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On Modular Lie Representations of Finite Groups

R. M. Bryant and Ralph Stohr

Abstract

We give a new and substantially simplified proof of a key technical result in the

theory of modular Lie representations of finite groups.
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1. Introduction

Let G be a group and K a field. For any finite-dimensional K G-module V', let L(V')
be the free Lie algebra on V' (that is, the free Lie algebra over K freely generated by any
basis of V'), and extend the action of G on V so that L(V) is a KG-module on which
each element of G acts as a Lie algebra automorphism. Each homogeneous component
L™ (V) is a finite-dimensional submodule of L(V'), called the nth Lie power of V.

The central problem on Lie powers is to describe the modules L™(V') up to isomor-
phism. In characteristic 0, the structure of L™(V') has been clarified in a number of
papers, including those of Brandt [3], Klyachko [12] and Kraskiewicz and Weyman [13].
In this paper we assume that char(K) = p > 0, and we take G to be a finite group.

If the order of G is not divisible by p then the Lie powers L™ (V) may be studied by
methods similar to those in characteristic 0. Thus we assume that |G| is divisible by p.
The smallest such case, where |G| = p, turns out to be surprisingly difficult. A deep
analysis of this case was conducted in [7], the main result being a recursive description of
L™ (V) for an arbitrary finite-dimensional K G-module V. This recursive description was
used in [4] to obtain an explicit formula for L™ (V') as an element of the Green ring of G

over K.
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25



BRYANT, STOHR

Here we shall describe a proof of the main results of [7] incorporating a new and
substantial simplification. However, we shall work in a slightly more general situation, as
we now explain.

For certain applications of [7], it turns out to be necessary to generalise the main
results from G to H, where H is the holomorph of G, a group of order p(p — 1). This
generalisation is an important ingredient of the study, in [9], of Lie powers of modules
for GL(2,p) and was later used in [5] to describe the Lie powers of an arbitrary finite-
dimensional module for a finite group with a Sylow p-subgroup of order p.

The required generalisation was stated in [9, Theorem 3.1 and Corollary 3.2]. How-
ever, [9] did not contain proofs of these two results. Instead, reference was made to
another paper [14] intended to contain the proofs as an application of ‘restricted Lazard
elimination’. Unfortunately, some mistakes have been discovered in [14] that invalidate
this application: the proof of Theorem 2 and the statements (ii) and (iii) of Lemma 4 in
[14] are not correct. This means that there is no valid published proof of [9, Theorem 3.1
and Corollary 3.2].

In view of the importance of these results for [9] and subsequent work it is necessary
to set the record straight. Thus we here provide proofs of these results. The main results
of [7] for the cyclic group G can be obtained from the results for H by restriction from
H to G, and, interpreted in this way, our proofs here give a major simplification of the
original proofs in [7]. The key new ingredient is the use of restricted elimination, as in
[14]. However, we cannot simplify all of [7]. Thus, for economy of space, reference will

be made to [7] for a limited number of self-contained subsidiary results.

2. Preliminaries and statement of results

In the remainder of this paper, K is a field of prime characteristic p and H is the

group defined by

H=(gh:g"=h""=1h""gh=g"),
where [ € {1,...,p—1} and [ has multiplicative order p—1 when considered as an element
of K. Thus H has order p(p — 1). We wish to find a recursive method for describing

L™(V) up to isomorphism, where n ranges over all positive integers and V' ranges over

all finite-dimensional K H-modules.
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By [9, Theorem 4.1], if V' is a finite-dimensional module for any group over any field
then L™(V') is isomorphic to a direct sum of Lie powers of the form L™ (W), where m is
a divisor of n and W is an indecomposable direct summand of a tensor power of V. Thus

it is enough to consider Lie powers L™(V') where V is indecomposable.

As is well known, there are, up to isomorphism, precisely p(p — 1) indecomposable
K H-modules. Details are given in [6, §2], [9, §3] and [11, §1]. We follow the notation
of [9] and denote the indecomposable K H-modules by J; ., for i = 0,1,...,p — 2 and
r=1,2,...,p. Here r is the dimension of J; ,. Furthermore, J; , has a basis Y (7) where
y () = {ygi’”, . ,yﬁi’”}, such that the action of g is given by yg»i’T)g = yg»i’T) + 4

j+1
forj=1,...,r—1 and yﬁi’T)g = yﬁi’T), and the action of h on ygi’r) is given by yY’T)h =

liygi’”, where [ is regarded as an element of K. In particular, g acts trivially on J; ; and

h acts on J; 1 as the scalar I*’. For s =1,...,r, the subspace <y§i’T),y§T1), - ,yﬁ’”) is

a submodule of J; .. The submodules of this form are the only non-zero submodules of
Ji» and they give a composition series with factors, from top to bottom, isomorphic to
Jit1, Jit1,15- -, Jitr—1,1. (In using the notation J; , for ¢ > p — 2 we take the convention
that ¢ is reduced modulo p—1.) The unique one-dimensional submodule of J; , is spanned
by yﬁ’r) and h acts on this submodule as the scalar [**"~!. Furthermore, J; , is projective
if and only if r = p.

