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Abstract

We give a new and substantially simplified proof of a key technical result in the

theory of modular Lie representations of finite groups.
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1. Introduction

Let G be a group and K a field. For any finite-dimensional KG-module V , let L(V )
be the free Lie algebra on V (that is, the free Lie algebra over K freely generated by any
basis of V ), and extend the action of G on V so that L(V ) is a KG-module on which
each element of G acts as a Lie algebra automorphism. Each homogeneous component
Ln(V ) is a finite-dimensional submodule of L(V ), called the nth Lie power of V .

The central problem on Lie powers is to describe the modules Ln(V ) up to isomor-
phism. In characteristic 0, the structure of Ln(V ) has been clarified in a number of
papers, including those of Brandt [3], Klyachko [12] and Kraśkiewicz and Weyman [13].
In this paper we assume that char(K) = p > 0, and we take G to be a finite group.

If the order of G is not divisible by p then the Lie powers Ln(V ) may be studied by
methods similar to those in characteristic 0. Thus we assume that |G| is divisible by p.
The smallest such case, where |G| = p, turns out to be surprisingly difficult. A deep
analysis of this case was conducted in [7], the main result being a recursive description of
Ln(V ) for an arbitrary finite-dimensional KG-module V . This recursive description was
used in [4] to obtain an explicit formula for Ln(V ) as an element of the Green ring of G
over K.
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Here we shall describe a proof of the main results of [7] incorporating a new and
substantial simplification. However, we shall work in a slightly more general situation, as
we now explain.

For certain applications of [7], it turns out to be necessary to generalise the main
results from G to H , where H is the holomorph of G, a group of order p(p − 1). This
generalisation is an important ingredient of the study, in [9], of Lie powers of modules
for GL(2, p) and was later used in [5] to describe the Lie powers of an arbitrary finite-
dimensional module for a finite group with a Sylow p-subgroup of order p.

The required generalisation was stated in [9, Theorem 3.1 and Corollary 3.2]. How-
ever, [9] did not contain proofs of these two results. Instead, reference was made to
another paper [14] intended to contain the proofs as an application of ‘restricted Lazard
elimination’. Unfortunately, some mistakes have been discovered in [14] that invalidate
this application: the proof of Theorem 2 and the statements (ii) and (iii) of Lemma 4 in
[14] are not correct. This means that there is no valid published proof of [9, Theorem 3.1
and Corollary 3.2].

In view of the importance of these results for [9] and subsequent work it is necessary
to set the record straight. Thus we here provide proofs of these results. The main results
of [7] for the cyclic group G can be obtained from the results for H by restriction from
H to G, and, interpreted in this way, our proofs here give a major simplification of the
original proofs in [7]. The key new ingredient is the use of restricted elimination, as in
[14]. However, we cannot simplify all of [7]. Thus, for economy of space, reference will
be made to [7] for a limited number of self-contained subsidiary results.

2. Preliminaries and statement of results

In the remainder of this paper, K is a field of prime characteristic p and H is the
group defined by

H = 〈g, h : gp = hp−1 = 1, h−1gh = gl〉,

where l ∈ {1, . . . , p−1} and l has multiplicative order p−1 when considered as an element
of K. Thus H has order p(p − 1). We wish to find a recursive method for describing
Ln(V ) up to isomorphism, where n ranges over all positive integers and V ranges over
all finite-dimensional KH-modules.
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By [9, Theorem 4.1], if V is a finite-dimensional module for any group over any field
then Ln(V ) is isomorphic to a direct sum of Lie powers of the form Lm(W ), where m is
a divisor of n and W is an indecomposable direct summand of a tensor power of V . Thus
it is enough to consider Lie powers Ln(V ) where V is indecomposable.

As is well known, there are, up to isomorphism, precisely p(p − 1) indecomposable
KH-modules. Details are given in [6, §2], [9, §3] and [11, §1]. We follow the notation
of [9] and denote the indecomposable KH-modules by Ji,r, for i = 0, 1, . . . , p − 2 and
r = 1, 2, . . . , p. Here r is the dimension of Ji,r. Furthermore, Ji,r has a basis Y (i,r), where

Y (i,r) = {y(i,r)1 , . . . , y
(i,r)
r }, such that the action of g is given by y(i,r)j g = y

(i,r)
j + y(i,r)j+1

for j = 1, . . . , r− 1 and y(i,r)r g = y(i,r)r , and the action of h on y(i,r)1 is given by y(i,r)1 h =

liy
(i,r)
1 , where l is regarded as an element of K. In particular, g acts trivially on Ji,1 and

h acts on Ji,1 as the scalar li. For s = 1, . . . , r, the subspace 〈y(i,r)s , y
(i,r)
s+1 , . . . , y

(i,r)
r 〉 is

a submodule of Ji,r. The submodules of this form are the only non-zero submodules of
Ji,r and they give a composition series with factors, from top to bottom, isomorphic to
Ji,1, Ji+1,1, . . . , Ji+r−1,1. (In using the notation Ji,r for i > p− 2 we take the convention
that i is reduced modulo p−1.) The unique one-dimensional submodule of Ji,r is spanned

by y(i,r)r and h acts on this submodule as the scalar li+r−1. Furthermore, Ji,r is projective
if and only if r = p.

