
Turk J Math

31 (2007) , Suppl, 7 – 23.

c© TÜBİTAK
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Abstract

This short survey article reviews our current state of understanding of the

structure of noetherian Hopf algebras. The focus is on homological properties. A

number of open problems are listed.
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1. Introduction

For the first 30 years after Hopf algebras were defined by H. Hopf around 1940 the
theory developed quite slowly. The publication of Sweedler’s monograph [30] in 1969
quickened the pace, so that understanding of the finite dimensional case in particular
grew considerably in the 1970s. But the tectonic plates really shifted with the discovery
of quantum groups [7], [12] in the early 1980s, and the years since then have witnessed
a massive expansion in both the range of known examples and of our understanding of
them.

Many of these new examples of the past 25 years have been noetherian algebras,
so it makes sense to ask what features noetherian Hopf algebras hold in common, and
which aspects of the finite dimensional theory extend to infinite dimensional noetherian
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Hopf algebras. (We remark in passing that artinian Hopf algebras give us nothing new,
since every artinian Hopf algebra is finite dimensional [18].) Such an investigation was
proposed in the survey article [2], presented at an AMS meeting in Seattle in 1997. The
purpose of the present article is to review what has happened since then: there have
indeed been some interesting and beautiful developments. As well as describing some of
these, I will list a number of questions which may help to stimulate research on noetherian
Hopf algebras over the next decade.

2. Definition and examples

All the algebras in this paper will be defined over a field k which for convenience we
shall always assume to be algebraically closed. To say that an algebra A is affine means
that A is finitely generated as an algebra. A Hopf algebra H is an associative k−algebra
with a unit element, which is also equipped with

(a) a counit ; that is, an algebra homomorphism ε : H −→ k;

(b) a comultiplication; that is, an algebra homomorphism ∆ : H −→ H ⊗k H , which
we write using the Sweedler notation: ∆(h) =

∑
h1 ⊗ h2 for h ∈ H ;

(c) an antipode; that is, an algebra antihomomorphism1 S : H −→ H.

This apparatus is required to satisfy a number of axioms (essentially the duals of the
axioms for a group). We won’t list these here as they can be found in all the standard
references, for example in [23], [26], [30]. In addition, we’ll assume2 throughout that

the antipode S is bijective. (2.0.1)

This hypothesis may in fact be vacuous - see (7.2) for a discussion. We’ll usually assume
also that our Hopf algebras H are left noetherian - that is, all their left ideals are finitely
generated. Thanks to the antiautomorphism ofH gauranteed by (2.0.1), this is equivalent
to H being right noetherian.

Recall that H is said to be cocommutative if ∆op(h) :=
∑
h2 ⊗ h1 = ∆(h) for all

h ∈ H. In the list of examples below we shall first review the most important classes of
1An antihomomorphism is an algebra homomorphism from H to Hop.
2By no means all results stated here require this hypothesis, but we won’t complicate matters by

discussing details.
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cocommutative Hopf algebras (Exs. 1 and 2); then discuss the noetherian commutative
Hopf algebras (Exs. 3) ; and then consider some classes of noetherian Hopf algebras
which may be neither cocommutative nor commutative (Exs. 4-6).

2.1. Examples

1. Group algebras. For any group G, the group algebra H = kG is a Hopf algebra,
with ε(g) = 1, ∆(g) = g ⊗ g and S(g) = g−1 for g ∈ G. By a variant of Hilbert’s basis
theorem due to Philip Hall [24, Corollary 10.2.8], kG is noetherian if kG is polycyclic-
by-finite, (where this means that G has a finite series 1 = G0 ⊆ G1 ⊆ . . . ⊆ Gn = G of
subgroups, with Gi ✁ Gi+1 and Gi+1/Gi cyclic or finite for i = 0, . . . , n − 1.) It’s easy
to see that if kT is any noetherian group algebra then T satisfies the ascending chain
condition on subgroups, but more than 50 years after Hall proved his theorem it’s still
not known if T has to be polycyclic-by-finite. So we ask:

Question A: Let kG be a noetherian group algebra. Is G polycyclic-by-finite?

2. Enveloping algebras. Let g be a k−Lie algebra. Then the enveloping algebra
H = U(g) is a Hopf algebra with ε(x) = 0, ∆(x) = x⊗1+1⊗x and S(x) = −x for x ∈ g.

