Ω be such that the orbit
Ga is regular and b ∈ Ω with b /∈ Ga. Then {xa, xb} = {a, b} for x ∈ G implies x = 1
and the result follows. As the G-sets Ωm and Ωn−m are isomorphic, this also implies the
result for m = n − 2. ✷

Remark. The stabilizer of a point in Ωm is isomorphic to Sn−m ×Sm, and if n−m ≥
m then Sn−m × Sm is a Young subgroup of Sn corresponding to the Young diagram
λ = [n−m,m].
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Proposition 2.4 Let G be a finite group, not of exponent 2, acting on a set Ω of size n.
Suppose that G has a regular orbit on Ω. Then G has a regular orbit on Sn/Yλ where Yλ

is any Young subgroup of Sn whose Young diagram consists more than one row.

Proof. Let λ = (λ1, . . . , λk) where λ1 ≥ · · · ≥ λk > 0 is a partition of n. Consider
the partition µ = (n −m,m) where n−m = λ1 + · · ·+ λk−1 and m = λk. Then we can
assume that Yλ is contained in Yµ. By Lemma 2.4, G has a regular orbit on Sn/Yµ, which

is equivalent to saying that G∩ g−1Yµg = 1 for some g ∈ Sn. Then G∩ g−1Yλg = 1. This

is equivalent to saying that G has a regular orbit on Sn/Yλ. ✷

3. Algebraic groups and their modules

We first make short comments to explain the notions of weight and weight space
to readers unfamiliar with the representation theory of algebraic groups. Let K be
algebraically closed field of characteristic p ≥ 0.

The set T of diagonal matrices in SLn(K) is an example of a maximal torus in an

algebraic group. Denote byK× the multiplicative group ofK and set T ∗ := Hom(T,K×).
For λ ∈ T ∗ and for an SLn(K)-moduleM we setMλ = {x ∈M : tx = λ(t)x for all t ∈ T}.
If Mλ �= 0 then T is called the T -weight space of M of weight λ or just the weight space
of weight λ if T is fixed. We set T ∗(M) = {λ ∈ T ∗ : Mλ �= 0} and call T ∗(M) the set of
weights of M .

Observe that GLn(K) = Z · SLn(K) where Z denotes the group of non-zero scalar
matrices. It follows that every irreducible GLn(K)-module remains irreducible under
restriction to SLn(K). Therefore, ifM is an GLn(K)-module then we can and shall keep
the same meaning for Mλ, the weight space of weight λ. Let S ∼= Sn be the group of
permutational matrices in GLn(K). Then S normalizes T , as it is the group of diagonal
matrices of determinant 1, and moreover S acts faithfully on T . The conjugation action
of S on T induces the dual action of S on T ∗ in an obvious way, namely, for λ ∈ T ∗ and
s ∈ S one defines λs(t) = λ(s−1ts). Therefore, if x ∈Mλ and s ∈ S then sx ∈Mλs . This
tells us that S permutes the T -weight spaces of M and this action is isomorphic to the
action of S on T ∗(M). Therefore, it does not depend in a sense on the choice of M , as it
is described in terms of the action of S on T ∗.

Theorem 3.1 Let ω be any non-zero weight of a G-module M where G is a simple
algebraic group. Let CW (ω) denote the stabilizer of ω in W , the Weyl group of G. Then
CW (ω) is generated by reflections. In particular, if G = SLn(K)) where W ∼= Sn then
CW (ω) is a Young subgroup of Sn.
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Proof. This is essentially a particular case of [8, Addendum, Theorem 36]. In fact,
the weights of rational representations of an algebraic group G are elements of a vector
space V (over the rational numbers) on which W acts ‘naturally’, that is, as a group
generated by reflections. If G = SLn(K)) then dim V = n− 1 and reflections are exactly
transpositions in Sn. It is well known and easy to justify that every subgroup of Sn

generated by transpositions is a Young subgroup. ✷

4. Proof of Hartley’s Theorem

By Lemma 2.1, it suffices to prove the following particular case of Theorem 1:

Proposition 4.1 Let E be the natural module for GLn(K) and let H be a finite subgroup
of GLn(K) not of exponent 2. Suppose that E itself is a regular KH-module. Let M be
an irreducible rational GLn(K)-module of dimension greater than 1. Then M |H contains
a regular H-submodule.