We take G to be the cyclic subgroup 〈g〉. On restriction from H to G, Ji,r becomes
a KG-module denoted by Jr. This is the same as the module Jr of [7], where the basis

elements are denoted by y(r)1 , . . . , y
(r)
r . The modules J1, . . . , Jp are the indecomposable

KG-modules, up to isomorphism, and Jp is the regular KG-module, the unique projective
indecomposable. We note that a finite-dimensional KH-module is projective if and only
if its restriction to G is a free KG-module.

Since Ji,1 has dimension 1 we have L1(Ji,1) = Ji,1 and Ln(Ji,1) = 0 for n > 1. Thus
our main results will concern Ln(Ji,r) for r � 2.

For any set X we write T (X) for the free associative K-algebra freely generated by
X. As is well known, if T (X) is regarded as a restricted Lie algebra under the operations
given by [a, b] = ab− ba and a[p] = ap, then the free restricted Lie algebra R(X) and the
free Lie algebra L(X) may be identified, respectively, with the restricted Lie subalgebra
and the Lie subalgebra generated by X in T (X). Thus we take L(X) ⊆ R(X) ⊆ T (X).
Note also that [R(X), R(X)] ⊆ L(X): see, for example, [7, §2].
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For each non-negative integer n, let Tn(X) denote the nth homogeneous component
of T (X) and write Rn(X) = R(X) ∩ Tn(X) and Ln(X) = L(X) ∩ Tn(X). Thus
T (X) =

⊕
n�0 T

n(X), R(X) =
⊕

n�1R
n(X) and L(X) =

⊕
n�1L

n(X).
The free metabelian Lie algebra M(X) is defined to be the quotient L(X)/L(X)′′,

where L(X)′′ is the second derived algebra of L(X). We identify the elements of X,
notationally, with their images in M(X) under the natural homomorphism L(X) →
M(X). Thus M(X) is taken to be generated by X. For n � 1, we write Mn(X) for the
image of Ln(X) in M(X). Thus M(X) =

⊕
n�1M

n(X).
Let V be a vector space over K and let X be a basis of V . Then we identify V with

the subspace of T (X) spanned by X and write T (V ), R(V ), . . . , to denote T (X), R(X),
. . . , respectively. (The notational ambiguity should cause no problems in practice.)

Suppose that V is a KH-module. Then the action of H on V extends to T (V ) so that
each element of H acts as an algebra automorphism. Thus T (V ), R(V ), L(V ), M(V )
and their homogeneous components become KH-modules.

We shall apply the above notation mainly in the case where V = Ji,r, using the basis
Y (i,r) described above. Thus Y (i,r) is a free generating set for T (Ji,r), R(Ji,r), L(Ji,r)
and M(Ji,r).

For r � s � 1, there is a surjective homomorphism of KH-modules Ji,r → Ji,s given

by y(i,r)j �→ y
(i,s)
j for j = 1, . . . , s and y(i,r)j �→ 0 for j = s + 1, . . . , r. We call this

map the deletion map . It induces algebra homomorphisms T (Ji,r)→ T (Ji,s), R(Ji,r)→
R(Ji,s), L(Ji,r) → L(Ji,s) and M(Ji,r) → M(Ji,s), which are also surjections of KH-
modules.

When i and r are understood we write yj to denote y
(i,r)
j for j = 1, . . . , r. In the

remainder of this section we assume that r � 2. For n � 2, we write Dn for the subset
of Ln(Ji,r) consisting of all left-normed Lie monomials of the form [yj1 , yj2 , . . . , yjn ]
with j1, j2, . . . , jn ∈ {1, . . . , r} and j1 < j2 � j3 � · · · � jn. As is well known, the
corresponding elements of Mn(Ji,r) form a basis of Mn(Ji,r). Let D =

⋃
n�2Dn. Thus

the image of {y1, . . . , yr} ∪D in M(Ji,r) is a basis of M(Ji,r).
For n � 2, let En be the subset of Dn consisting of all those elements [yj1 , yj2 , . . . , yjn ]

satisfying j1 < j2 � j3 � · · · � jn, as before, together with

{m : jm = 1} ⊆ {1, n− p+ 2, n− p+ 3, . . . , n}. (2.1)

Condition (2.1) means that y1 can occur only in the first and in the last p− 1 positions.
This condition is redundant when n � p + 1, so En = Dn for n � p + 1. In §3 we shall
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consider the set E, where E =
⋃

n�2En.
For s = 2, . . . , r and n � 2, let En,s denote the subset of En consisting of those

elements [yj1 , yj2, . . . , yjn ] with j2 = s. Thus En is a disjoint union, En = En,2∪· · ·∪En,r.

Let M̃n(Ji,r) denote the subspace ofMn(Ji,r) with basis given by the images inMn(Ji,r)

of the elements of En,r. It is straightforward to check that M̃n(Ji,r) is a KH-submodule
of Mn(Ji,r).

Define L̂p(Ji,r) to be the kernel of the composite map

Lp(Ji,r)→Mp(Ji,r)→Mp(Ji,2),

where the first map is the canonical surjection and the second map is induced by the
deletion map Ji,r → Ji,2. Thus L̂p(Ji,r) is a certain KH-submodule of Lp(Ji,r), and

Lp(Ji,r) ∩ L(Ji,r)′′ ⊆ L̂p(Ji,r). (2.2)

Since dimMp(Ji,2) = p− 1 we have

dim(Lp(Ji,r)/L̂p(Ji,r)) = p− 1. (2.3)

We set xk = y1g
k−1 for k = 1, . . . , p. Let L̂(Ji,r) and LS(Ji,r) be the subspaces of

R(Ji,r) defined by

L̂(Ji,r) = L2(Ji,r) + · · · + Lp−1(Ji,r) + L̂p(Ji,r) + Lp+1(Ji,r) + · · ·

(where the right-hand side is, of course, a direct sum) and

LS(Ji,r) = L̂(Ji,r) + 〈xp
1, . . . , x

p
p〉,

where 〈xp
1, . . . , x

p
p〉 denotes the subspace spanned by xp

1, . . . , x
p
p.