We take G to be the cyclic subgroup (g). On restriction from H to G, J; , becomes
a KG-module denoted by J,. This is the same as the module J,. of [7], where the basis

elements are denoted by yY), . ,yy). The modules Ji, ..., J, are the indecomposable

K G-modules, up to isomorphism, and J), is the regular KG-module, the unique projective
indecomposable. We note that a finite-dimensional K H-module is projective if and only

if its restriction to G is a free K G-module.

Since J; 1 has dimension 1 we have ! (Jin) = Ji1 and L™(J;1) = 0 for n > 1. Thus

our main results will concern L™(.J; ) for r > 2.

For any set X we write T'(X) for the free associative K-algebra freely generated by
X. Asis well known, if T'(X) is regarded as a restricted Lie algebra under the operations
given by [a,b] = ab — ba and a/P! = aP, then the free restricted Lie algebra R(X) and the
free Lie algebra L(X) may be identified, respectively, with the restricted Lie subalgebra
and the Lie subalgebra generated by X in 7(X). Thus we take L(X) C R(X) C T(X).
Note also that [R(X), R(X)] C L(X): see, for example, [7, §2].
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For each non-negative integer n, let 7" (X) denote the nth homogeneous component
of T(X) and write R*(X) = R(X) N T™(X) and L™(X) = L(X) N T™(X). Thus
T(X) = @,@0 T (X), R(X) = @,@1 R"(X) and L(X) = @,@1 L™(X).

The free metabelian Lie algebra M (X) is defined to be the quotient L(X)/L(X)",
where L(X)" is the second derived algebra of L(X). We identify the elements of X,
notationally, with their images in M (X) under the natural homomorphism L(X) —
M(X). Thus M (X) is taken to be generated by X. For n > 1, we write M"(X) for the
image of L"(X) in M(X). Thus M(X) = P,,», M"(X).

Let V be a vector space over K and let X be a basis of V. Then we identify V' with
the subspace of T'(X) spanned by X and write T'(V'), R(V), ..., to denote T'(X), R(X),

., respectively. (The notational ambiguity should cause no problems in practice.)

Suppose that V' is a K H-module. Then the action of H on V extends to T'(V') so that
each element of H acts as an algebra automorphism. Thus T'(V), R(V), L(V), M (V)
and their homogeneous components become K H-modules.

We shall apply the above notation mainly in the case where V' = J; ,., using the basis
Y @) described above. Thus Y (*") is a free generating set for T'(J; ), R(Jir), L(Jir)
and M(J; ).

For r > s > 1, there is a surjective homomorphism of K H-modules J; , — J; s given

by yy’T) — y§i’s) for j =1,...,s and yg»i’r) — 0 for j = s+ 1,...,r. We call this

map the deletion map . It induces algebra homomorphisms T'(J; ) — T'(J; s), R(Jir) —
R(Jis), L(Jir) — L(J;s) and M(J; ) — M(J;s), which are also surjections of K H-
modules.

When ¢ and r are understood we write y; to denote yg»i’r) forj =1,...,r. In the
remainder of this section we assume that » > 2. For n > 2, we write D,, for the subset
of L™(J;,) consisting of all left-normed Lie monomials of the form [yj,,¥j,,- -, Yj..]
with j1,72,...,Jn € {1,...,r} and j1 < jo = j3 = -+ = jn. As is well known, the
corresponding elements of M"(.J; ) form a basis of M"(J; ;). Let D =J,,55 Dn. Thus
the image of {y1,...,y-} UD in M(J;,) is a basis of M(J; ).

Forn > 2, let E,, be the subset of D,, consisting of all those elements [y, Yj,, - - - , Yj..]
satisfying j1 < jo = js = -+ = jn, as before, together with

{m:jm=1}C{l,n—p+2,n—p+3,...,n} (2.1)

Condition (2.1) means that y; can occur only in the first and in the last p — 1 positions.

This condition is redundant when n < p+ 1, so B, = D,, for n < p+ 1. In §3 we shall
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consider the set E, where E' = J, 5, En.
For s = 2,...,rand n > 2, let E, ; denote the subset of E, consisting of those

elements [y, , Yj,, - - - » Yj,) With jo = s. Thus E,, is a disjoint union, E,, = E,, oU- - -UE,, .
Let M"(JM) denote the subspace of M™(.J; ) with basis given by the images in M™(J; ;)

of the elements of E,, ;. It is straightforward to check that M "(J;.r) is a K H-submodule
of M"(Jiﬂn).