Proof. Observe first that a regular KH-module is isomorphic to the permutational
KH-module associated with the action of H on itself via the left multiplications. It
follows that there is a basis e1, . . . , en of E such that {e1, . . . , en} is a regular H-set.
Denote by T the set of diagonal matrices in SLn(K) with respect to this basis. Then
H normalizes T so we can assume that H ⊂ S where S is the group of permutational
matrices. Moreover, H is a transitive subgroup of S ∼= Sn and n = |H |.

Let W := NSLn(K)(T )/T denote the Weyl group of SLn(K) and let Z be the center

of GLn(K). Then W = NGLn(K)(T )/TZ and the image of S under the projection

π : NGLn(K)(T ) → NGLn(K)(T )/TZ coincides with W . It follows that the action of

H on T by conjugation coincides with the action of π(H) as a subgroup of the Weyl
group of SLn(K).

Let ω be a non-zero weight ofM |SL(n,K). By Theorem 3.1, the orbitWω is isomorphic

to Sn/Yλ for some Young subgroup Yλ of Sn. By Proposition 2.4, H has a regular orbit
on Sn/Yλ. Hence there is a weight µ ∈Wω such that the orbit Hµ is regular. Let Uµ be
the T -weight space of weight µ inM . Then hUµ = Uµ for h ∈ H implies h = 1. Therefore

for any non-zero vector 0 �= u ∈ Uµ the vectors {hu : h ∈ H} belong to distinct weight
spaces, and hence they are linear independent. It follows that the K-span of the vectors
{hu : h ∈ H} forms a regular KH-submodule of M . ✷
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Remark. In fact, we have shown that every orbitWω for non-zero weight ω contains a
regular H-orbit. As for distinct dominant weights ω, ω′ the orbits Wω,Wω′ are disjoint,
it follows that M |H contains a free KH-submodule of rank r which is not less than the
number of non-zero dominant weights of M . Moreover, one can refine this to claim that
r is not less than the sum of the dimensions of the weight spaces Mω where ω runs over
all non-zero dominant weights of M .

5. Other classical groups

In this section we assume that the reader is familiar with standard facts of the theory
of algebraic groups and their representations.

Lemma 5.1 Let V be an orthogonal or symplectic vector space over a algebraically closed
field K and let I(V ) denote the group of isometries of V . LetH be a subgroup of I(V ) such
that V is a homogeneous KH-module. (This means that V is the sum of irreducible KH-
submodules isomorphic to each other.) Suppose that V has no totally isotropic (totally
singular) KH-submodule. Then V is irreducible.

Proof. Suppose first that V is not an orthogonal space in characteristic 2. Then
there exists an anti-automorphism σ of the matrix algebra Mn(K) such that I(V ) =
{x ∈ Mn(K) : σ(x)x = 1n}. (Here 1n stands for the identity matrix.) As V is a
homogeneous KH-module, the centralizer C of H in Mn(K) is isomorphic to Mk(K)
where k is the composition length of V as a KH-module. As σ(H) = H , it follows that

σ(C) = C. Let Cσ = {x ∈ C : σ(x)x = 1n}. Then Cσ = C ∩ I(V ). Let U = Kk

be the natural Mk(K)-module. It is known (see for instance Wagner [12]) that there
exists a non-degenerate bilinear form f on U such that Cσ ∼= I(U). Suppose (arguing
by contradiction) that the lemma is false. Then k > 1 and hence U contains a non-zero
isotropic 1-dimensional subspace U ′, say. (This is true in the orthogonal case with k = 2
as K is algebraically closed.) Moreover, there is a basis in U such that I(U) contains

the subgroup T = {ta : 0 �= a ∈ K} such that TU ′ = U ′ and ta := diag(a, 1k−2, a
−1)