The notation x1, . . . , xp was also used in [7]. It is clear that 〈xp
1, . . . , x

p
p〉 is a KG-

module, and an easy check shows that it is a KH-module. By [7, Lemma 3.2], xp
1, . . . , x

p
p

are linearly independent. Thus 〈xp
1, . . . , x

p
p〉 is a regular KG-module. By [6, Lemma 1],

since xp
1h = (l

ix1)p = lix
p
1, we have

〈xp
1, . . . , x

p
p〉 ∼= Ji,p. (2.4)

Also, by [7, Lemma 3.2], L̂p(Ji,r) and 〈xp
1, . . . , x

p
p〉 span their direct sum:

L̂p(Ji,r) + 〈xp
1, . . . , x

p
p〉 = L̂p(Ji,r) ⊕ 〈xp

1, . . . , x
p
p〉. (2.5)
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Thus

LS(Ji,r) = L̂(Ji,r)⊕ 〈xp
1, . . . , x

p
p〉. (2.6)

It is easily seen that L̂(Ji,r) and LS(Ji,r) are Lie subalgebras and KH-submodules
of R(Ji,r). Following the terminology of [7], we call LS(Ji,r) the shifted Lie algebra of
L(Ji,r).

The two main results that we shall prove are the following: they are Theorem 3.1 and
Corollary 3.2 of [9] or, equivalently, Theorem 2 and the Corollary in §5.2 of [14], except
that we have not included statements (2.4) and (2.6) because these have already been
established.

Theorem 2.1 Suppose that 0 � i � p − 2 and 2 � r � p. For each n � 2 there exists a
KH-submodule Un of Rn(Ji,r) such that

(i) the Lie subalgebra of R(Ji,r) generated by U2 ⊕ U3 ⊕ · · · is free, and LS(Ji,r) =
L(U2 ⊕ U3 ⊕ · · · ),

(ii) for n �= p, Un is a direct summand of Ln(Ji,r),

(iii) Up has the form 〈xp
1, . . . , x

p
p〉 ⊕ Vp, where Vp is a direct summand of L̂p(Ji,r),

(iv) for n < p, Un
∼=Mn(Ji,r), and

(v) for n � p, Un is a projective KH-module.

Theorem 2.2 There are KH-module isomorphisms Un
∼= ⊕r

s=2 M̃
n(Ji,s), for n > p,

and Vp
∼= ⊕r

s=3 M̃
p(Ji,s).

As explained in [9, §3], the isomorphism types of the modules Un and Vp in Theorems
2.1 and 2.2 can be completely identified, that is, it is possible to compute, recursively,
the Krull-Schmidt multiplicities of the indecomposable KH-modules in each Un and in
Vp. Also, as explained in [9, §3 and §4], Theorems 2.1 and 2.2 provide the information
necessary for a recursive description of the Lie powers Ln(Ji,r). Indeed, Ln(Ji,r) can be
obtained from knowledge of Lm(U2 ⊕ · · ·⊕Un) for m < n, and this allows Ln(Ji,r) to be
obtained from knowledge of Lie powers Lm(W ) where W is indecomposable and m < n.

We conclude this section by stating without proof some further results about the
modules Un that can be deduced from Theorem 2.2. For n > p these results give simpler
descriptions of Un than those of Theorem 2.2. As before we assume that r � 2. First, for
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n = p + 1, we have Up+1
∼= Mp+1(Ji,r). Now suppose that n > p + 1. Then there is an

injective linear map θn :Mn−p(Ji,r)→Mn(Ji,r) given by

[yj1 , yj2 , . . . , yjn−p ]θn = [yj1, yj2 , . . . , yjn−p , x1, x2, . . . , xp]

for all j1, . . . , jn−p ∈ {1, . . . , r}. It is not hard to see that the image of θn is a KH-
submodule of Mn(Ji,r) and that im θn ∼= Ji,1 ⊗ Mn−p(Ji,r). The result that can be
proved for Un is

Un
∼=Mn(Ji,r)/ im θn.

Thus Un is isomorphic to a certain factor module ofMn(Ji,r). Also, since Un is projective,
we have

Un ⊕ (Ji,1 ⊗Mn−p(Ji,r)) ∼=Mn(Ji,r).

3. Elimination

We start with some general facts about free Lie algebras and free restricted Lie
algebras.