By (the proof of) the Poincaré-Birkhoff-Witt theorem, U(g) is a filtered algebra whose
associated graded algebra is a commutative polynomial algebra in dimk(g) indeterminates.
Thus, if dimk(g) <∞, U(g) is a noetherian domain. It doesn’t seem to be known whether
there are any other examples:

Question B: Suppose that U(g) is noetherian. Is dimk(g) <∞?

Over characteristic 0 Examples 1 and 2 are not far from the complete story for
cocommutative Hopf algebras - by theorems of Cartier, Gabriel and Kostant [23, Corollary
5.6.4(3) and Theorem 5.6.5], if k has charactersitic 0 and H is any cocommutative
Hopf k−algebra (not necessarily noetherian), then H is a skew group algebra over the
enveloping algebra of the Lie algebra of primitive elements ofH .3 However other examples
can occur in positive characteristic - see [23, pages 82-83].

3. Commutative Hopf algebras. The category of commutative affine Hopf k−algebras
is equivalent to the category of algebraic groups over k [26, Corollary 1.7]: if G is such
a group then its coordinate ring O(G) is a Hopf algebra, with ε(f) = f(1G), ∆(f) the

3This needs the algebraic closure of k.
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function in O(G)⊗O(G) ∼= O(G×G) defined by ∆(f)((x, y)) := f(xy) for x, y ∈ G, and
S(f)(x) := f(x−1) for x ∈ G. And by a theorem of Molnar [22], a commutative Hopf
algebra is affine if and only if it is noetherian.

In contrast to the above examples, quantum groups are neither commutative nor
cocommutative. Speaking crudely, these split into two families, 4(i) and 4(ii) below, which
are, respectively, deformations of some of the algebras in Examples 2 and Examples 3.
4. Quantum groups. (i) Quantized enveloping algebras The key examples of
these are deformations of the enveloping algebras of semisimple Lie algebras. For each
finite dimensional semisimple Lie algebra g and each non-zero scalar q ∈ k, (avoiding a
few “bad” values), H = Uq(g) is a noncommutative noncocommutative noetherian Hopf
k−algebra.

(ii) Quantized coordinate rings For each semisimple algebraic k−group G and
non-zero scalar q (again avoiding a few values), the quantized coordinate ring H :=
Oq(G) is a deformation of the classical coordinate ring of G. It is a noncommutative
noncocommutative noetherian Hopf algebra.

There are many references where details of the definitions and basic properties of these
algebras in Examples 4 can be found - see, for example, [11], [13], [4]. For H in either
of the above classes, there is a fundamental dichotomy determined by the value of the
deformation parameter q: namely,

H is a finite module over its centre (2.1.1)

if and only if q is a root of 1 in k.

5. Hopf algebras satisfying a polynomial identity. For the definition of a ring
satisfying a polynomial identity, see for example [21]. The dichotomy (2.1.1) just identified
for quantum groups can be examined for the other example classes listed above. Thus a
group algebra kG is a noetherian polynomial identity algebra if and only if G is a finitely
generated abelian-by-finite group [24, Corollaries 5.3.8, 5.3.10]. And the enveloping
algebra U(g) of a finite dimensional Lie algebra g satisfies a polynomial identity if and
only if g is abelian or k has positive characteristic [16], [41]. Prompted by this rather
weak evidence, we ask (i) below:

Question C: (i) Suppose that H is a semiprime noetherian Hopf algebra satisfying a
polynomial identity. Is H a finite module over its centre?4

4I’m grateful to Ed Letzter for pointing out to me that [9, Remark 3.9] gives a counterexample if the
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(ii) (Wu, Zhang, [36]) Let H be a noetherian Hopf algebra satisfying a polynomial
identity. Is H affine?

(iii) Let H be an affine Hopf algebra satisfying a polynomial identity. IsH noetherian?

Molnar’s characterisation [22] of commutative noetherian Hopf algebras gives some
support to (ii) and (iii). In [2, Question B] I asked whether every affine noetherian PI
Hopf algebra was a finite module over a commutative normal sub-Hopf algebra. (For the
meaning of normal here, see [23, Definition 3.4.1].) It was noted by Gelaki and Letzter in
[9] that this is not the case, but their example does not rule out the following refinement:

Question D: Suppose thatH is an affine noetherian Hopf algebra satisfying a polynomial
identity. Is H a finite module over a commutative normal right co-ideal subalgebra?