for all 0 �= a ∈ K. Moreover, we can assume that tau = au for u ∈ U ′. Now view T as
a subgroup of C due to an isomorphism Cσ ∼= I(U). Set V ′ = {v ∈ V : tav = av for
a ∈ K, a �= 0}. Evidently, dimV ′ = n/k and HV ′ = V ′. We show that V ′ is totally

isotropic. Suppose the contrary. Then V ′ �= R where R := V ′∩ (V ′)⊥ is the radical of V ′.
Moreover, R is a KH-module whose KH-module complement R′, v is non-degenerate.
Therefore, ta|R′ belongs to I(R′). However, ta|R′ = a · Id is scalar but the only scalar
matrices in I(V ′) are ±Id, so we have a contradiction. We are left with the case where
V is an orthogonal space in characteristic 2. Let Q be the quadratic form defining the
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orthogonal structure on V and let f be the associated bilinear form. The above argu-
ment shows that V contains an H-submodule V ′ such that f(v, w) = 0 for any v, w ∈ V ′

and ta|V ′ = a · Id. If V ′ is not totally singular then Q(v) �= 0 for some v ∈ V ′. Then

Q(v) = Q(tav) = Q(av) = a2Q(v) which is false for a �= 1. ✷

Lemma 5.2 Let G = Sp2n(K) or Spinn(K) and let H ⊂ G be a subgroup of order
coprime to the characteristic of K. Let E be the natural G-module. Suppose that E|H
contains a free submodule of rank 2. Then E|H contains a regular totally isotropic (totally
singular) H-submodule.

Proof. Let τ be an irreducible KH-module, and let τ ′ be the dual of τ . Denote by Eτ

the homogeneous τ -component of E, that is, the sum of all irreducible KH-submodules
of E|H isomorphic to τ . Let dτ denote the composition length of H on Eτ . Then
dτ ≥ 2 dim τ . By [7, Lemma 3.3], Eτ is either (i) non-degenerate or (ii) totally isotropic
(totally singular), and in the latter case Eτ′ is totally isotropic (totally singular), τ �∼= τ ′,
dimEτ = dimEτ′ and Eτ + Eτ′ is non-degenerate. It follows that dτ = dτ′ .

Suppose first that (i) hold. Let Y be a maximal totally isotropic (totally singular)

KH-submodule of Eτ . Then L := (Eτ ∩ Y ⊥)/Y contains no totally isotropic (totally
singular) KH-submodule. Set t = dimL. We show that either t = 0 or t = dim τ .
Let t �= 0. Then L inherits the bilinear (quadratic) form which defines G so HL is a
subgroup of D := Spt(K) or SOt(K). By Lemma 5.1, L is irreducible KH-module and

dimL = dim τ . As Y and Eτ/(Eτ ∩ Y ⊥) are isomorphic KH-modules, the composition
length of H on Y is dτ/2 ≥ dim τ if t = 0 and (dτ − 1)/2 otherwise. In the latter case dτ

is odd, so dτ > 2 dim τ . Hence the composition length of H on Y is at least dim τ in both
the cases. Let (ii) hold. Then Eτ has a submodule X, say, of composition length dim τ .

In addition, the composition length of H on Eτ′/(Eτ′ ∩X⊥) is equal to that of X which

is dim τ . Therefore, the composition length of Eτ′ ∩X⊥ is at least dτ −dim τ ≥ dim τ . It

follows that Eτ′ ∩X⊥ contains a submodule X′, say, of composition length dim τ ′. The

module X +X′ is totally isotropic (totally singular) as X′ ⊆ Eτ′ ∩X⊥.
Obviously, E = ⊕Eτ where τ runs over the set IrrH of irreducible KH-modules.

Moreover, Eτ is orthogonal to Eσ unless σ = τ or τ ′. If Eτ is non-degenerate, let Yτ be
KH-submodule Y of Eτ constructed above and Xτ its submodule of composition length
dτ . If Eτ is totally isotropic (totally singular) then let Xτ ⊆ Eτ and Xτ′ ⊆ Eτ′ be
submodules orthogonal to each other as described above. Then R := ⊕τ∈IrrHXτ is a to-
tally isotropic (totally singular) submodule of E isomorphic to the regularKH-module. ✷
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Proof of Theorem 1.2. There is an orthogonal decomposition E = E1 ⊕ E2

where E1 = R + R′ and R,R′ are totally isotropic (totally singular) KH-modules, each
isomorphic to KH , and E2 is non-degenerate. Indeed, let R be a regular totally isotropic
(totally singular) submodule of E|H constructed in Lemma 5.2. Define E2 to be a KH-

module complement of R inR⊥ and E1 = E⊥
2 . Then E2, and hence E1, is non-degenerate.