Let L(X) be the free Lie algebra on a free generating set X. If β is an invertible linear
transformation of the subspace 〈X〉 of L(X) then there is an automorphism of L(X) in
which x �→ xβ for all x ∈ X. Hence

{xβ : x ∈ X} freely generates L(X). (3.1)

If X is a disjoint union, X = X1 ∪ X2, and γ is any map from X2 to the subalgebra
L(X1) of L(X) then there is an automorphism of L(X) in which x �→ x for all x ∈ X1

and x �→ x+ xγ for all x ∈ X2. Hence

X1 ∪ {x+ xγ : x ∈ X2} freely generates L(X). (3.2)

More generally, suppose that X is a countable disjoint union, X = X1 ∪ X2 ∪ · · · . For
each n � 1, let βn be an invertible linear transformation of 〈Xn〉 and let γn be any map
from Xn to L(X1 ∪ · · ·∪Xn−1). Then there is a homomorphism L(X) → L(X) in which,
for each n, we have x �→ xβn + xγn for all x ∈ Xn. By the proof of [8, Lemma 2.1], this
homomorphism is an automorphism of L(X). Hence⋃

n�1

{xβn + xγn : x ∈ Xn} freely generates L(X). (3.3)
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We shall require ‘Lazard elimination’ with respect to an element z of X. This is a
special case of [2, Chapter 2, §2.9, Proposition 10] and is cited as [14, (1.1)], namely,

L(X) = 〈z〉 ⊕ L(X|z), (3.4)

where

X|z = {[x, z, . . . , z︸ ︷︷ ︸
k

] : x ∈ X \ {z}, k � 0}

and L(X|z) is the subalgebra of L(X) generated by X|z, this subalgebra being freely
generated by X|z. There is an analogue of (3.4) for the free restricted Lie algebra R(X).
This is stated as part of [14, (1.2)], namely,

R(X) = 〈z, zp, zp2
, . . . 〉 ⊕R(X|z). (3.5)

The move from L(X) to L(X|z), or from R(X) to R(X|z), is called full elimination of z.
‘Restricted elimination’ is described in [14, Theorem B]. It gives

R(X) = 〈z〉 ⊕R(X|pz), (3.6)

where

X|pz = {zp} ∪ {[x, z, . . . , z︸ ︷︷ ︸
k

] : x ∈ X \ {z}, 0 � k � p− 1}.

The move from R(X) to R(X|pz) is called restricted elimination of z.
We now consider L(Ji,r) where r � 2. We take i and r as fixed and write Y = Y (i,r)

and yj = y
(i,r)
j for j = 1, . . . , r. Thus Y = {y1, . . . , yr}.

We use the sets Ep,s, for s = 2, . . . , r, as defined in §2. Let F be any basis of
Lp(Ji,r)∩L(Ji,r)′′. Since the image of Ep,2 ∪ · · ·∪Ep,r inMp(Ji,r) is a basis of Mp(Ji,r),

it follows that F ∪ Ep,2 ∪ · · · ∪Ep,r is a basis of Lp(Ji,r). From the definition of L̂p(Ji,r)
in §2, it is easily verified that

F ∪Ep,3 ∪ · · · ∪ Ep,r is a basis of L̂p(Ji,r). (3.7)

For k = 2, . . . , p, let

dk = [y1, y2, . . . , y2︸ ︷︷ ︸
k−1

, y1, . . . , y1︸ ︷︷ ︸
p−k

].
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Thus Ep,2 = {d2, . . . , dp}. Hence

{d2, . . . , dp} is a basis for Lp(Ji,r) modulo L̂p(Ji,r). (3.8)

Recall that xk denotes y1gk−1 for k = 1, . . . , p, and that 〈xp
1, . . . , x

p
p〉 has dimension

p.

Lemma 3.1 There exist elements c2, . . . , cp of L̂p(Ji,r) and elements αk,s of K, for
k = 2, . . . , p, s = 1, . . . , r, such that

{yp
1 , d2 + c2 + α2,1y

p
1 + · · ·+ α2,ry

p
r , . . . , dp + cp + αp,1y

p
1 + · · ·+ αp,ry

p
r}

is a basis of 〈xp
1, . . . , x

p
p〉.

Proof. By [7, (3.17)], there exist elements l2, . . . , lp of Lp(Ji,r) satisfying

xp
k = y

p
1 +

(
k − 1
1

)
yp
2 +

(
k − 1
2

)
yp
3 + · · ·+

(
k − 1
r − 1

)
yp

r + lk, (3.9)

for k = 2, . . . , p. Also, by [7, Corollary 3.3], {l2, . . . , lp} is a basis for Lp(Ji,r) modulo

L̂p(Ji,r). Thus (3.8) yields that there are elements c2, . . . , cp of L̂p(Ji,r) such that
{d2+c2, . . . , dp+cp} is a basis of 〈l2, . . . , lp〉. Hence there is an invertible (p−1)×(p−1)
matrix M with entries from K such that

(l2, . . . , lp)M = (d2 + c2, . . . , dp + cp).

Therefore, by (3.9),

(xp
2, . . . , x

p
p)M = (d2 + c2 +w2, . . . , dp + cp +wp),

where w2, . . . , wp ∈ 〈yp
1 , . . . , y

p
r〉. Since xp

1 = yp
1 , it follows that 〈xp

1, . . . , x
p
p〉 is spanned

by yp
1 , d2 + c2 + w2, . . . , dp + cp + wp. This gives the required result. ✷

We apply elimination to L(Y ) and R(Y ), where Y = {y1, . . . , yr}. We first apply (3.4)
to L(Y ). Full elimination of yr , yr−1, . . . , y1 (in that order) gives a direct decomposition

L(Y ) = 〈y1, . . . , yr〉 ⊕ L(D),

where D is the set defined in §2. Since L(Ji,r) = L(Y ), it follows that

L(Ji,r)′ = L(D), (3.10)
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where L(Ji,r)′ denotes the derived algebra of L(Ji,r). (This is a well-known result: see,
for example, [1, Chapter 2, §2.4.2].)