Define ZP(JW) to be the kernel of the composite map

LP(J;p) — MP(J; ) — MP(J; 2),

where the first map is the canonical surjection and the second map is induced by the
deletion map J; , — J; 2. Thus EP(JW) is a certain K H-submodule of LP(J; ), and

LP(J; ) N L(Jip)" € LP(Ji ). (2.2)
Since dim MP(J; 2) = p — 1 we have

dim(LP(Ji,p)/LP(Jir) = p — 1. (2.3)

We set z1, = y1gF ! for k= 1,...,p. Let Z(Jw) and Lg(J; ) be the subspaces of
R(J; ) defined by
L(Jix) = LP(Jig) + o+ L7 (i) + LP (i) + PP (i) -
(where the right-hand side is, of course, a direct sum) and
Ls(Jiy) = L(Jiy) + (2%, ..., aD),

where (7, ... ,xg) denotes the subspace spanned by z7, . .. ;.
The notation x1,...,x, was also used in [7]. It is clear that (zf,...,29) is a KG-
module, and an easy check shows that it is a K H-module. By [7, Lemma 3.2], 27, . .. , b

are linearly independent. Thus (z7,...,2b) is a regular KG-module. By [6, Lemma 1],
since 7h = (I'z1)P = 2, we have

(xf,... 2b) = Jip. (2.4)
Also, by [7, Lemma 3.2], LP(J; ) and (z%,. .. ,xb) span their direct sum:

LP(Jiy) + (28, .. ab) = LP(Ji,) @ (24, ..., ab). (2.5)

) ’Yp



BRYANT, STOHR

Thus

Ls(Jiy) = L(Jiy) @ (24, ..., ab). (2.6)

It is easily seen that Z(JW) and Lg(J; ) are Lie subalgebras and K H-submodules
of R(J;,). Following the terminology of [7], we call Lg(J;,) the shifted Lie algebra of
L(J;,r).

The two main results that we shall prove are the following: they are Theorem 3.1 and
Corollary 3.2 of [9] or, equivalently, Theorem 2 and the Corollary in §5.2 of [14], except
that we have not included statements (2.4) and (2.6) because these have already been
established.

Theorem 2.1 Suppose that 0 < i <p—2 and 2 < r < p. For each n > 2 there exists a
K H-submodule Uy, of R"(J; ) such that
(i) the Lie subalgebra of R(J;,) generated by Us @ Us @ --- is free, and Lg(J;,) =
LU, @Us®---),
(ii) forn #p, Uy is a direct summand of L™(J; ),

)
(iii) U, has the form (z,... ab) @ V,, where V, is a direct summand of ZP(JW),
(iv) forn <p, U, = M"(J;,), and
(v) form = p, U, is a projective K H-module.

Theorem 2.2 There are K H-module isomorphisms U, = @'_, M"(Ji7s), for n > p,
and V, = @7_y MP(J;.).

As explained in [9, §3], the isomorphism types of the modules U,, and V,, in Theorems
2.1 and 2.2 can be completely identified, that is, it is possible to compute, recursively,
the Krull-Schmidt multiplicities of the indecomposable K H-modules in each U, and in
Vp. Also, as explained in [9, §3 and §4], Theorems 2.1 and 2.2 provide the information
necessary for a recursive description of the Lie powers L™(J; ). Indeed, L™(J; ) can be
obtained from knowledge of L™ (Us @ - - - @ U,,) for m < n, and this allows L"(J; ) to be
obtained from knowledge of Lie powers L™ (W) where W is indecomposable and m < n.

We conclude this section by stating without proof some further results about the
modules U, that can be deduced from Theorem 2.2. For n > p these results give simpler

descriptions of U,, than those of Theorem 2.2. As before we assume that r > 2. First, for
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n =p+ 1, we have Uy, y1 = MPT1(J;,.). Now suppose that n > p + 1. Then there is an
injective linear map 6, : M"™P(J; ,) — M"(J; ) given by

[yj17yj27 s 7yjn7p]6‘n = [yj17yj27 e Yy T, 25 - 75610]

for all j1,...,Jn—p € {1,...,7}. It is not hard to see that the image of 6, is a KH-
submodule of M™(J;,) and that im#6, = J;; ® M P(J;,). The result that can be

proved for U, is

U, = M"™(J;,)/im6,.