Take for R′ anyKH-module complement ofR in E1. Suppose that E is not an orthogonal
space in characteristic 2. Then R′ is totally isotropic (totally singular) as otherwise R′

would contain a non-degenerate submodule D, say, and if we let D1 = D⊥ ∩E1 then D1

is non-degenerate and contains R. Then 2 dimR ≤ dimD1 which is false. Suppose next
that E is an orthogonal space in characteristic 2. Then we refine this argument as follows.
Let R0 be the sum of all non-trivial KH-submodules of R. Then the above argument
applied to R0 in place of R yields a similar submodule R′

0. As R′
0 is dual to R0, it has no

non-zero vectors fixed by H . We show that R′
0 is totally singular. Indeed, if not, set X

be the set of all singular elements in R′
0. Then X is a subspace of codimention 1 in R′

0,
hence H acts trivially on R′

0/X contrary to the fact that H acts fixed point freely on R′
0.

Thus, R′
0 is totally singular. Next we can pick from (R0 +R′

0)⊥ two singular vectors v, v′

fixed by H such that 〈v, v′〉 is non-degenerate. (These v, v′ are available as the subspace
of H-fixed points in E is non-degenerate.) Then set R = 〈R0, v〉 and R′ = 〈R′

0, v
′〉 to

obtain E1 = R+ R′ with properties required.

Set d = |H |. There is a vector v ∈ R such that {hv : h ∈ H} is a basis of R. Choose
a dual basis in R′ which always exists by [3, §11(1) and §16]. Let B be a basis in E such
that B ∩ E2 is a basis of E2 and B ∩R, B ∩R′ are dual bases in R,R′ described above.
Let G1 = {g ∈ G : gR = R, gR′ = R′ and g|E2 = Id}. Then if g ∈ G1 then the matrix of

g|E is of shape diag(A, TA−1, Id) where A is a square matrix of size d = dimR and TA

is the transpose of A. Furthermore, if g runs over G1 then A runs over a set containing
all matrices of determinant 1. It follows that G1|R is a subgroup of GL(R) ∼= GLd(K)
containing SL(R). Clearly, H |R ⊂ GL(R) and the matrix of h ∈ H under the above basis

is of shape diag(h1,
Th−1

1 , h2) where h1 is a (d× d)-matrix and h2 is a (2n− d× 2n− d)-
matrix.

As R,R′, E2 are KH-modules, it follow that H normalizes G1. Observe next that
G1 has a subgroup L, say, isomorphic to SLd(K). Indeed, SLd(K) is simply connected,
hence it does not have any non-split central extension as an algebraic group. Therefore,
as G1 is an algebraic group and G1/Z ∼= SLd(K) for a suitable central subgroup Z of G1,
we conclude that G1 is the direct product of Z and a subgroup isomorphic to SLd(K).
(If G = Sp2n(K) then Z = 1 so we do not need this argument.) Moreover, H normalizes
L as L is the commutator subgroup of G1.
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Let α : L → SL(R) be the isomorphism defined by g → g|R for g ∈ L. Let

T be the group of diagonal matrices in SL(R) ∼= SLd(K), and TL = α−1(T ). As
it is mentioned in the proof of Proposition 6.2, we can assume that H |R normalizes
T . Then H normalizes TL, and the actions of H on TL and on T agree in the sense

that hα−1(t)h−1 = α−1(h1th
−1
1 ) for t ∈ T . Furthermore, α yields an isomorphism

β : Hom(TL, K
×) → Hom(T,K×) defined for λ ∈ Hom(TL, K

×) as β(λ)(t) = λ(α−1(t))

(t ∈ T ). Then the H-action on TL by conjugation yields an H-action on Hom(TL, K
×).