We now apply (3.5) and (3.6) to R(Y ). Full elimination of yr, yr−1, . . . , y2 (in that
order) followed by restricted elimination of y1 gives a direct decomposition

R(Y ) = 〈y1, y2, yp
2 , y

p2

2 , . . . , y3, y
p
3 , y

p2

3 , . . . , yr, y
p
r , y

p2

r , . . .〉 ⊕R({yp
1} ∪ E), (3.11)

where E is the set defined in §2.
It will be convenient to describe a subset A of R(Y ) as ‘Lie-free’ if A freely generates

the Lie subalgebra of R(Y ) that it generates: this free Lie subalgebra is of course written
as L(A). Also, let us write

E′ = E \ {d2, . . . , dp} = E \ Ep,2. (3.12)

Lemma 3.2 Let

T = {yp
1} ∪ E = {yp

1 , d2, . . . , dp} ∪E′.

Then T is Lie-free.

Proof. As shown by (3.11), the restricted Lie subalgebra of R(Y ) generated by T is
freely generated by T . A similar result therefore holds for the Lie subalgebra generated
by T . ✷

It is easy to check that L(Ji,r)′ ⊕ 〈yp
1〉 is a Lie subalgebra of R(Y ). Hence L(T ) ⊆

L(Ji,r)′ ⊕ 〈yp
1 〉. Note that every element of D has the form

[yj1 , yj2 , . . . , yjm , y1, . . . , y1︸ ︷︷ ︸
s

, yp
1 , . . . , y

p
1︸ ︷︷ ︸

t

],

where j1 < j2 � j3 � · · · � jm � 2, 0 � s � p− 1 and t � 0. However,

[yj1 , yj2, . . . , yjm , y1, . . . , y1︸ ︷︷ ︸
s

] ∈ E.

It follows that D ⊆ L(T ). Therefore, by (3.10), L(Ji,r)′ ⊆ L(T ) and we obtain

L(Ji,r)′ ⊕ 〈yp
1〉 = L(T ). (3.13)
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As follows from (3.13), every element of Lp(Ji,r) ∩ L(Ji,r)′′ belongs to the Lie subal-
gebra generated by the elements of T of degree less than p (with respect to Y ). Hence

Lp(Ji,r) ∩ L(Ji,r)′′ ⊆ L(E′), and so L̂p(Ji,r) ⊆ L(E′), by (3.7). Thus, with c2, . . . , cp as
in Lemma 3.1,

c2, . . . , cp ∈ L(E′). (3.14)

In the next result we use the scalars αk,s of Lemma 3.1, but only those with s > 1.

Lemma 3.3 Let

T ∗ = {yp
1 , d2 + α2,2y

p
2 + · · ·+ α2,ry

p
r , . . . , dp + αp,2y

p
2 + · · ·+ αp,ry

p
r} ∪ E′.

Then T ∗ is Lie-free.

Proof. Let φ : T → T ∗ be defined by yp
1φ = y

p
1 , dkφ = dk + αk,2y

p
2 + · · ·+ αk,ry

p
r for

k = 2, . . . , p, and tφ = t for all t ∈ E′. Clearly, φ is surjective. Also, by Lemma 3.2, T is
Lie-free. Thus φ extends to a Lie algebra homomorphism φ : L(T ) → R(Y ). The image
of this homomorphism is the Lie subalgebra of R(Y ) generated by T ∗. Thus it suffices to
show that ker φ = 0.

We may write R(Y ) = R0⊕R1⊕R2⊕· · · where, for each m � 0, every element of Rm

is a linear combination of monomials of T (Y ) that have degree m in y1. Let u ∈ L(T ),
where u is a Lie monomial in the elements of T . For each t ∈ T , we have t ∈ Rm(t) for
some m(t) � 0. Thus u ∈ Rm(u) for some m(u) � 0. For t ∈ T \ {d2, . . . , dp}, we have
tφ = t while, for t ∈ {d2, . . . , dp}, we have m(t) > 0 and tφ = t + t′ with t′ ∈ R0. Thus
we may write uφ = u+ u′ where u′ ∈ R0 ⊕ · · ·⊕Rm(u)−1 : this is interpreted as meaning
that u′ = 0 if m(u) = 0.

Now let u be any non-zero element of L(T ). For some m � 0, we may write
u = u0+u1+ · · ·+um, where um �= 0 and where, for each j, uj is a linear combination of
Lie monomials of L(T ) belonging to Rj. Hence uφ = um+u′ where u′ ∈ R0⊕· · ·⊕Rm−1.
Thus uφ �= 0. Hence kerφ = 0. ✷

Proposition 3.4 Let

S = {xp
1, x

p
2, . . . , x

p
p} ∪ E′.

Then S is Lie-free.
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Proof. By (3.14), yp
1 , c2, . . . , cp ∈ L({yp

1}∪E′). Hence it follows from Lemma 3.3 and
(3.2) that

{yp
1 , d2 + c2 + α2,1y

p
1 + · · ·+ α2,ry

p
r , . . . , dp + cp + αp,1y

p
1 + · · ·+ αp,ry

p
r} ∪ E′

is Lie-free. Therefore, by Lemma 3.1 and (3.1), {xp
1, x

p
2, . . . , x

p
p} ∪ E′ is Lie-free. ✷

From the definitions of S and T we see that |S∩Rn(Y )| = |T ∩Rn(Y )| for all n. Thus
there is an isomorphism from L(S) to L(T ) induced by a degree-preserving bijection from
S to T . It follows that

dim(L(S) ∩Rn(Y )) = dim(L(T ) ∩Rn(Y )) (3.15)

for all n. However, by (3.13), we have L(T ) ∩ Rn(Y ) = Ln(Ji,r) for n �= 1, p. Clearly
L(S) ∩Rn(Y ) ⊆ Ln(Ji,r) for n �= 1, p. Thus, by (3.15),

L(S) ∩Rn(Y ) = Ln(Ji,r) for n �= 1, p. (3.16)

By (3.13),

L(T ) ∩Rp(Y ) = Lp(Ji,r) ⊕ 〈yp
1〉.

