On Modular Lie Representations of Finite Groups

R. M. Bryant and Ralph Stöhr

Abstract

We give a new and substantially simplified proof of a key technical result in the theory of modular Lie representations of finite groups.

Key Words: free Lie algebras, modular Lie representations of groups, elimination

1. Introduction

Let G be a group and K a field. For any finite-dimensional $K G$-module V, let $L(V)$ be the free Lie algebra on V (that is, the free Lie algebra over K freely generated by any basis of V), and extend the action of G on V so that $L(V)$ is a $K G$-module on which each element of G acts as a Lie algebra automorphism. Each homogeneous component $L^{n}(V)$ is a finite-dimensional submodule of $L(V)$, called the nth Lie power of V.

The central problem on Lie powers is to describe the modules $L^{n}(V)$ up to isomorphism. In characteristic 0 , the structure of $L^{n}(V)$ has been clarified in a number of papers, including those of Brandt [3], Klyachko [12] and Kraśkiewicz and Weyman [13]. In this paper we assume that $\operatorname{char}(K)=p>0$, and we take G to be a finite group.

If the order of G is not divisible by p then the Lie powers $L^{n}(V)$ may be studied by methods similar to those in characteristic 0 . Thus we assume that $|G|$ is divisible by p. The smallest such case, where $|G|=p$, turns out to be surprisingly difficult. A deep analysis of this case was conducted in [7], the main result being a recursive description of $L^{n}(V)$ for an arbitrary finite-dimensional $K G$-module V. This recursive description was used in [4] to obtain an explicit formula for $L^{n}(V)$ as an element of the Green ring of G over K.

[^0]
BRYANT, STÖHR

Here we shall describe a proof of the main results of [7] incorporating a new and substantial simplification. However, we shall work in a slightly more general situation, as we now explain.

For certain applications of [7], it turns out to be necessary to generalise the main results from G to H, where H is the holomorph of G, a group of order $p(p-1)$. This generalisation is an important ingredient of the study, in [9], of Lie powers of modules for $G L(2, p)$ and was later used in [5] to describe the Lie powers of an arbitrary finitedimensional module for a finite group with a Sylow p-subgroup of order p.

The required generalisation was stated in [9, Theorem 3.1 and Corollary 3.2]. However, [9] did not contain proofs of these two results. Instead, reference was made to another paper [14] intended to contain the proofs as an application of 'restricted Lazard elimination'. Unfortunately, some mistakes have been discovered in [14] that invalidate this application: the proof of Theorem 2 and the statements (ii) and (iii) of Lemma 4 in [14] are not correct. This means that there is no valid published proof of [9, Theorem 3.1 and Corollary 3.2].

In view of the importance of these results for [9] and subsequent work it is necessary to set the record straight. Thus we here provide proofs of these results. The main results of [7] for the cyclic group G can be obtained from the results for H by restriction from H to G, and, interpreted in this way, our proofs here give a major simplification of the original proofs in [7]. The key new ingredient is the use of restricted elimination, as in [14]. However, we cannot simplify all of [7]. Thus, for economy of space, reference will be made to [7] for a limited number of self-contained subsidiary results.

2. Preliminaries and statement of results

In the remainder of this paper, K is a field of prime characteristic p and H is the group defined by

$$
H=\left\langle g, h: g^{p}=h^{p-1}=1, h^{-1} g h=g^{l}\right\rangle,
$$

where $l \in\{1, \ldots, p-1\}$ and l has multiplicative order $p-1$ when considered as an element of K. Thus H has order $p(p-1)$. We wish to find a recursive method for describing $L^{n}(V)$ up to isomorphism, where n ranges over all positive integers and V ranges over all finite-dimensional KH -modules.

BRYANT, STÖHR

By [9, Theorem 4.1], if V is a finite-dimensional module for any group over any field then $L^{n}(V)$ is isomorphic to a direct sum of Lie powers of the form $L^{m}(W)$, where m is a divisor of n and W is an indecomposable direct summand of a tensor power of V. Thus it is enough to consider Lie powers $L^{n}(V)$ where V is indecomposable.