Moreover, if λ ∈ Hom(TL, K
×) then h(λ) coincides with β−1(h1(β(λ))) as the H-actions

on TL and on T agree.
We show that H has a regular orbit on TL-weight spaces of M . Indeed, let ML be

a non-trivial irreducible constituent of the restriction M |L which can be viewed as an

SL(R)-module via α−1. By Theorem 4.1 and the remark following it, H |R has a regular
orbit on the T -weights of ML, which can be regarded as TL-weights via α. It follows from
the comments in the previous paragraph that H has a regular orbit on the TL-weights of
ML. Let, say, Hλ be a regular orbit for some TL-weight λ of ML. Pick a non-zero vector
m ∈ ML ⊆M from a TL-weight space of weight λ. As vectors from distinct weight spaces
are linear independent, 〈hm : h ∈ H〉 is a regular KH-submodule of M . (Observe that
hm may not belong to ML but we do not need it to belong.)

6. Cyclic subgroups

The following particular case of Theorem 1.1 is of interest for the study of the eigenval-
ues of semisimple elements of simple algebraic groups in their irreducible representations.

Theorem 6.1 Let g ∈ SLn(K) be a semisimple element of finite order d, and let E be the
natural SLn(K)-module. Suppose that g has exactly d distinct eigenvalues on V . Then g
has d distinct eigenvalues on every non-trivial SLn(K)-module.

Proof. Indeed, let H = 〈g〉 and let M be an arbitrary non-trivial SLn(K)-module.
Then VH has a regular KH-submodule and, by Hartley’s theorem, MH has a regular
KH-submodule. (The case |H | = 2 is not exceptional here.) As d is coprime to the
characteristic of K, g is diagonalizable on M and has d distinct eigenvalues. ✷

A similar result is not true for orthogonal groups. Indeed, let G = Spin2n+1(K) where
n = 1 or 2. Pick g ∈ G of order d = 2n + 1 such that g has d distinct eigenvalues on
the natural KG-module E. Let H = 〈g〉. Assume that the characteristic of K is not
2. Then E is a regular KH-module. There are isomorphisms Spin3(K) ∼= Sp2(K) and
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Spin5(K) ∼= Sp4(K). However, g does not have eigenvalue 1 on the natural module for
Sp2(K) and Sp4(K).

One could think that these examples are exceptional due to the above isomorphisms.
However, the following results makes evidence that this is not the case. In the proposition
below the expression ‘g acts regularly on V1’ means that V1 is a regular K〈g〉-module,
equivalently, g has |g| distinct eigenvalues on V1.

Proposition 6.2 Let E be the natural module for the orthogonal group Om(K) and let
E = E1 ⊕ E2 be the orthogonal sum of non-generate subspaces of E where dimE1 = d

and d = 3 or 5. Let M be the module of the spinor representation of G = Spinm(K). Let
g ∈ G be an element of order d such that gEi = Ei for i = 1, 2, g acts trivially on E2

and regularly on E1. Then g|M has d− 1 distinct eigenvalues and 1 is not an eigenvalue
of g|M .

Proof. Set Gi = {x ∈ G : xE1 = E1, xE2 = E2, x|Ei = Id}. Then G2
∼= Spind(K).

Suppose first m = 2n+1 is odd, so G is of type Bn. It is well known that M |G2 is a direct
sum of modules isomorphic to each other and realizing the spinor representation of G2.
(For instance, this follows by induction from the comments at the end of §129 in [14] in
the case where K is of characteristic 0. However, all weights of the spinor representation
are of dimension 1 and are in a single orbit of the Weyl group. Therefore, the respective
Weyl module in characteristic p > 0 is irreducible and its restriction to Spind(K) is again
a direct sum of modules isomorphic to the the spinor module for Spind(K).) Thus, if m
is odd, the result follows from that for dimension d as discussed above. Suppose that
m = 2n is even. Then M |X is irreducible for X =Spin(2n − 1, K) and is isomorphic to
the spinor X-module. (This follows from [14, §129] for characteristic 0 and remains true
for prime characteristic by the same reason.) So again the result follows from the above. ✷

Remark. If m is even then the similar result is true for the semispinor irreducible
representations of G, that is, with highest weight ωn−1. (Here and below ωi stands for a
fundamental weight of a simple algebraic group; the fundamental weights are ordered as
in Bourbaki [2].)