Thus U, is isomorphic to a certain factor module of M™(.J; ). Also, since U, is projective,

we have

Un S¥ (Ji,l ® Mn_p(Ji,r)) = Mn(Ji,r)-

3. Elimination

We start with some general facts about free Lie algebras and free restricted Lie
algebras.

Let L(X) be the free Lie algebra on a free generating set X. If 8 is an invertible linear
transformation of the subspace (X) of L(X) then there is an automorphism of L(X) in
which z — 2z for all x € X. Hence

{zfB:2 € X} freely generates L(X). (3.1)

If X is a disjoint union, X = X; U X5, and ~ is any map from X> to the subalgebra
L(X1) of L(X) then there is an automorphism of L(X) in which z +— « for all x € X,
and x +— z + zy for all x € Xs. Hence

XiU{z+ay:2 € X} freely generates L(X). (3.2)

More generally, suppose that X is a countable disjoint union, X = X; U Xo U ---. For
each n > 1, let 3, be an invertible linear transformation of (X,,) and let v, be any map
from X,, to L(X7U---UX,_1). Then there is a homomorphism L(X) — L(X) in which,
for each n, we have x — x03, + z7y, for all z € X,,. By the proof of [8, Lemma 2.1], this

homomorphism is an automorphism of L(X). Hence

U {z0n + zv, : x € X, } freely generates L(X). (3.3)

n>1
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We shall require ‘Lazard elimination’ with respect to an element z of X. This is a

special case of [2, Chapter 2, §2.9, Proposition 10] and is cited as [14, (1.1)], namely,

L(X) = (z) ® L(X|z), (3.4)
where
Xlz={[z,z,...,2] ;2 € X\ {2}, k > 0}
k

and L(X|z) is the subalgebra of L(X) generated by X|z, this subalgebra being freely
generated by X|z. There is an analogue of (3.4) for the free restricted Lie algebra R(X).
This is stated as part of [14, (1.2)], namely,

R(X) = (2,27, 2" ,...) & R(X|2). (3.5)

The move from L(X) to L(X|z), or from R(X) to R(X|z), is called full elimination of z.

‘Restricted elimination’ is described in [14, Theorem B]. It gives

R(X) = (2) © R(X|p2), (3.6)
where
Xlpz ={U{[x,2,...,2] ;2 e X\ {2}, 0<k<p—-1}.
k

The move from R(X) to R(X|,z) is called restricted elimination of z.

We now consider L(J;,) where 7 > 2. We take i and r as fixed and write Y = Y7
and y; =y§»i’r) forj=1,...,r. Thus Y = {y1,...,ur}.

We use the sets E,, for s = 2,...,r, as defined in §2. Let F be any basis of
LP(J; »)NL(J;)". Since the image of E, oU---UE, . in M?(J;,) is a basis of M?(J; ),
it follows that F'U Ep5U---U E, . is a basis of L?(J; ). From the definition of L?(.J; ,.)
in §2, it is easily verified that

FUE,3U---UE,, is a basis of ZP(JW). (3.7)
For k=2,...,p, let
dk = [y17y27"' y Y2, Y1, - - - 791]-
k—1 k
e e
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Thus E, 2 = {ds,...,d,}. Hence

{ds,...,dp} isa basisfor LP(J;,) modulo EP(JW). (3.8)
Recall that xj denotes y1g%~1 for k = 1,...,p, and that (7. .. ,2b) has dimension

p.
Lemma 3.1 There exist elements ca,...,cp, of ZP(JM) and elements ay s of K, for

k=2,...,p,s=1,...,r, such that
(o, do+eot ooyl + - +ao, 0, ... dp+cp+apayh + -+ ey}

is a basis of (x7,...,xb).

Proof. By [7, (3.17)], there exist elements la, ..., I, of LP(J;,) satisfying

k-1 k—1 k-1
ﬁ=ﬁ+< 1>£+< 2>£+~+<%4>ﬁ+% (3.9)

for k = 2,...,p. Also, by [7, Corollary 3.3|, {l2,...,l,} is a basis for L?(J;,) modulo