As is well known, there are, up to isomorphism, precisely $p(p-1)$ indecomposable $K H$-modules. Details are given in $[6, \S 2],[9, \S 3]$ and $[11, \S 1]$. We follow the notation of [9] and denote the indecomposable $K H$-modules by $J_{i, r}$, for $i=0,1, \ldots, p-2$ and $r=1,2, \ldots, p$. Here r is the dimension of $J_{i, r}$. Furthermore, $J_{i, r}$ has a basis $Y^{(i, r)}$, where $Y^{(i, r)}=\left\{y_{1}^{(i, r)}, \ldots, y_{r}^{(i, r)}\right\}$, such that the action of g is given by $y_{j}^{(i, r)} g=y_{j}^{(i, r)}+y_{j+1}^{(i, r)}$ for $j=1, \ldots, r-1$ and $y_{r}^{(i, r)} g=y_{r}^{(i, r)}$, and the action of h on $y_{1}^{(i, r)}$ is given by $y_{1}^{(i, r)} h=$ $l^{i} y_{1}^{(i, r)}$, where l is regarded as an element of K. In particular, g acts trivially on $J_{i, 1}$ and h acts on $J_{i, 1}$ as the scalar l^{i}. For $s=1, \ldots, r$, the subspace $\left\langle y_{s}^{(i, r)}, y_{s+1}^{(i, r)}, \ldots, y_{r}^{(i, r)}\right\rangle$ is a submodule of $J_{i, r}$. The submodules of this form are the only non-zero submodules of $J_{i, r}$ and they give a composition series with factors, from top to bottom, isomorphic to $J_{i, 1}, J_{i+1,1}, \ldots, J_{i+r-1,1}$. (In using the notation $J_{i, r}$ for $i>p-2$ we take the convention that i is reduced modulo $p-1$.) The unique one-dimensional submodule of $J_{i, r}$ is spanned by $y_{r}^{(i, r)}$ and h acts on this submodule as the scalar l^{i+r-1}. Furthermore, $J_{i, r}$ is projective if and only if $r=p$.

We take G to be the cyclic subgroup $\langle g\rangle$. On restriction from H to $G, J_{i, r}$ becomes a $K G$-module denoted by J_{r}. This is the same as the module J_{r} of [7], where the basis elements are denoted by $y_{1}^{(r)}, \ldots, y_{r}^{(r)}$. The modules J_{1}, \ldots, J_{p} are the indecomposable $K G$-modules, up to isomorphism, and J_{p} is the regular $K G$-module, the unique projective indecomposable. We note that a finite-dimensional $K H$-module is projective if and only if its restriction to G is a free $K G$-module.

Since $J_{i, 1}$ has dimension 1 we have $L^{1}\left(J_{i, 1}\right)=J_{i, 1}$ and $L^{n}\left(J_{i, 1}\right)=0$ for $n>1$. Thus our main results will concern $L^{n}\left(J_{i, r}\right)$ for $r \geqslant 2$.

For any set X we write $T(X)$ for the free associative K-algebra freely generated by X. As is well known, if $T(X)$ is regarded as a restricted Lie algebra under the operations given by $[a, b]=a b-b a$ and $a^{[p]}=a^{p}$, then the free restricted Lie algebra $R(X)$ and the free Lie algebra $L(X)$ may be identified, respectively, with the restricted Lie subalgebra and the Lie subalgebra generated by X in $T(X)$. Thus we take $L(X) \subseteq R(X) \subseteq T(X)$. Note also that $[R(X), R(X)] \subseteq L(X)$: see, for example, [7, $\S 2]$.

BRYANT, STÖHR

For each non-negative integer n, let $T^{n}(X)$ denote the nth homogeneous component of $T(X)$ and write $R^{n}(X)=R(X) \cap T^{n}(X)$ and $L^{n}(X)=L(X) \cap T^{n}(X)$. Thus $T(X)=\bigoplus_{n \geqslant 0} T^{n}(X), R(X)=\bigoplus_{n \geqslant 1} R^{n}(X)$ and $L(X)=\bigoplus_{n \geqslant 1} L^{n}(X)$.

The free metabelian Lie algebra $M(X)$ is defined to be the quotient $L(X) / L(X)^{\prime \prime}$, where $L(X)^{\prime \prime}$ is the second derived algebra of $L(X)$. We identify the elements of X, notationally, with their images in $M(X)$ under the natural homomorphism $L(X) \rightarrow$ $M(X)$. Thus $M(X)$ is taken to be generated by X. For $n \geqslant 1$, we write $M^{n}(X)$ for the image of $L^{n}(X)$ in $M(X)$. Thus $M(X)=\bigoplus_{n \geqslant 1} M^{n}(X)$.

Let V be a vector space over K and let X be a basis of V. Then we identify V with the subspace of $T(X)$ spanned by X and write $T(V), R(V), \ldots$, to denote $T(X), R(X)$, \ldots, respectively. (The notational ambiguity should cause no problems in practice.)