Proposition 6.2 can give impression that the above theorem remains true for any d.
However, in fact the opposite is true.

Theorem 6.3 Let g ∈ Spinm(K) be of odd order d > 5 where charK �= 2. Suppose that
g has d distinct eigenvalues on V . Then g has d distinct eigenvalues on every irreducible
Spinm(K)-module M of dimension greater than 1.
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Proof. Clearly, g is semisimple. Suppose first that d = dimE and that M = X is
the spinor module, that is, the highest weight of E is ωn where n = (d− 1)/2. Following
Bourbaki [2], denote the weights of E by ε1, . . . , εn, 0,−εn, . . . ,−ε1. Then the weights of
X are (±ε1 ± ε2 ± · · · ± εn)/2. We can reorder the eigenvalues of g so that the spectrum

of g on E is {β, β2, . . . , βn, 1, β−n, . . . , β−2, β−1}. Then the spectrum of g on M is

{β(±1±2±···±n)/2}. Let Un denote the set of all integers ±1 ± 2 ± · · · ± n. We show that

{βi : i ∈ Un} contains all d-roots if 1. It is easy to check that Un consists of all integers l

such that −n(n+1)
2 ≤ l ≤ n(n+1)

2 and n(n+1)
2 − l is even. Suppose first that n(n+1)

2 is even.

Then 0 ∈ Un and βi with i > 0 together with βi = βd+i with i < 0 yield all d-roots of 1.

Let n(n+1)
2 be odd. Then d ∈ Un for d > 5, and, similarly, βi = βd+i with i < 0 together

with βi with i > 0 yield all d-roots of 1.
Keep the assumption that dimE = d, and suppose that M is p-restricted. By [11,

Proposition 2.3], the set of weights of M contains either the set of weights of E or the set
of weights of X. Therefore, the set of eigenvalues of g on M contains either the spectrum
of g on E or the spectrum of g on X. As we have shown, the spectrum of g on X contains
all d-roots of 1 so the lemma follows for the case dimE = d.

Next, suppose thatM is not p-restricted. ThenM is the tensor product M1⊗· · ·⊗Mk

where M1, . . . ,Mk are Frobenius twists of non-trivial modules with restricted highest
weights. Then g|M = g|M1 ⊗ · · · ⊗ g|Mk . Observe that if L is a G-module and g|L has d
distinct eigenvalues then g has d distinct eigenvalues on every Frobenius twist of L. So
the result follows from that for p-restricted modules.

Let dimE > d. We first show that there are non-degenerate g-stable subspaces E1, E2

in E such that E = E1 ⊕ E2, g acts on E1 regularly. Let µ be an eigenvalue of g on E
and let Eµ be the respective µ-eigenspace. If µ �= 1 then Eµ �= Eµ−1 and Eµ is totally

singular (otherwise Eµ has a non-degenerate subspace U , say, and µ · Id ∈ O(U) which
is false). It is observed in the first paragraph of the proof of Lemma 5.2 that Eµ +Eµ−1

is non-degenerate so we can find vectors vµ ∈ Eµ and vµ−1 ∈ Eµ−1 such that 〈vµ, vµ−1 〉
is non-degenerate. Furthermore, Eµ + Eµ−1 is orthogonal to every Eν for ν �= µ, µ−1.

These can be added by an anisotropic vector v1 ∈ Eν for ν = 1. Then set E1 = 〈v1, vµ〉
where µ runs over all eigenvalues µ �= 1. It is easy to observe that E1 is non-degenerate.

Hence E2 = E⊥
1 is non-degenerate.

Define G1 = {x ∈ G : xE1 = E1, xE2 = E2 and x|E2 = Id}. Then G1
∼= Spind(K).