This is true for all the PI algebras in the classes 1, 2 and 4.

We introduce the following class primarily so as to include factor Hopf algebras of
Examples 4(ii):

6. Filtered algebras. Let H be a Hopf k−algebra. We’ll say that H is normally
N−filtered if H = ∪i≥0Hi, with H0 = k and each Hi a finite dimensional k−vector space
with HiHj ⊆ Hi+j for all i, j, such that the associated graded algebra gr(H) is connected
graded noetherian, and so that every graded prime factor ring of gr(H) is either k, or
contains a homogeneous normal element of positive degree.

3. Motivation: finite dimensional Hopf algebras

In the subsequent sections we’ll consider generalisations of the classical facts about
finite dimensional Hopf algebras which we recall in (3.1) and (3.2).

3.1. Frobenius algebras

Recall that a finite dimensional algebra A is a Frobenius algebra if it admits a bilinear
form φ : A×A −→ k which is non-degenerate (meaning that φ(x, A) �= 0 �= φ(A, x) for all
x ∈ A\{0}), and associative (meaning that φ(xh, y) = φ(x, hy) for all x, y, h ∈ A). Notice
that this makes A isomorphic to its vector space dual A∗ as left and right A−module,
so that in particular A is an injective left and right A−module - in other words, A is
quasi-Frobenius.

semiprime condition is left out.
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In 1969 Larson and Sweedler proved the following fundamental theorem:

Theorem. (Larson, Sweedler, [15]) Let H be a finite dimensional Hopf algebra. Then H
is a Frobenius algebra.

3.2. Integrals

The left H−module isomorphism of H and H∗ implies that H contains a unique ideal
∫ l

H

with dimk(
∫ l

H
) = 1 and hx = ε(h)x for all x ∈ ∫ l

H
. The ideal

∫ l

H
is called the left integral

of H . In a similar way H has a right integral
∫ r

H . If
∫ l

H =
∫ r

H , H is called unimodular.

For example if G is a finite group then H = kG is unimodular with
∫ l

H =
∫ r

H = k
∑

g∈G g.

4. Injective dimension

Self-injective algebras are artinian [28, Proposition XIV.3.1], so it’s clear that Theorem
3.1 doesn’t generalise directly to infinite dimensional algebras. On the other hand, it’s
easy to see that, when k has characteristic 0, commutative affine Hopf k−algebras are
regular - that is, they have finite global (projective) dimension. (This is essentially
because in characteristic 0 commutative Hopf algebras are semiprime by a theorem of
Cartier [34, Theorem 11.4], and the regular action of the group G defines automorphisms
mapping any given maximal ideal of O(G) to any other.) More generally, over any field,
commutative noetherian Hopf algebras are Gorenstein - that is, they have finite injective
dimension, [2, Proposition 2.3]. Now any commutative affine Gorenstein (or, a fortiori,
regular) algebra has injective dimension equal to the “size” d of the algebra, [8, Theorem
21.8]. Here, “size” means the Gelfand-Kirillov dimension, GKdim(−), or Krull dimension
(which are equal for a commutative affine algebra). The Gelfand-Kirillov dimension of
an affine algebra A is a measure of its rate of growth; it has many attractive properties,
[14], but unfortunately is often infinite. Krull dimension, on the other hand, is always
defined for a noetherian algebra, but its use often involves difficult technical problems.
In any case, it seems that the correct way to impose the relevant “size” constraints in a
noncommutative setting may be to demand more stringent homological conditions than
simply having finite injective dimension. The relevant definitions are introduced in the
next paragraph.
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4.1. Homological definitions

Useful sources for the basic facts concerning the following ideas are [1], [3], [17]. A simple
but key point to appreciate when considering (b) and (f) is that, for say a left A−module
M , ExtiA(M,A) is a right A−module via the right action on A.

Definition. Let A be a ring.

(a) The grade of the left A−module M is

j(M) := inf{j : ExtjA(M,A) �= 0}.

(b) A satisfies the Auslander condition if, for every noetherian left or right A−module
M and for all i ≥ 0, j(N) ≥ i for all submodules N of ExtiA(M,A).

(c) The ring A is Auslander-Gorenstein if it is noetherian, satisfies the Auslander
condition, and has finite right and left injective dimensions (which are then equal
by a theorem of Zaks [40]).