Suppose that V is a $K H$-module. Then the action of H on V extends to $T(V)$ so that each element of H acts as an algebra automorphism. Thus $T(V), R(V), L(V), M(V)$ and their homogeneous components become KH -modules.

We shall apply the above notation mainly in the case where $V=J_{i, r}$, using the basis $Y^{(i, r)}$ described above. Thus $Y^{(i, r)}$ is a free generating set for $T\left(J_{i, r}\right), R\left(J_{i, r}\right), L\left(J_{i, r}\right)$ and $M\left(J_{i, r}\right)$.

For $r \geqslant s \geqslant 1$, there is a surjective homomorphism of $K H$-modules $J_{i, r} \rightarrow J_{i, s}$ given by $y_{j}^{(i, r)} \mapsto y_{j}^{(i, s)}$ for $j=1, \ldots, s$ and $y_{j}^{(i, r)} \mapsto 0$ for $j=s+1, \ldots, r$. We call this map the deletion map. It induces algebra homomorphisms $T\left(J_{i, r}\right) \rightarrow T\left(J_{i, s}\right), R\left(J_{i, r}\right) \rightarrow$ $R\left(J_{i, s}\right), L\left(J_{i, r}\right) \rightarrow L\left(J_{i, s}\right)$ and $M\left(J_{i, r}\right) \rightarrow M\left(J_{i, s}\right)$, which are also surjections of $K H$ modules.

When i and r are understood we write y_{j} to denote $y_{j}^{(i, r)}$ for $j=1, \ldots, r$. In the remainder of this section we assume that $r \geqslant 2$. For $n \geqslant 2$, we write D_{n} for the subset of $L^{n}\left(J_{i, r}\right)$ consisting of all left-normed Lie monomials of the form $\left[y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{n}}\right]$ with $j_{1}, j_{2}, \ldots, j_{n} \in\{1, \ldots, r\}$ and $j_{1}<j_{2} \geqslant j_{3} \geqslant \cdots \geqslant j_{n}$. As is well known, the corresponding elements of $M^{n}\left(J_{i, r}\right)$ form a basis of $M^{n}\left(J_{i, r}\right)$. Let $D=\bigcup_{n \geqslant 2} D_{n}$. Thus the image of $\left\{y_{1}, \ldots, y_{r}\right\} \cup D$ in $M\left(J_{i, r}\right)$ is a basis of $M\left(J_{i, r}\right)$.

For $n \geqslant 2$, let E_{n} be the subset of D_{n} consisting of all those elements [$y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{n}}$] satisfying $j_{1}<j_{2} \geqslant j_{3} \geqslant \cdots \geqslant j_{n}$, as before, together with

$$
\begin{equation*}
\left\{m: j_{m}=1\right\} \subseteq\{1, n-p+2, n-p+3, \ldots, n\} \tag{2.1}
\end{equation*}
$$

Condition (2.1) means that y_{1} can occur only in the first and in the last $p-1$ positions. This condition is redundant when $n \leqslant p+1$, so $E_{n}=D_{n}$ for $n \leqslant p+1$. In $\S 3$ we shall

BRYANT, STÖHR

consider the set E, where $E=\bigcup_{n \geqslant 2} E_{n}$.
For $s=2, \ldots, r$ and $n \geqslant 2$, let $E_{n, s}$ denote the subset of E_{n} consisting of those elements $\left[y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{n}}\right]$ with $j_{2}=s$. Thus E_{n} is a disjoint union, $E_{n}=E_{n, 2} \cup \cdots \cup E_{n, r}$. Let $\widetilde{M}^{n}\left(J_{i, r}\right)$ denote the subspace of $M^{n}\left(J_{i, r}\right)$ with basis given by the images in $M^{n}\left(J_{i, r}\right)$ of the elements of $E_{n, r}$. It is straightforward to check that $\widetilde{M}^{n}\left(J_{i, r}\right)$ is a $K H$-submodule of $M^{n}\left(J_{i, r}\right)$.