Let G+
1 = 〈G1, g〉 and let M1 be an irreducible constituent of the restriction M |G+

1
of

dimension greater than 1. Set g′ = g|E1 . Then g′ ∈ SO(E1). Therefore, g′′ = diag(g′, Id)
is of order d and belongs to SO(E). Pick an element g1 ∈ G1 such that g1|E = g′′. Then
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g−1
1 g ∈ Z(G+

1 ) where Z(G+
1 ) is the center of G+

1 . Then g|M1 and g1|M1 have the same
number of distinct eigenvalues. This number is equal to d for g1|M1. So the result follows.

✷

Proof of Theorem 1.3. If d > 5, the result is contained in Theorem 6.4. So we
assume that d ≤ 5. Thenm > d asm > 6. As in the proof of Theorem 6.4 we first observe
that there is an orthogonal decomposition E = E1 ⊕ E2 where E1, E2 are non-generate
g-stable subspaces, dimE1 = d and g has d distinct eigenvalues on E1. As dimEg ≥ m−d
and m > 6, it follows that g has at least two distinct eigenvalues on E2.

Define G1 = {x ∈ G : xE1 = E1, xE2 = E2 and x|E2 = Id} and G2 = {x ∈ G :
xE1 = E1, xE2 = E2 and x|E1 = Id}. Then G1

∼= Spind(K), G2
∼= Spinm−d(K). Then

g ∈ G1G2. As d is odd, and the center of G is a 2-group, we can express g = g1g2
where g1 ∈ G1 and g2 ∈ G2. Suppose first that M is the spinor module. It is known
M |G1G2 contains an irreducible constituent L, say, which is the tensor product of the
spinor modules for G1 and G2. Express this as L = L1 ⊗ L2. Then g|L = g1|L1 ⊗ g2|L2.
By Proposition 6.2, g1|L1 has d− 1 distinct eigenvalues. If dimE2 �= m− d+ 1 then E2

is not contained in Eg . Hence g|E2 has an eigenvalue λ �= ±1. In addition, g|E2 �= λ · Id
as E2 is non-degenerate. Therefore, g2|L2 is not scalar. It follows that g|L has d distinct
eigenvalues.

Let M be an arbitrary p-restricted G-module. By [11, Proposition 3.2], g|M has d
distinct eigenvalues. Let M be an arbitrary (not p-restricted). Then the argument used
in the proof of Theorem 6.3 completes the proof.

Theorem 6.4 Let g ∈ Sp2n(K) = Sp(E) where charK �= 2 and d := |g|. Suppose that g
has d distinct eigenvalues on E. Then g has d distinct eigenvalues on every non-trivial
irreducible Spm(K)-module M .

Proof. Obviously, g is semisimple. Observe first that eigenvalue 1 has even multiplicity.
This is because of the well known fact that the 1-eigenspace of g on E is non-degenerate.

Suppose first that M is the adjoint module (of highest weight ω2). Let e1, . . . , e2n be
a hyperbolic basis of V consisting of eigenvectors of g, say, let gei = αiei. We can assume

that α1 = 1 and αn+i = α−1
i . It is well known that the basis bij with 1 ≤ i < j ≤ 2n of

the exterior square E2 can be chosen so that gbij = αiαjbij. It follows that gb1j = αjb1j.

Furthermore, E2 is a reducible Sp2n(K)-module, and, in fact, Sp2n(K) fixes a non-zero
vector v, say, on E2. If charK is coprime to n then E2 = 〈v〉⊕E′

2 where E′
2 is irreducible

and isomorphic to the adjoint module for Sp2n(K). Otherwise, E2 contains 2 trivial
irreducible constituents and the adjoint module for Sp2n(K) is isomorphic to the only
non-trivial constituent E′

2 (cf. [5]). Let m be the multiplicity of eigenvalue 1 on E2.
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As the multiplicity of eigenvalue 1 on E is at least 2, m ≥ (d + 1)/2 if d is odd, and
m ≥ (d + 2)/2 if d is even. So if d ≥ 5 then g has |g| distinct eigenvalues on E′