Thus, by (2.3),

dim(L(T ) ∩Rp(Y )) = p+ dim L̂p(Ji,r).

By (3.7),

L(S) ∩Rp(Y ) ⊆ L̂p(Ji,r)⊕ 〈xp
1, . . . , x

p
p〉,

where the right-hand side has dimension p+ dim L̂p(Ji,r). Thus, by (3.15),

L(S) ∩Rp(Y ) = L̂p(Ji,r) ⊕ 〈xp
1, . . . , x

p
p〉. (3.17)

Therefore, by (2.6), (3.16) and (3.17),

L(S) = LS(Ji,r) = L2(Ji,r) ⊕ · · · ⊕ Lp−1(Ji,r) ⊕ (L̂p(Ji,r)⊕ 〈xp
1, . . . , x

p
p〉)⊕ Lp+1(Ji,r)⊕ · · · .
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Thus S is a free generating set for the shifted Lie algebra LS(Ji,r).
Write Q = LS(Ji,r) = L(S) and, for n � 2, Qn = Q ∩ Rn(Y ). Thus Q =

⊕
n�2Qn,

where Qn = Ln(Ji,r) for n �= p and Qp = L̂p(Ji,r)⊕ 〈xp
1, . . . , x

p
p〉. Note that each Qn is a

KH-module. It will also be convenient to write S as the disjoint union S =
⋃

n�2 Sn,

where Sn = S ∩Rn(Y ). Thus Sn = En for n �= p and Sp = (Ep \ Ep,2) ∪ {xp
1, . . . , x

p
p}.

4. Modules

As in §3, let Q = LS(Ji,r), where r � 2. For n � 1, let Q[< n] denote the Lie
subalgebra of Q generated by Q2, . . . , Qn−1, that is, the subalgebra of Q generated by
all its elements of degree less than n, with the convention that Q[< 1] = Q[< 2] = 0. Of
course, Q[< n] = L(S2 ∪ · · · ∪ Sn−1). Also, for n � 2, let

In = Qn ∩Q[< n] = Rn(Y ) ∩Q[< n].

Thus In is a KH-submodule of Qn. Since Q[< n] has no elements of degree 1 we have
In = Qn ∩Q[< n−1]. For n � p+1, Q[< n−1] is generated by L2(Ji,r), . . . , Ln−2(Ji,r), and
so In = Qn∩L(Ji,r)′′. Hence, for n � p+1 with n �= p, we have In = Ln(Ji,r)∩L(Ji,r)′′.
Also, by (2.2),

Ip = Qp ∩ L(Ji,r)′′ = L̂p(Ji,r) ∩ L(Ji,r)′′ = Lp(Ji,r) ∩ L(Ji,r)′′.

Hence

In = Ln(Ji,r) ∩ L(Ji,r)′′ for n � p+ 1, (4.1)

and Ip ⊆ L̂p(Ji,r).
Since Q = L(S), we have that

Qn = In ⊕ 〈Sn〉 for all n. (4.2)

Lemma 4.1 For n � 2 with n �= p, Ln(Ji,r)/In has basis

{e+ In : e ∈ En,2 ∪ · · · ∪ En,r}.

Also, L̂p(Ji,r)/Ip has basis

{e+ Ip : e ∈ Ep,3 ∪ · · · ∪Ep,r}.
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Proof. The result for n �= p is an immediate consequence of (4.2), while the result for
n = p follows from (4.1) and (3.7). ✷

Lemma 4.2 For each n � 2, let Un be a subspace of Qn such that Qn = In ⊕ Un,
and let Bn be a basis of Un. Then Q is freely generated by B2 ∪ B3 ∪ · · · , that is,
Q = L(U2 ⊕ U3 ⊕ · · · ).
Proof. In view of (4.2), for each n � 2 there exists an invertible linear transformation
βn of 〈Sn〉 such that

{b+ In : b ∈ Bn} = {xβn + In : x ∈ Sn}.

Hence there is a map γn : Sn → In such that

Bn = {xβn + xγn : x ∈ Sn}.

Therefore, by (3.3), Q is freely generated by B2 ∪B3 ∪ · · · . ✷

We shall aim to find subspaces Un satisfying the hypothesis of Lemma 4.2 such that
Un is a KH-submodule of Qn.

Suppose first that n satisfies 2 � n � p − 1. Then Qn = Ln(Ji,r), and, by (4.1),
In = Qn∩L(Ji,r)′′. By [7, §2], since we have n < p, Ln(Ji,r) splits over Ln(Ji,r)∩L(Ji,r)′′

as a KH-module. Thus there is a KH-submodule Un of Qn such that Qn = In ⊕Un and

Un
∼= Ln(Ji,r)/(Ln(Ji,r) ∩ L(Ji,r)′′) ∼=Mn(Ji,r).