Define $\widehat{L}^{p}\left(J_{i, r}\right)$ to be the kernel of the composite map

$$
L^{p}\left(J_{i, r}\right) \rightarrow M^{p}\left(J_{i, r}\right) \rightarrow M^{p}\left(J_{i, 2}\right)
$$

where the first map is the canonical surjection and the second map is induced by the deletion map $J_{i, r} \rightarrow J_{i, 2}$. Thus $\widehat{L}^{p}\left(J_{i, r}\right)$ is a certain $K H$-submodule of $L^{p}\left(J_{i, r}\right)$, and

$$
\begin{equation*}
L^{p}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime} \subseteq \widehat{L}^{p}\left(J_{i, r}\right) \tag{2.2}
\end{equation*}
$$

Since $\operatorname{dim} M^{p}\left(J_{i, 2}\right)=p-1$ we have

$$
\begin{equation*}
\operatorname{dim}\left(L^{p}\left(J_{i, r}\right) / \widehat{L}^{p}\left(J_{i, r}\right)\right)=p-1 \tag{2.3}
\end{equation*}
$$

We set $x_{k}=y_{1} g^{k-1}$ for $k=1, \ldots, p$. Let $\widehat{L}\left(J_{i, r}\right)$ and $L_{S}\left(J_{i, r}\right)$ be the subspaces of $R\left(J_{i, r}\right)$ defined by

$$
\widehat{L}\left(J_{i, r}\right)=L^{2}\left(J_{i, r}\right)+\cdots+L^{p-1}\left(J_{i, r}\right)+\widehat{L}^{p}\left(J_{i, r}\right)+L^{p+1}\left(J_{i, r}\right)+\cdots
$$

(where the right-hand side is, of course, a direct sum) and

$$
L_{S}\left(J_{i, r}\right)=\widehat{L}\left(J_{i, r}\right)+\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle
$$

where $\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$ denotes the subspace spanned by $x_{1}^{p}, \ldots, x_{p}^{p}$.
The notation x_{1}, \ldots, x_{p} was also used in [7]. It is clear that $\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$ is a $K G$ module, and an easy check shows that it is a $K H$-module. By [7, Lemma 3.2], $x_{1}^{p}, \ldots, x_{p}^{p}$ are linearly independent. Thus $\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$ is a regular $K G$-module. By [6, Lemma 1], since $x_{1}^{p} h=\left(l^{i} x_{1}\right)^{p}=l^{i} x_{1}^{p}$, we have

$$
\begin{equation*}
\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle \cong J_{i, p} \tag{2.4}
\end{equation*}
$$

Also, by [7, Lemma 3.2], $\widehat{L}^{p}\left(J_{i, r}\right)$ and $\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$ span their direct sum:

$$
\begin{equation*}
\widehat{L}^{p}\left(J_{i, r}\right)+\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle=\widehat{L}^{p}\left(J_{i, r}\right) \oplus\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle \tag{2.5}
\end{equation*}
$$

BRYANT, STÖHR

Thus

$$
\begin{equation*}
L_{S}\left(J_{i, r}\right)=\widehat{L}\left(J_{i, r}\right) \oplus\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle \tag{2.6}
\end{equation*}
$$

It is easily seen that $\widehat{L}\left(J_{i, r}\right)$ and $L_{S}\left(J_{i, r}\right)$ are Lie subalgebras and $K H$-submodules of $R\left(J_{i, r}\right)$. Following the terminology of [7], we call $L_{S}\left(J_{i, r}\right)$ the shifted Lie algebra of $L\left(J_{i, r}\right)$.

The two main results that we shall prove are the following: they are Theorem 3.1 and Corollary 3.2 of [9] or, equivalently, Theorem 2 and the Corollary in $\S 5.2$ of [14], except that we have not included statements (2.4) and (2.6) because these have already been established.

Theorem 2.1 Suppose that $0 \leqslant i \leqslant p-2$ and $2 \leqslant r \leqslant p$. For each $n \geqslant 2$ there exists a KH-submodule U_{n} of $R^{n}\left(J_{i, r}\right)$ such that
(i) the Lie subalgebra of $R\left(J_{i, r}\right)$ generated by $U_{2} \oplus U_{3} \oplus \cdots$ is free, and $L_{S}\left(J_{i, r}\right)=$ $L\left(U_{2} \oplus U_{3} \oplus \cdots\right)$,
(ii) for $n \neq p, U_{n}$ is a direct summand of $L^{n}\left(J_{i, r}\right)$,
(iii) U_{p} has the form $\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle \oplus V_{p}$, where V_{p} is a direct summand of $\widehat{L}^{p}\left(J_{i, r}\right)$,
(iv) for $n<p, U_{n} \cong M^{n}\left(J_{i, r}\right)$, and
(v) for $n \geqslant p, U_{n}$ is a projective $K H$-module.

Theorem 2.2 There are KH-module isomorphisms $U_{n} \cong \bigoplus_{s=2}^{r} \widetilde{M}^{n}\left(J_{i, s}\right)$, for $n>p$, and $V_{p} \cong \bigoplus_{s=3}^{r} \widetilde{M^{p}}\left(J_{i, s}\right)$.