2 as
required. Let d = 4. Then n ≥ 6 as the multiplicity of eigenvalue 1 and −1 on E is at
least 2. So again m ≥ 1. Let d = 3. If n > 2 then m > 2. If n = 2 then m = 2 but in
this case n is coprime to charK so g has an eigenvalue 1 on E′

2.
Next suppose that M is an arbitrary irreducible G-module whose highest weight is

restricted. Recall that ω1 is the highest weight of E and it is the only microweight for
G. By [11, Proposition 2.3], the set of weights of M either contains all weights of E or
all weights of the adjoint module of G. Therefore, g has |g| distinct eigenvalues on M (as
this is so for E and E′

2).
Finally suppose that M is an arbitrary irreducible G-module and the highest weight

of M is not restricted. Then M is the tensor product M1 ⊗ · · · ⊗Mk where M1, . . . ,Mk

are Frobenius twists of non-trivial modules with restricted highest weights. It follows
from the fact justified in the previous paragraph that g has |g| distinct eigenvalues on M
(the case k = 1 is almost trivial). ✷

For unipotent cyclic subgroups of classical groups I.D. Suprunenko [10, Theorem 1.3]
obtains the following result which is very similar to the results in our Theorems 1.3 and
6.4 for seimisimple elements:

Theorem 6.5 Let G = Sp2n(K) or Spinn(K) where charK �= 2, and let E be the natural
module for G. Let g ∈ G be a unipotent element of order d. Suppose that the Jordan form
of g|E contains a block of size d. Then for every non-trivial irreducible G-module M the
Jordan form of g|M contains a block of size d, except in the cases where G = Spinn(K),
d = 3 or 5 and all but one Jordan blocks of g|E are of size 1.

Moreover, in the exceptional cases of Theorem 6.5 the exceptional modules M are
determined in [10, Theorem 1.3] as well. This can be done also for the semisimple element
in our Theorem 1.3 with the same list as in [10]. Observe that our approach does not
work for unipotent elements, so the method used in [10] is very different.

7. Some questions

1) Let E be the natural GLn(K)-module and H ⊂ GLn(K) be a subgroup not
of exponent 2. Suppose that E|H contains every irreducible representation of H as a
constituent. Is this true for every GLn(K)-module of dimension greater than 1?

The method described above does not work anymore.
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2) Let H be a subgroup of S = Sn for n > 6, not of exponent 2. Suppose that H
has a regular orbit on the natural Sn-set. Is it true that H has a regular orbit on every
faithful S-set?

Proposition 2.3 is an essential evidence in support of the hope that this is true.
However, no precise result of greater generality is known. There is an asymptotic result
in this direction [6, Theorem 1.13] implying that 2) is true if |H |2 < n and n is large
enough. (In our case option (b) in the conclusion of [6, Theorem 1.13] cannot hold and
one does not need to require that |H | > 8 here.) One can observe that 2) fails for n = 6
and H cyclic of order 6.

3) A natural analog of Hartley’s theorem for representations of Sn can be stated as
follows. In assumption of 2), let M be an irreducible KS-module of dimension at least
n. Is it true that M |H contains a regular submodule?

There are some exceptions to be kept in mind. For instance, if K is of characteristic
2 then 3) is not true as it is stated. Indeed, let H = 〈h〉 be of order d = 3 or 5 such that

h fixes n − d points on the natural Sn-set. Denote by Ãn the universal covering of the

alternating group An and let H̃ = 〈h̃〉 be the subgroup of Ãn of order d which projects

to H under the homomorphism Ãn → An ⊂ Sn . It is shown in [13] that if M̃ is a CÃn-
module (over the complex number field C) afforded to a so called basic representation of

Ãn then h̃ does not have eigenvalue 1 on M̃ . This remains true if one considers the Brauer

reduction of M̃ modulo 2. Let M be any non-trivial irreducible constituent of M̃(mod

2). Then M can be viewed as KAn-module as Z(Ãn) acts on M trivially. Clearly, h does
does not have eigenvalue 1 on M , and hence MAn has no regular submodule. Obviously,
this extends to KSn-modules.

In case where K is of characteristic 0 there is an asymptotic result in support of 3),
see [6, Theorem 1.8].
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