ZP(JW). Thus (3.8) yields that there are elements ca,...,c, of ZP(JW) such that
{de+ca,...,dp+cp} is abasis of (Ia,...,1,). Hence there is an invertible (p—1) x (p—1)

matrix M with entries from K such that
(lo,..., lp)M = (da +c2,...,dp+ cp).
Therefore, by (3.9),
(ah, ... AP )M = (dg 4 c2 +wa, . .., dp + ¢ + wp),
where ws, ..., w, € (47,...,yP). Since § = yf, it follows that (z,...,ab) is spanned

by yi, d2 + c2 + wa, ..., dp + ¢, + wp,. This gives the required result. O

We apply elimination to L(Y) and R(Y'), where Y = {y1,...,y,}. Wefirst apply (3.4)

to L(Y'). Full elimination of y,, y»—1,...,y1 (in that order) gives a direct decomposition
L(Y) = (y1,...,yr) ® L(D),

where D is the set defined in §2. Since L(J;,) = L(Y), it follows that
L(J; ) = L(D), (3.10)
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where L(J; )" denotes the derived algebra of L(J; ). (This is a well-known result: see,
for example, [1, Chapter 2, §2.4.2].)
We now apply (3.5) and (3.6) to R(Y'). Full elimination of y,, yr—1,...,y2 (in that

order) followed by restricted elimination of y; gives a direct decomposition

2 2 2
R(Y) - <y17y27y12)7y12) PR 7y37y§7y§ PR 7y7‘7y£7y£ y .. > @R({yllj} UE)u (311)

where E is the set defined in §2.

It will be convenient to describe a subset A of R(Y') as ‘Lie-free’ if A freely generates
the Lie subalgebra of R(Y') that it generates: this free Lie subalgebra is of course written
as L(A). Also, let us write

E'zE\{dg,...,dp}zE\Eg. (3.12)
Lemma 3.2 Let
T={fUE={y do,...,d,} UE".

Then T is Lie-free.

Proof.  As shown by (3.11), the restricted Lie subalgebra of R(Y') generated by T is
freely generated by T'. A similar result therefore holds for the Lie subalgebra generated
by T. O

It is easy to check that L(.J;,) @ (y}) is a Lie subalgebra of R(Y). Hence L(T) C
L(J; ) @ (y}). Note that every element of D has the form

[yjlvij"' s Yjms Y1y - - - 7y17y§)7"' 7y€]7
S—— N ——
S t

where j1 < jo = j3 == jm =2,0<s<p—1andt > 0. However,

[yjlvngu"' s Yjmr Y1y - - - 7y1] e L.
—_——

It follows that D C L(T). Therefore, by (3.10), L(J; )’ C L(T') and we obtain

L(Jir) @ (yf) = L(T). (3.13)
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As follows from (3.13), every element of LP(J; ) N L(J; )" belongs to the Lie subal-
gebra generated by the elements of T' of degree less than p (with respect to Y'). Hence
LP(J; ) N L(J; )" C L(E), and so ZP(JW) C L(E"), by (3.7). Thus, with ca,..., ¢, as

in Lemma 3.1,
Coy...,cp € L(E"). (3.14)
In the next result we use the scalars ay, s of Lemma 3.1, but only those with s > 1.
Lemma 3.3 Let
T ={y], da+ agoyh + -+ 2 yf, ..., dp+apoys + -+ oy UE

Then T* is Lie-free.

Proof. Let ¢ : T — T* be defined by y¥¢ = v}, dpd = di, + k205 + -+ + ay ,yP for
k=2,...,p,and t¢ =t for all t € E’. Clearly, ¢ is surjective. Also, by Lemma 3.2, T is
Lie-free. Thus ¢ extends to a Lie algebra homomorphism ¢ : L(T') — R(Y’). The image
of this homomorphism is the Lie subalgebra of R(Y) generated by T*. Thus it suffices to
show that ker ¢ = 0.

We may write R(Y) = Rgy® R1 ® Ra®- - - where, for each m > 0, every element of R,,
is a linear combination of monomials of T(Y’) that have degree m in y;. Let u € L(T),
where u is a Lie monomial in the elements of T'. For each t € T, we have t € R,,,(;) for
some m(t) > 0. Thus u € Ry, () for some m(u) > 0. Fort € T'\ {da,...,dp}, we have
t¢ =t while, for ¢t € {da,...,d,}, we have m(t) > 0 and t¢ =t 4+ t' with ¢’ € Ry. Thus
we may write u¢ = u+u’ where u’ € Ry @ ---® Ry(yy—1 : this is interpreted as meaning
that v = 0 if m(u) = 0.