As explained in $[9, \S 3]$, the isomorphism types of the modules U_{n} and V_{p} in Theorems 2.1 and 2.2 can be completely identified, that is, it is possible to compute, recursively, the Krull-Schmidt multiplicities of the indecomposable $K H$-modules in each U_{n} and in V_{p}. Also, as explained in $[9, \S 3$ and $\S 4]$, Theorems 2.1 and 2.2 provide the information necessary for a recursive description of the Lie powers $L^{n}\left(J_{i, r}\right)$. Indeed, $L^{n}\left(J_{i, r}\right)$ can be obtained from knowledge of $L^{m}\left(U_{2} \oplus \cdots \oplus U_{n}\right)$ for $m<n$, and this allows $L^{n}\left(J_{i, r}\right)$ to be obtained from knowledge of Lie powers $L^{m}(W)$ where W is indecomposable and $m<n$.

We conclude this section by stating without proof some further results about the modules U_{n} that can be deduced from Theorem 2.2. For $n>p$ these results give simpler descriptions of U_{n} than those of Theorem 2.2. As before we assume that $r \geqslant 2$. First, for

BRYANT, STÖHR

$n=p+1$, we have $U_{p+1} \cong M^{p+1}\left(J_{i, r}\right)$. Now suppose that $n>p+1$. Then there is an injective linear map $\theta_{n}: M^{n-p}\left(J_{i, r}\right) \rightarrow M^{n}\left(J_{i, r}\right)$ given by

$$
\left[y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{n-p}}\right] \theta_{n}=\left[y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{n-p}}, x_{1}, x_{2}, \ldots, x_{p}\right]
$$

for all $j_{1}, \ldots, j_{n-p} \in\{1, \ldots, r\}$. It is not hard to see that the image of θ_{n} is a $K H$ submodule of $M^{n}\left(J_{i, r}\right)$ and that $\operatorname{im} \theta_{n} \cong J_{i, 1} \otimes M^{n-p}\left(J_{i, r}\right)$. The result that can be proved for U_{n} is

$$
U_{n} \cong M^{n}\left(J_{i, r}\right) / \operatorname{im} \theta_{n}
$$

Thus U_{n} is isomorphic to a certain factor module of $M^{n}\left(J_{i, r}\right)$. Also, since U_{n} is projective, we have

$$
U_{n} \oplus\left(J_{i, 1} \otimes M^{n-p}\left(J_{i, r}\right)\right) \cong M^{n}\left(J_{i, r}\right)
$$

3. Elimination

We start with some general facts about free Lie algebras and free restricted Lie algebras.

Let $L(X)$ be the free Lie algebra on a free generating set X. If β is an invertible linear transformation of the subspace $\langle X\rangle$ of $L(X)$ then there is an automorphism of $L(X)$ in which $x \mapsto x \beta$ for all $x \in X$. Hence

$$
\begin{equation*}
\{x \beta: x \in X\} \text { freely generates } L(X) \tag{3.1}
\end{equation*}
$$

If X is a disjoint union, $X=X_{1} \cup X_{2}$, and γ is any map from X_{2} to the subalgebra $L\left(X_{1}\right)$ of $L(X)$ then there is an automorphism of $L(X)$ in which $x \mapsto x$ for all $x \in X_{1}$ and $x \mapsto x+x \gamma$ for all $x \in X_{2}$. Hence

$$
\begin{equation*}
X_{1} \cup\left\{x+x \gamma: x \in X_{2}\right\} \text { freely generates } L(X) \tag{3.2}
\end{equation*}
$$

More generally, suppose that X is a countable disjoint union, $X=X_{1} \cup X_{2} \cup \cdots$. For each $n \geqslant 1$, let β_{n} be an invertible linear transformation of $\left\langle X_{n}\right\rangle$ and let γ_{n} be any map from X_{n} to $L\left(X_{1} \cup \cdots \cup X_{n-1}\right)$. Then there is a homomorphism $L(X) \rightarrow L(X)$ in which, for each n, we have $x \mapsto x \beta_{n}+x \gamma_{n}$ for all $x \in X_{n}$. By the proof of [8, Lemma 2.1], this homomorphism is an automorphism of $L(X)$. Hence

$$
\begin{equation*}
\bigcup_{n \geqslant 1}\left\{x \beta_{n}+x \gamma_{n}: x \in X_{n}\right\} \text { freely generates } L(X) \tag{3.3}
\end{equation*}
$$