(d) If A is Auslander-Gorenstein and has finite global dimension then it is called
Auslander-regular.

(e) The ring A is Cohen-Macaulay (with respect to GKdim) if, for all non-zero noethe-
rian A−modules M ,

j(M) + GKdim(M) = GKdim(A).

(f) Suppose that A is a noetherian Hopf k−algebra. Then A is AS−Gorenstein if it
has right and left injective dimension d < ∞, and ExtiA(k, A) = δidk, where the
module k is as usual the trivial (right or left) A−module, with A acting through ε.

(g) The Hopf algebra A is AS−regular if it is AS−Gorenstein and has finite global
dimension.

These definitions are closely connected, at least for noetherian Hopf algebras:

Lemma. ([5, Lemma 6.1]) Let H be a noetherian Hopf k−algebra. If H is Auslander-
Gorenstein and Cohen-Macaulay, then H is AS−Gorenstein.
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4.2. Injective dimension of Hopf algebras

In [2, 3.1] and also in [3, 1.15] we asked whether every noetherian Hopf algebra has
finite injective dimension. This question remains open, so we restate it here, taking the
opportunity to refine it in the light of evidence gathered in the last decade:

Question E: Is every noetherian Hopf algebra AS−Gorenstein?

At the time of writing, the answer is “yes” for all known noetherian Hopf algebras.
In particular, the algebras listed in (2.1) are all AS−Gorenstein. Detailed proofs for
classes 1, 2 and 4(i) can be found in [5, §6]; see [10] for class 4(ii). The proof for class
(2.1)6 given in [19] is different in flavour; we discuss it briefly in Remark 5(b). The
most striking of these positive cases for Question E is class (2.1)5, affine noetherian Hopf
algebras satisfying a polynomial identity - the result is a theorem of Wu and Zhang which
is both beautiful and technical. In fact, at least formally, they prove a bit more:

Theorem. (Wu, Zhang [36]) Every affine noetherian Hopf algebra satisfying a polynomial
identity is Auslander-Gorenstein and Cohen-Macaulay.

To illustrate the power of these homological properties we state a sample non-
homological corollary, the second (much deeper) part of which follows from the theorem
together with results of Stafford and Zhang [29]:

Corollary. Let H be as in the theorem.

(a) [36, Theorem 0.2(2)] H has a quasi-Frobenius (artinian) ring of fractions.

(b) Suppose that H has finite global dimension. Then H is a finite direct sum of prime
rings, and is a finite module over its centre.

4.3. Integrals of Hopf algebras

While it is perhaps not so surprising that finiteness of the injective dimension should
generalise from artinian to noetherian Hopf algebras, it was very surprising - to me at
least - that the idea of the integral should do so also. Let εk denote the trivial left

H−module. The key points are first, to think of
∫ l

H
in the artinian case as HomH(εk,H);

second, to regard HomH(εk,H) as the case i = 0 of ExtiH(εk,H); and third, to recall that
these Ext−groups are H−bimodules, with left H−action induced by the right action on
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εk (and so trivial), and right action induced from the right action on H. The definition
is due to Lu, Wu and Zhang:

Definition. [20, Definition 1.1] Let H be an AS−Gorenstein Hopf algebra of injective
dimension d.

(a) The one-dimensional k−vector space and H−bimodule ExtdH(εk, |H) is called the

left integral of H , denoted
∫ l

H
.

(b) The one-dimensional k−vector space and H−bimodule ExtdH(kε, H|) is called the

right integral of H , denoted
∫ r

H
.

(c) H is unimodular if
∫ l

H
is right trivial as well as left trivial.

One can show quite easily [20, Lemma 1.3] that H is unimodular if and only if
∫ r

H
is

left trivial.

4.4. The Nakayama automorphism

As we saw in (3.1), if A is any Frobenius algebra (for example a finite dimensional Hopf
algebra) then A∗ is isomorphic to A as left and as right A−module. But in general this
is not an isomorphism of bimodules: in fact the correction is provided by twisting the
module on one side by a suitable algebra automorphism

A∗ ∼= νA1,

[38, Theorem 2.4.1]. Here, νA1 is the A−A−bimodule which is left and right isomorphic
to A, with a.b.c := ν(a)bc for all a, c ∈ A, for all b ∈ νA1. In the theory of Frobenius
algebras, ν is called the Nakayama automorphism of A, well-defined up to an inner
automorphism of A. For many purposes - for instance, in representation theory - it’s
useful to know ν explicitly. When ν = Id, A is called a symmetric algebra.