Now let u be any non-zero element of L(T). For some m > 0, we may write
u=ug+u +- -+ Unp, where u,, # 0 and where, for each j, u; is a linear combination of
Lie monomials of L(T") belonging to R;. Hence u¢ = uy, +u’ where v’ € Roy®- - @ Ryp—1.
Thus u¢ # 0. Hence ker ¢ = 0. O

Proposition 3.4 Let
S={al,ah,. .., 2Py UE"

Then S is Lie-free.
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Proof. By (3.14), y¥,c2,... ¢, € L({y)} UE’). Hence it follows from Lemma 3.3 and
(3.2) that

{f, do+ ot ooy +- +ao, 0, ... dp+cp+apith + oy R UE

is Lie-free. Therefore, by Lemma 3.1 and (3.1), {zf{, 2%, ... 25} U E’ is Lie-free. O

From the definitions of S and T we see that |[SNR™(Y)| = [TNR™(Y)| for all n. Thus
there is an isomorphism from L(S) to L(T") induced by a degree-preserving bijection from
S to T. It follows that

dim(L(S) N R™(Y)) = dim(L(T) N R*(Y")) (3.15)

for all n. However, by (3.13), we have L(T) N R™(Y) = L"(J;,) for n # 1,p. Clearly
L(S)NR™(Y) C L™(J;,) for n # 1,p. Thus, by (3.15),

LS)NR"(Y)=L"(J;,) for n#1,p. (3.16)

By (3.13),
L(T)NRP(Y) = LP(Jir) ® (47)-
Thus, by (2.3),
dim(L(T) N RP(Y)) = p+ dim LP(J; ).

By (3.7),

where the right-hand side has dimension p 4+ dim EP(JW). Thus, by (3.15),
L(S)NRP(Y) = LP(J;,) @ (2%, ... ,ab). (3.17)

Therefore, by (2.6), (3.16) and (3.17),

)

L(S) = LS(JZ',T) = Lz(Ji,r) D---D Lp_l(Ji,r) S¥ (ZP(JZ 7‘) S¥ <.’II117, cee 7«752» D Lp+1 (Ji,r) D---.
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Thus S is a free generating set for the shifted Lie algebra Lg(J; ).
Write Q = Ls(Ji,r) = L(S) and, for n > 2, Qn = QN R™(Y). Thus Q@ = P,,5, @n,

where Q,, = L"(J;,,) for n # p and Q, = L (J; ) ® (zf,...,xP). Note that each @, is a
K H-module. It will also be convenient to write S as the disjoint union S = J,,>5 Sh,

where S, = SN R™(Y). Thus S, = E,, for n# p and S, = (E, \ Ep2) U {zl,...,2b}.

4. Modules

As in §3, let Q = Ls(Ji,), where » > 2. For n > 1, let Q|<,) denote the Lie
subalgebra of @) generated by Qs,...,Q,_1, that is, the subalgebra of ) generated by
all its elements of degree less than n, with the convention that Q< 1) = Q<2 = 0. Of
course, Q<) = L(S2 U---US,_1). Also, for n > 2, let

L= QnNQcn = R"(Y)N Q< ry)-

Thus I,, is a K H-submodule of @,. Since Q<) has no elements of degree 1 we have
Iy = QnNQcpn—_1) Forn <p+1, Q1) is generated by L*(Jir)y ..., L"2(J; ), and
so I, = QnNL(J;,)". Hence, for n < p+1 with n # p, we have I,, = L"™(J; )N L(J; »)".
Also, by (2.2),

I, = Q,NL(J;,)" = L (Ji,) N L(J; )" = LP(J;.) N L(Ji.n)".
Hence

L,=L"(J;i»)NL(J; )" for n<p+1, (4.1)

and I, C LP(J;,).
Since @ = L(.S), we have that

Qn =1, (S,) forall n. (4.2)

Lemma 4.1 Forn > 2 withn # p, L"(J;,)/L, has basis

{e+1I,:e€E,2U---UE,,}.

Also, L (J; )/ 1, has basis

{e+I,:ec Ep3U---UE,,}.
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Proof. The result for n # p is an immediate consequence of (4.2), while the result for
n = p follows from (4.1) and (3.7). 0

Lemma 4.2 For each n > 2, let U, be a subspace of Q, such that Q, = I, & U,,
and let By, be a basis of U,. Then Q is freely generated by By U B3 U ---, that 1is,
Q=LUs®Us®---).

Proof. In view of (4.2), for each n > 2 there exists an invertible linear transformation
B of (Sy) such that
{b+1,:beB,}={af,+1I,:2€5,}

Hence there is a map ~, : .S, — I, such that

B, ={af, + 2y, : x € Sp}.

Therefore, by (3.3), @ is freely generated by Bo U Bg U - - -. O

We shall aim to find subspaces U, satisfying the hypothesis of Lemma 4.2 such that
U, is a K H-submodule of Q.

Suppose first that n satisfies 2 < n < p —1. Then @, = L"(J;,), and, by (4.1),
I, =Q,NL(J;,)". By [7, §2], since we have n < p, L"(J; ;) splits over L™ (J; )N L(J; )"
as a K H-module. Thus there is a K H-submodule U,, of Q,, such that Q,, = I,, ® U,, and

U, = Ln(Ji7T)/(Ln(Ji7T) M L(Jiﬂn)”) =~ M"(Jiﬂn).