In order to deal with the case n � p we shall use the modules M̃n(Ji,r) defined in

§2. By [7, (3.20)], the restriction of M̃n(Ji,r) to G is free as a KG-module for r � 2 and
n � p+2. Exactly the same argument shows that this holds, more generally, when r � 2
and n+ r � p+ 3. Hence, as a KH-module,

M̃n(Ji,r) is projective when r � 2 and n+ r � p+ 3. (4.3)

Recall that En,r consists of all Lie monomials [yj1 , yr , yj3, . . . , yjn ] satisfying j1 < r,

j3 � · · · � jn, (4.4)
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and

{m : jm = 1} ⊆ {1, n− p+ 2, n− p+ 3, . . . , n}. (4.5)

We shall require the following technical lemma which gives a simplified treatment of
the essential content of [7, Lemma 3.5] and an argument on page 361 of [7].

Lemma 4.3 Suppose that n � p and r � 3. Then (In ∩ L(Ji,r)′′) ⊕ 〈En,r〉 is a KH-
submodule of Ln(Ji,r).

Proof. Let Fn,r be the set of all Lie monomials [yj1 , yr, yj3 , . . . , yjn ] satisfying j1 < r
and (4.5) (but not necessarily (4.4)). For each f ∈ Fn,r there is a unique element f∗ of
En,r obtained from f by re-arranging the entries yj3 , . . . , yjn to satisfy (4.4). Clearly

f − f∗ ∈ L(Ji,r)′′. (4.6)

We shall show that we also have

f − f∗ ∈ In. (4.7)

For e ∈ En,r and x ∈ H , it is easy to see that ex may be written as a linear combination
of elements of Fn,r. Thus, given (4.7), we obtain

ex ∈ (In ∩ L(Ji,r)′′)⊕ 〈En,r〉,

and Lemma 4.3 follows. It remains to prove (4.7).
For n = p and n = p + 1, (4.7) follows from (4.6) and (4.1). Thus we may assume

that n � p+ 2. Let

f = [yj1 , yr, yj3 , . . . , yjn ] ∈ Fn,r.

In order to re-arrange the entries yj3 , . . . , yjn we need to be able to interchange yjt and
yjt+1 when jt < jt+1. However, by (4.5), we do not need an interchange with yjt = y1

unless t � n− p+ 2. By the Jacobi identity,

[yj1 , yr, . . . , yjt, yjt+1 , . . . , yjn ]− [yj1 , yr, . . . , yjt+1 , yjt, . . . , yjn ] = u,

where

u = [yj1 , yr , yj3, . . . , yjt−1 , [yjt, yjt+1 ], yjt+2, . . . , yjn ].
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Therefore it suffices to verify that u ∈ In in each of the two cases (i) 1 < jt < jt+1 and
(ii) jt = 1 with t � n − p + 2. Let a = [yj1 , yr, yj3 , . . . , yjt−1 ] and b = [yjt , yjt+1]. Thus
we have u = [a, b, yjt+2, . . . , yjn ]. By repeated use of the Jacobi identity (see [7, (2.1)]),
we may write u as a sum of elements of the form

[[a, yk1, . . . , yks ], [b, yks+1, . . . , ykn−t−1 ]], (4.8)

where the list yk1 , . . . , ykn−t−1 is a re-arrangement of the list yjt+2 , . . . , yjn . It suffices to
show that each element (4.8) belongs to In. Thus it suffices to show that (4.8) be-
longs to Q[< n]. Write a∗ = [a, yk1, . . . , yks] and b∗ = [b, yks+1, . . . , ykn−t−1 ]. Thus
a∗ ∈ Lt+s−1(Ji,r) and b∗ ∈ Ln−t−s+1(Ji,r). It suffices to show that a∗ ∈ Qt+s−1 and
b∗ ∈ Qn−t−s+1. The result for a∗ is clear if t + s− 1 �= p and the result for b∗ is clear if
n − t− s+ 1 �= p. However, if t+ s− 1 = p then a∗ ∈ L̂p(Ji,r) ⊆ Qp because a∗ involves
yr and r � 3. Suppose finally that n− t− s+1 = p. Then t = n− p− s+1 < n− p+ 2.
Hence case (ii) cannot arise here: we must be in case (i). Thus jt+1 � 3. Since b∗ involves

yjt+1 we have b∗ ∈ L̂p(Ji,r) ⊆ Qp, as required. ✷

We can now prove the key result of this section.

Proposition 4.4 For r = 2, Ip = L̂p(Ji,r), and, for r � 3,

L̂p(Ji,r)/Ip ∼= M̃p(Ji,3)⊕ · · · ⊕ M̃p(Ji,r).

For n � p+ 1 and r � 2,

Ln(Ji,r)/In ∼= M̃n(Ji,2) ⊕ · · · ⊕ M̃n(Ji,r).

Proof. We first consider the case where r = 2. Clearly, L̂p(Ji,2) = Lp(Ji,2)∩L(Ji,2)′′.

Thus, for r = 2, (4.1) gives Ip = L̂p(Ji,r).

Now suppose that r = 2 and n � p+ 1. Let v, w ∈ En,2, where

v = [y1, y2, . . . , y2︸ ︷︷ ︸
n−p

, y1, . . . , y1︸ ︷︷ ︸
p−1

], w = [y1, y2, . . . , y2︸ ︷︷ ︸
n−1

].

Let V be theKG-submodule of Ln(Ji,r) generated by v. By [7, Lemma 3.4], V is a regular
KG-module, and its unique one-dimensional submodule is spanned by w. However, both
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y1 and y2 are eigenvectors for h, and hence V is a KH-submodule. Since w ∈ En,2, we
have w /∈ In, by Lemma 4.1. It follows that V ∩ In = 0. However,

dim(Ln(Ji,2)/In) = |En,2| = p = dimV.