BRYANT, STÖHR

We shall require 'Lazard elimination' with respect to an element z of X. This is a special case of $[2$, Chapter 2, $\S 2.9$, Proposition 10] and is cited as $[14,(1.1)]$, namely,

$$
\begin{equation*}
L(X)=\langle z\rangle \oplus L(X \mid z) \tag{3.4}
\end{equation*}
$$

where

$$
X \mid z=\{[x, \underbrace{z, \ldots, z}_{k}: x \in X \backslash\{z\}, k \geqslant 0\}
$$

and $L(X \mid z)$ is the subalgebra of $L(X)$ generated by $X \mid z$, this subalgebra being freely generated by $X \mid z$. There is an analogue of (3.4) for the free restricted Lie algebra $R(X)$. This is stated as part of [14, (1.2)], namely,

$$
\begin{equation*}
R(X)=\left\langle z, z^{p}, z^{p^{2}}, \ldots\right\rangle \oplus R(X \mid z) . \tag{3.5}
\end{equation*}
$$

The move from $L(X)$ to $L(X \mid z)$, or from $R(X)$ to $R(X \mid z)$, is called full elimination of z.
'Restricted elimination' is described in [14, Theorem B]. It gives

$$
\begin{equation*}
R(X)=\langle z\rangle \oplus R\left(\left.X\right|_{p} z\right) \tag{3.6}
\end{equation*}
$$

where

$$
\left.X\right|_{p} z=\left\{z^{p}\right\} \cup\{[x, \underbrace{z, \ldots, z}_{k}]: x \in X \backslash\{z\}, 0 \leqslant k \leqslant p-1\} .
$$

The move from $R(X)$ to $R\left(\left.X\right|_{p} z\right)$ is called restricted elimination of z.
We now consider $L\left(J_{i, r}\right)$ where $r \geqslant 2$. We take i and r as fixed and write $Y=Y^{(i, r)}$ and $y_{j}=y_{j}^{(i, r)}$ for $j=1, \ldots, r$. Thus $Y=\left\{y_{1}, \ldots, y_{r}\right\}$.

We use the sets $E_{p, s}$, for $s=2, \ldots, r$, as defined in $\S 2$. Let F be any basis of $L^{p}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime}$. Since the image of $E_{p, 2} \cup \cdots \cup E_{p, r}$ in $M^{p}\left(J_{i, r}\right)$ is a basis of $M^{p}\left(J_{i, r}\right)$, it follows that $F \cup E_{p, 2} \cup \cdots \cup E_{p, r}$ is a basis of $L^{p}\left(J_{i, r}\right)$. From the definition of $\widehat{L}^{p}\left(J_{i, r}\right)$ in $\S 2$, it is easily verified that

$$
\begin{equation*}
F \cup E_{p, 3} \cup \cdots \cup E_{p, r} \text { is a basis of } \widehat{L}^{p}\left(J_{i, r}\right) \text {. } \tag{3.7}
\end{equation*}
$$

For $k=2, \ldots, p$, let

$$
d_{k}=[y_{1}, \underbrace{y_{2}, \ldots, y_{2}}_{k-1}, \underbrace{y_{1}, \ldots, y_{1}}_{p-k}] .
$$

BRYANT, STÖHR

Thus $E_{p, 2}=\left\{d_{2}, \ldots, d_{p}\right\}$. Hence

$$
\begin{equation*}
\left\{d_{2}, \ldots, d_{p}\right\} \text { is a basis for } L^{p}\left(J_{i, r}\right) \text { modulo } \widehat{L}^{p}\left(J_{i, r}\right) \tag{3.8}
\end{equation*}
$$

Recall that x_{k} denotes $y_{1} g^{k-1}$ for $k=1, \ldots, p$, and that $\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$ has dimension p.

Lemma 3.1 There exist elements c_{2}, \ldots, c_{p} of $\widehat{L}^{p}\left(J_{i, r}\right)$ and elements $\alpha_{k, s}$ of K, for $k=2, \ldots, p, s=1, \ldots, r$, such that

$$
\left\{y_{1}^{p}, d_{2}+c_{2}+\alpha_{2,1} y_{1}^{p}+\cdots+\alpha_{2, r} y_{r}^{p}, \ldots, d_{p}+c_{p}+\alpha_{p, 1} y_{1}^{p}+\cdots+\alpha_{p, r} y_{r}^{p}\right\}
$$

is a basis of $\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$.
Proof. By [7, (3.17)], there exist elements l_{2}, \ldots, l_{p} of $L^{p}\left(J_{i, r}\right)$ satisfying