In order to deal with the case n > p we shall use the modules M "(J;,r) defined in
§2. By [7, (3.20)], the restriction of M"(JM) to G is free as a KG-module for r > 2 and

n = p+ 2. Exactly the same argument shows that this holds, more generally, when r > 2
and n +r > p+ 3. Hence, as a K H-module,

M"(JM) is projective when r > 2 and n+r > p—+ 3. (4.3)
Recall that F,, , consists of all Lie monomials [y, , Yr, Yjs, - - - , ¥j,.] satisfying j1 <r,
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and
{m:jm=1}C{l,n—p+2,n—p+3,...,n} (4.5)

We shall require the following technical lemma which gives a simplified treatment of

the essential content of [7, Lemma 3.5] and an argument on page 361 of [7].

Lemma 4.3 Suppose that n > p and r > 3. Then (I, N L(J;,)") ® (E, ) is a KH-
submodule of L™(J; ;).

Proof. Let F), , be the set of all Lie monomials [y;,, Yr, Yjs, - - - » Yj,] satisfying j1 <r
and (4.5) (but not necessarily (4.4)). For each f € F, , there is a unique element f* of
E, . obtained from f by re-arranging the entries yj,, ... ,y;, to satisfy (4.4). Clearly

f—fe L(JM)”. (4.6)
We shall show that we also have
f—freli,. (4.7)

Fore € E,, and x € H, it is easy to see that ex may be written as a linear combination

of elements of F,, . Thus, given (4.7), we obtain

exr € (In M L(Jiﬂ‘)”) D <En 7‘>7

)

and Lemma 4.3 follows. It remains to prove (4.7).
For n = p and n = p+ 1, (4.7) follows from (4.6) and (4.1). Thus we may assume
that n > p+ 2. Let

f = [yjluymyjsu cee 7yjn] S Fn,r-

In order to re-arrange the entries y;,, ... ,y;, we need to be able to interchange y;, and
Yjopn When jy < jyy1. However, by (4.5), we do not need an interchange with y;, = 1

unless t > n — p + 2. By the Jacobi identity,

[yj17y7“7"' yYjer Yjeqrs - - - 7yjn] - [yjuy?“v"' s Yjeqpr Yjer - - - 7yjn] =u,

where

u = [yjuy?“uyjsv s Y [yjt7yjt+l]7yjt+27 ce- 7yjn]'
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Therefore it suffices to verify that u € I,, in each of the two cases (i) 1 < j; < jiy1 and
(i) je = 1 witht > n—p+2. Let a = [yj,, ¥, Yjs> - - - » Yj,_.] and b = [y;,,v;,,,]. Thus
we have u = [a,b, Yj, 0, - -, Yj,]- By repeated use of the Jacobi identity (see [7, (2.1)]),

we may write u as a sum of elements of the form
[[au Ykyy - - - 7yks]u [bu Ykoyrs- -+ 7ykn—t—1]]7 (48)

where the list yg,,...,¥Yk,_,_, is a re-arrangement of the list y;,,,,...,y;,. It suffices to
show that each element (4.8) belongs to I,. Thus it suffices to show that (4.8) be-
longs to Q<n). Write a* = [a,yk,,...,y,] and 0* = [b,yr,\1s- -+ Yky o). Thus
a* € L'T71(J;,) and b* € L"7t=F1(J; ). Tt suffices to show that a* € Q;4s—1 and
b* € Qn—t—st1. The result for a* is clear if t + s — 1 # p and the result for b* is clear if
n—t—s+1+# p. However, if t+s—1 =p then a* € ZP(JW) C @p because a* involves
yr and 7 > 3. Suppose finally that n—t—s+1=p. Thent=n—p—s+1<n—p+2.

Hence case (ii) cannot arise here: we must be in case (i). Thus j; 41 > 3. Since b* involves

Yj.41 We have b € EP(JW) C @p, as required. O

We can now prove the key result of this section.
Proposition 4.4 Forr =2, I, = EP(JW), and, for r >3,
LP(Jip)/ 1, = MP(Ji,s) S MP(Ji,r)-
Forn>p+4+1andr > 2,
L"(Ji )/ In = M"(Ji,z) D M"(Ji,r).