Thus Ln(Ji,2)/In ∼= V . Since the image of w inMn(Ji,2) is non-zero, V is isomorphic to its

image inMn(Ji,2). However, this image is clearly contained in M̃n(Ji,2), and both V and

M̃n(Ji,2) have dimension p. Thus V ∼= M̃n(Ji,2) and we have Ln(Ji,2)/In ∼= M̃n(Ji,2).
We now suppose that r � 3 and use induction. Thus we may assume that Proposition

4.4 holds with r − 1 in place of r. We shall need to consider the shifted Lie algebra
LS(Ji,r−1). For this we use notation similar to that for LS(Ji,r), but with a superscript

(i, r − 1). Thus we write LS(Ji,r−1) = Q(i,r−1) =
⊕

n�2Q
(i,r−1)
n , where Q(i,r−1)

n =

Q(i,r−1) ∩Rn(Ji,r−1). Furthermore, I
(i,r−1)
n = Q(i,r−1)

n ∩Q(i,r−1)
[< n] , and so on.

Let δ : R(Ji,r) → R(Ji,r−1) be the homomorphism induced by the deletion map
Ji,r → Ji,r−1. Since δ is a module homomorphism,

xkδ = (y1gk−1)δ = (y1δ)gk−1 = y(i,r−1)
1 gk−1 = x(i,r−1)

k ,

for k = 1, . . . , p. Also, it is easily verified that L̂p(Ji,r)δ = L̂p(Ji,r−1). Thus, by (2.6),

Qδ = Q(i,r−1), and it follows that Qnδ = Q
(i,r−1)
n for all n. Therefore Inδ ⊆ I(i,r−1)

n , and
so δ induces surjective homomorphisms of KH-modules

δ̄n : Ln(Ji,r)/In → Ln(Ji,r−1)/I(i,r−1)
n , for n � p+ 1,

and

δ̄p : L̂p(Ji,r)/Ip → L̂p(Ji,r−1)/I(i,r−1)
p .

For each n, let Wn be the KH-submodule of Ln(Ji,r), or L̂p(Ji,r) when n = p, such that
Wn ⊇ In andWn/In = ker δ̄n. By the inductive hypothesis, the image of δ̄n is isomorphic

to M̃n(Ji,2) ⊕ · · · ⊕ M̃n(Ji,r−1), or M̃p(Ji,3) ⊕ · · · ⊕ M̃p(Ji,r−1) when n = p. By (4.3),
this image is projective, and hence δ̄n splits over its kernel Wn/In. Thus it suffices to

show that Wn/In ∼= M̃n(Ji,r) for all n � p.
For n � p+ 1, Lemma 4.1 shows that Ln(Ji,r)/In has basis

{e+ In : e ∈ En,2 ∪ · · · ∪ En,r},
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while Ln(Ji,r−1)/I
(i,r−1)
n has a similar basis corresponding to E(i,r−1)

n,2 ∪ · · · ∪ E(i,r−1)
n,r−1 .

It is easy to see that δ maps En,2 ∪ · · · ∪ En,r−1 bijectively to E
(i,r−1)
n,2 ∪ · · · ∪ E(i,r−1)

n,r−1 ,
whereas En,rδ = 0. It follows that Wn/In has basis {e + In : e ∈ En,r}. Similarly,
L̂p(Ji,r)/Ip has a basis corresponding to Ep,3 ∪ · · · ∪ Ep,r while L̂p(Ji,r−1)/I

(i,r−1)
p has

a basis corresponding to E(i,r−1)
p,3 ∪ · · · ∪ E(i,r−1)

p,r−1 . Again we find that Wp/Ip has basis
{e+ Ip : e ∈ Ep,r}.

Let Z = (In ∩ L(Ji,r)′′)⊕ 〈En,r〉, the module given by Lemma 4.3. We know that In
and 〈En,r〉 span their direct sum in Ln(Ji,r). So, too, do Ln(Ji,r) ∩ L(Ji,r)′′ and 〈En,r〉,
since the image of En,r in Mn(Ji,r) is a basis of M̃n(Ji,r). Hence

Z ∩ In = In ∩ L(Ji,r)′′ = Z ∩ L(Ji,r)′′.

However, In + Z =Wn and the image of Z in Mn(Ji,r) is M̃n(Ji,r). Thus

Wn/In ∼= Z/Z ∩ In = Z/Z ∩ L(Ji,r)′′ ∼= M̃n(Ji,r),

as required. This completes the proof of Proposition 4.4. ✷

We now apply Proposition 4.4 to obtain, for n � p, a KH-submodule Un of Qn

satisfying Qn = In ⊕ Un. We have Qp = L̂p(Ji,r)⊕ 〈xp
1, . . . , x

p
p〉. By Proposition 4.4 and

(4.3), we may write L̂p(Ji,r) = Ip ⊕ Vp where

Vp
∼= M̃p(Ji,3) ⊕ · · · ⊕ M̃p(Ji,r).

Thus we may take Up = 〈xp
1, . . . , x

p
p〉 ⊕ Vp. For n � p + 1, Qn = Ln(Ji,r). Thus, by

Proposition 4.4 and (4.3), we may take Qn = In ⊕ Un where

Un
∼= M̃n(Ji,2)⊕ · · · ⊕ M̃n(Ji,r).

It now follows that the modules U2, U3, . . . have all the properties required for Theorems
2.1 and 2.2.
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