$$
\begin{equation*}
x_{k}^{p}=y_{1}^{p}+\binom{k-1}{1} y_{2}^{p}+\binom{k-1}{2} y_{3}^{p}+\cdots+\binom{k-1}{r-1} y_{r}^{p}+l_{k}, \tag{3.9}
\end{equation*}
$$

for $k=2, \ldots, p$. Also, by [7, Corollary 3.3], $\left\{l_{2}, \ldots, l_{p}\right\}$ is a basis for $L^{p}\left(J_{i, r}\right)$ modulo $\widehat{L}^{p}\left(J_{i, r}\right)$. Thus (3.8) yields that there are elements c_{2}, \ldots, c_{p} of $\widehat{L}^{p}\left(J_{i, r}\right)$ such that $\left\{d_{2}+c_{2}, \ldots, d_{p}+c_{p}\right\}$ is a basis of $\left\langle l_{2}, \ldots, l_{p}\right\rangle$. Hence there is an invertible $(p-1) \times(p-1)$ matrix M with entries from K such that

$$
\left(l_{2}, \ldots, l_{p}\right) M=\left(d_{2}+c_{2}, \ldots, d_{p}+c_{p}\right)
$$

Therefore, by (3.9),

$$
\left(x_{2}^{p}, \ldots, x_{p}^{p}\right) M=\left(d_{2}+c_{2}+w_{2}, \ldots, d_{p}+c_{p}+w_{p}\right)
$$

where $w_{2}, \ldots, w_{p} \in\left\langle y_{1}^{p}, \ldots, y_{r}^{p}\right\rangle$. Since $x_{1}^{p}=y_{1}^{p}$, it follows that $\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$ is spanned by $y_{1}^{p}, d_{2}+c_{2}+w_{2}, \ldots, d_{p}+c_{p}+w_{p}$. This gives the required result.

We apply elimination to $L(Y)$ and $R(Y)$, where $Y=\left\{y_{1}, \ldots, y_{r}\right\}$. We first apply (3.4) to $L(Y)$. Full elimination of $y_{r}, y_{r-1}, \ldots, y_{1}$ (in that order) gives a direct decomposition

$$
L(Y)=\left\langle y_{1}, \ldots, y_{r}\right\rangle \oplus L(D)
$$

where D is the set defined in $\S 2$. Since $L\left(J_{i, r}\right)=L(Y)$, it follows that

$$
\begin{equation*}
L\left(J_{i, r}\right)^{\prime}=L(D) \tag{3.10}
\end{equation*}
$$

BRYANT, STÖHR

where $L\left(J_{i, r}\right)^{\prime}$ denotes the derived algebra of $L\left(J_{i, r}\right)$. (This is a well-known result: see, for example, [1, Chapter 2, §2.4.2].)

We now apply (3.5) and (3.6) to $R(Y)$. Full elimination of $y_{r}, y_{r-1}, \ldots, y_{2}$ (in that order) followed by restricted elimination of y_{1} gives a direct decomposition

$$
\begin{equation*}
R(Y)=\left\langle y_{1}, y_{2}, y_{2}^{p}, y_{2}^{p^{2}}, \ldots, y_{3}, y_{3}^{p}, y_{3}^{p^{2}}, \ldots, y_{r}, y_{r}^{p}, y_{r}^{p^{2}}, \ldots\right\rangle \oplus R\left(\left\{y_{1}^{p}\right\} \cup E\right) \tag{3.11}
\end{equation*}
$$

where E is the set defined in $\S 2$.
It will be convenient to describe a subset A of $R(Y)$ as 'Lie-free' if A freely generates the Lie subalgebra of $R(Y)$ that it generates: this free Lie subalgebra is of course written as $L(A)$. Also, let us write

$$
\begin{equation*}
E^{\prime}=E \backslash\left\{d_{2}, \ldots, d_{p}\right\}=E \backslash E_{p, 2} \tag{3.12}
\end{equation*}
$$

Lemma 3.2 Let

$$
T=\left\{y_{1}^{p}\right\} \cup E=\left\{y_{1}^{p}, d_{2}, \ldots, d_{p}\right\} \cup E^{\prime}
$$

Then T is Lie-free.
Proof. As shown by (3.11), the restricted Lie subalgebra of $R(Y)$ generated by T is freely generated by T. A similar result therefore holds for the Lie subalgebra generated by T.