Proof. We first consider the case where r = 2. Clearly, ZP(JZ-Q) = LP(Ji2)NL(J;2)".
Thus, for r = 2, (4.1) gives I, = ZP(JW).
Now suppose that 7 =2 and n > p+ 1. Let v,w € E,, 2, where

v = [y17y27"' y Y2, Y1, - - - 791]7 w = [y17y27"' 792]-
—_— — ——

n—p p—1 n—1

Let V be the KG-submodule of L™ (.J; ,-) generated by v. By [7, Lemma 3.4], V' is a regular

KG-module, and its unique one-dimensional submodule is spanned by w. However, both
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y1 and yo are eigenvectors for h, and hence V' is a K H-submodule. Since w € E, >, we
have w ¢ I,, by Lemma 4.1. Tt follows that V N I, = 0. However,

dlm(Ln(JLz)/In) = |En72| =p= dim V.

Thus L™ (J;2)/I, = V. Since the image of w in M™(J; 2) is non-zero, V' is isomorphic to its
image in M™(J; 2). However, this image is clearly contained in M "(J;.2), and both V and
M"(Jm) have dimension p. Thus V = M"(Jm) and we have L™(J; 2)/1, = M"(Jm).

We now suppose that » > 3 and use induction. Thus we may assume that Proposition
4.4 holds with r — 1 in place of r. We shall need to consider the shifted Lie algebra
Lg(J; r—1). For this we use notation similar to that for Lg(J; ), but with a superscript
(i,7 — 1). Thus we write Lg(J;,—1) = Q"1 = D..>2 =D where QU Y =
Q=Y N R™(J; ,—1). Furthermore, I,(f’T_l) = Q,(f’T_l) N Q&Tn?l), and so on.

Let 6 : R(J;») — R(Jir—1) be the homomorphism induced by the deletion map

Jir — Jiy—1. Since § is a module homomorphism,

16 = (19" 1) = (110)g" ! = ygivT—l)gk—l _ xl(ci,r—n,

for k =1,...,p. Also, it is easily verified that EP(JW)(S = ZP(JM_l). Thus, by (2.6),
Q6 = QU"=1 and it follows that Q,6 = Q,(f’T_l) for all n. Therefore I,,0 C I,(f’T_l), and
so ¢ induces surjective homomorphisms of K H-modules

on L™ (Jiw)/In — L™(Jip ) /I8 for m>p+1,
and

8p 2 LP (Ji) /Iy — LP(J; o) /1570,

For each n, let W,, be the K H-submodule of L™(J; ), or EP(JM) when n = p, such that
Wy, 2 I, and W, /I, = ker o, By the inductive hypothesis, the image of 5, is isomorphic
to M"(Jig) @ -+ @ M"™(J; 1), or MP(Ji3) @ --- @ MP(J;,_1) when n = p. By (4.3),
this image is projective, and hence 8, splits over its kernel W,,/I,. Thus it suffices to
show that W,,/I,, = M"(Jw) for all n > p.

For n > p+ 1, Lemma 4.1 shows that L™(J; )/l has basis

fet Tnie € BupUs U B,
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while L"(JZ-W_l)/I,(f’T_l) has a similar basis corresponding to E,(i’;_l) U---uEGD,

n,r—1

It is easy to see that § maps E, o U---U E, »_1 bijectively to E,(i’;_l) U.---uE®Y

n,r—1 >

whereas E, 0 = 0. It follows that W, /I, has basis {e + I,, : e € E, ,}. Similarly,
ZP(JW)/IP has a basis corresponding to E,3U---U E, , while ZP(Ji7T_1)/II(7i’T_1) has

a basis corresponding to Eggf—l) U---u ng__ll). Again we find that W), /I, has basis
{e+1I,:ec Ey,}.

Let Z = (I, N L(J;,)") ® (Ep ), the module given by Lemma 4.3. We know that I,
and (E, ) span their direct sum in L™(J; ). So, too, do L"™(J; ) N L(J; )" and (E, ,),

since the image of E,, , in M™(.J; ) is a basis of M"(Jw). Hence

ZNI,=I,NL(J;.)" =Zn0L(J;.)".
However, I, + Z = W,, and the image of Z in M™(J; ,) is M"(Ji7T). Thus
W/l 2 Z/Z0 1, = Z/Z N L(J;,)" = M"(J;.,),

as required. This completes the proof of Proposition 4.4. O

We now apply Proposition 4.4 to obtain, for n > p, a K H-submodule U, of @,
satisfying @, = I, ® U,,. We have Q, = ZP(JM) @ («f,...,2b). By Proposition 4.4 and

(4.3), we may write ZP(JW) = I, ® V,, where
Vp 2 MP(Ji3) @ - ® MP(J;,).

Thus we may take U, = (z7,...,28) ®V,. Forn > p+1, Q, = L"(J;,). Thus, by
Proposition 4.4 and (4.3), we may take Q,, = I, ® U,, where

U, = M"(J@z) D---D Mn(Ji,r)-

It now follows that the modules Us, Us, ... have all the properties required for Theorems
2.1 and 2.2.
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