Recall that if H is any Hopf algebra (not necessarily finite dimensional) and π :
H −→ k is an algebra epimorphism, the left winding automorphism τ l

π is the algebra
automorphism

τ l
π : H −→ H : h �→

∑
π(h1)h2.

The right winding automorphism τ r
π is defined by τ r

π(h) =
∑
h1π(h2) for h ∈ H. The

Nakayama automorphism of a finite dimensional Hopf algebra has the following descrip-
tion:
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Theorem. (Schneider, [26, Proposition 3.6]) Let H be a finite dimensional Hopf algebra
and let π : H −→ k be the algebra epimorphism whose kernel is the right annihilator of
∫ l

H
. Then the Nakayama automorphism ν of H is S2 ◦ τ l

π .

5. Dualizing complexes

Theorem 4.4 generalises in a natural way to AS-Gorenstein Hopf algebras, provided
we work in the derived category, in particular using concepts developed by Yekutieli [39]
and Van den Bergh [33]. Recall that if A is a noetherian algebra, a bounded complex RA

of A − A−bimodules (viewed as an object of the bounded derived category D(Ae-Mod)
of A− A−bimodules) is a rigid dualizing complex over A if

(a) R has finite injective dimension over A and over Aop respectively.

(b) R is homologically finite over A and over Aop respectively.

(c) The canonical morphisms A → RHomA(R,R) and A → RHomAop(R,R) are iso-
morphisms in D(Ae-Mod).

(d) A dualising complex R over A is called rigid if there is an isomorphism

R ∼= RHomAe(A,R⊗ Rop)

in D(Ae-Mod). (Here the A − A−bimodule structure of R ⊗ Rop comes from the
left A-module structure of R and the left Aop-module structure of Rop.)

When such a complex R exists it is unique, and RHomA(−, R) defines a duality - that
is, a contravariant equivalence - between the bounded derived categories of left and right
A−modules. For example, if A is any finite dimensional algebra then RA exists and is
A∗. So if A is a Frobenius algebra,

RA = A∗ ∼= νA1.

If M is an A−module and d ∈ Z, we write M [d] for the complex which has M
moved d places to the left (from the 0th place) and 0 elsewhere. We can now state a
result generalising this left-right duality from the finite-dimensional case to noetherian
AS-Gorenstein Hopf algebras:

16
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Theorem. [5, Proposition 4.5] Let H be an AS-Gorenstein Hopf algebra of injective
dimension d.

(a) H has rigid dualizing complex νH1[d], for a certain algebra automorphism ν of H.

(b) The automorphism ν, which we call the Nakayama automorphism of H, is S2 ◦ τ l
π,

where π is the epimorphism from H to H/(r− ann(
∫ l

H
)).

Naturally, we should ask the following question, which is probably closely related to
Question E:
Question F: Does every noetherian Hopf algebra have a rigid dualizing complex?

Remarks. (a) It follows from the above that the Nakayama automorphism and the
integrals are crucial to the two-sided structure of AS-Gorenstein Hopf algebras. The
calculation of these entities for classes (2.1)1, 2 and 4 is not difficult and has been carried
out in [5, §6].

(b) The treatment [19] of the normallyN−filtered Hopf algebras of (2.1)6 is the reverse
of that given here. Namely, one shows first that such an H has a rigid dualizing complex
satisfying a rather natural additional property, and then deduces from this that H is
AS-Gorenstein. As this indicates, it seems that Questions E and F are closely related.

6. Applications of the dualizing complex

6.1. Poincaré duality

For the definition of the Hochschild homology groups Hi(A,M) and cohomology groups
Hi(A,M) of an A−bimodule M we refer to [35, Chapter 9]. Although classical Poincaré
duality fails for noncommutative noetherian Hopf algebras, it seems that it may be valid
if we allow twisting by the Nakayama automorphism. Combining Theorem 5 with a result
of Van den Bergh [32] we obtain

Theorem. Let H be a noetherian AS-regular Hopf algebra of global dimension d with
Nakayama automorphism ν.

(a) For every A−bimodule M and all i = 0, . . . , d

Hi(H, M) ∼= Hd−i(H, 1Mν).
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(b) In particular,

Hd(H, νH1) ∼= H/[H,H ] �= 0,

and

Hd(H, 1Hν) ∼= Z(A) �= 0.

6.2. The antipode

If H is a Hopf algebra (with bijective antipode as usual) then so is H ′ := (H,∆op, S−1, ε),
where ∆op(h) :=

∑
h2 ⊗ h1 [23, Lemma 1.5.11]. If H is noetherian and AS-Gorenstein

we can apply Theorem 5(b) to it and to H ′. The latter case yields the Nakayama
automorphism

ν ′ = τ r
π ◦ S−2,

where τ r
π is the right winding automorphism associated to the epimorphism π : H −→

H/r− ann(
∫ l

H
); see (4.4). However, the Nakayama automorphism of H is unique up to

an inner automorphism, by the uniqueness property of rigid dualizing complexes. Since
the underlying algebra for H ′ is the same as for H , ν and ν ′ differ only by an inner
automorphism, proving:

Theorem. [5, Corollary 4.6] Let H be a noetherian AS-Gorenstein Hopf algebra. Then
there exists an inner automorphism γ such that

S4 = γ ◦ τ r
π ◦ (τ l

π)
−1,

where τ l
π and τ r

π are the left and right winding automorphisms given by the left integral
of H.

Of course we immediately ask:
Question G:What is the inner automorphism γ?

When H is finite dimensional γ is conjugation by the group-like element which is the

character of the right structure on
∫ l

H∗ , by a 1976 paper of Radford [25]. This suggests
that the Hopf dual H◦ may feature in the answer to Question G.

It’s not hard to see that the maps γ, τ l
π and τ r

π in the theorem commute with each
other [5, Proposition 4.6]. Moreover, when H is a finite module over its centre, τ l

π and
τ r
π have finite order [6, Theorem 2.3(b)]. It follows that:

18
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Corollary. If H is a noetherian Hopf algebra which is a finite module over its centre,
then some power of the antipode of H is inner.

Question H: Is the corollary true for an affine noetherian Hopf algebra satisfying a
polynomial identity?

The antipode of a finite dimensional Hopf algebra has finite order [25], and S2 = Id
for a commutative Hopf algebra, [23, Corollary 1.5.12], so it’s natural to ask:
Question I: If H is as in the corollary, does S have finite order?

7. Further questions

7.1. Finite global dimension

The possibility that all noetherian Hopf algebras have finite injective dimension, together
with the motivating commutative, cocommutative and finite dimensional cases, combine
to suggest that there may be natural structural conditions on a noetherian Hopf algebra
sufficient to guarantee other homological properties such as finite global dimension. If we
examine our favourite classes of examples, at least three structural “indicators” of infinite
global dimension for a noetherian Hopf algebra H become apparent:

(a) H is not semiprime;

(b) H has a finite dimensional Hopf subalgebra which is not semisimple;

(c) H has a finite dimensional irreducible module of dimension divisible by the charac-
teristic of k.

Of course, more than one of these features can occur in the same example; and easy
group algebra examples show that (c) can happen in a regular Hopf algebra. Nevertheless,
in part to stimulate the creation of more esoteric examples, we ask:

Question J: Suppose a noetherian Hopf algebra H is not regular. Must at least one of
(a), (b), (c) occur?

If this seems too optimistic or too difficult, one might try:

Question K: Let H be a noetherian domain and a Hopf k−algebra, and suppose that k
has characteristic 0. Is H regular?
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Some (slight) positive evidence for Question J is given by

Theorem. (Wu, Zhang [37]) Let H be a noetherian affine Hopf algebra satisfying a
polynomial identity. Suppose that H is involutary - that is, S2 = Id. If neither (a) nor
(c) occurs for H, then H is regular.

7.2. Bijectivity of the antipode

Recall that we’ve assumed throughout that our Hopf algebras have a bijective antipode
(2.0.1). Examples of Takeuchi [31] show that this hypothesis fails in general. However no
example is known of a noetherian Hopf algebra whose antipode is not bijective, and we
have the following theorem and final question:

Theorem. (Skryabin, [27]) If H is a noetherian Hopf algebra which is either semiprime
or affine with a polynomial identity, then its antipode is bijective.

Question L: (Skryabin) LetH be a noetherian Hopf algebra. Is the antipode S bijective?
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