It is easy to check that $L\left(J_{i, r}\right)^{\prime} \oplus\left\langle y_{1}^{p}\right\rangle$ is a Lie subalgebra of $R(Y)$. Hence $L(T) \subseteq$ $L\left(J_{i, r}\right)^{\prime} \oplus\left\langle y_{1}^{p}\right\rangle$. Note that every element of D has the form

$$
[y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{m}}, \underbrace{y_{1}, \ldots, y_{1}}_{s}, \underbrace{\left.y_{1}^{p}, \ldots, y_{1}^{p}\right]}_{t},
$$

where $j_{1}<j_{2} \geqslant j_{3} \geqslant \cdots \geqslant j_{m} \geqslant 2,0 \leqslant s \leqslant p-1$ and $t \geqslant 0$. However,

$$
[y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{m}}, \underbrace{y_{1}, \ldots, y_{1}}_{s}] \in E .
$$

It follows that $D \subseteq L(T)$. Therefore, by (3.10), $L\left(J_{i, r}\right)^{\prime} \subseteq L(T)$ and we obtain

$$
\begin{equation*}
L\left(J_{i, r}\right)^{\prime} \oplus\left\langle y_{1}^{p}\right\rangle=L(T) \tag{3.13}
\end{equation*}
$$

BRYANT, STÖHR

As follows from (3.13), every element of $L^{p}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime}$ belongs to the Lie subalgebra generated by the elements of T of degree less than p (with respect to Y). Hence $L^{p}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime} \subseteq L\left(E^{\prime}\right)$, and so $\widehat{L}^{p}\left(J_{i, r}\right) \subseteq L\left(E^{\prime}\right)$, by (3.7). Thus, with c_{2}, \ldots, c_{p} as in Lemma 3.1,

$$
\begin{equation*}
c_{2}, \ldots, c_{p} \in L\left(E^{\prime}\right) \tag{3.14}
\end{equation*}
$$

In the next result we use the scalars $\alpha_{k, s}$ of Lemma 3.1, but only those with $s>1$.
Lemma 3.3 Let

$$
T^{*}=\left\{y_{1}^{p}, d_{2}+\alpha_{2,2} y_{2}^{p}+\cdots+\alpha_{2, r} y_{r}^{p}, \ldots, d_{p}+\alpha_{p, 2} y_{2}^{p}+\cdots+\alpha_{p, r} y_{r}^{p}\right\} \cup E^{\prime} .
$$

Then T^{*} is Lie-free.
Proof. Let $\phi: T \rightarrow T^{*}$ be defined by $y_{1}^{p} \phi=y_{1}^{p}, d_{k} \phi=d_{k}+\alpha_{k, 2} y_{2}^{p}+\cdots+\alpha_{k, r} y_{r}^{p}$ for $k=2, \ldots, p$, and $t \phi=t$ for all $t \in E^{\prime}$. Clearly, ϕ is surjective. Also, by Lemma 3.2, T is Lie-free. Thus ϕ extends to a Lie algebra homomorphism $\phi: L(T) \rightarrow R(Y)$. The image of this homomorphism is the Lie subalgebra of $R(Y)$ generated by T^{*}. Thus it suffices to show that ker $\phi=0$.

We may write $R(Y)=R_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots$ where, for each $m \geqslant 0$, every element of R_{m} is a linear combination of monomials of $T(Y)$ that have degree m in y_{1}. Let $u \in L(T)$, where u is a Lie monomial in the elements of T. For each $t \in T$, we have $t \in R_{m(t)}$ for some $m(t) \geqslant 0$. Thus $u \in R_{m(u)}$ for some $m(u) \geqslant 0$. For $t \in T \backslash\left\{d_{2}, \ldots, d_{p}\right\}$, we have $t \phi=t$ while, for $t \in\left\{d_{2}, \ldots, d_{p}\right\}$, we have $m(t)>0$ and $t \phi=t+t^{\prime}$ with $t^{\prime} \in R_{0}$. Thus we may write $u \phi=u+u^{\prime}$ where $u^{\prime} \in R_{0} \oplus \cdots \oplus R_{m(u)-1}$: this is interpreted as meaning that $u^{\prime}=0$ if $m(u)=0$.

Now let u be any non-zero element of $L(T)$. For some $m \geqslant 0$, we may write $u=u_{0}+u_{1}+\cdots+u_{m}$, where $u_{m} \neq 0$ and where, for each j, u_{j} is a linear combination of Lie monomials of $L(T)$ belonging to R_{j}. Hence $u \phi=u_{m}+u^{\prime}$ where $u^{\prime} \in R_{0} \oplus \cdots \oplus R_{m-1}$. Thus $u \phi \neq 0$. Hence ker $\phi=0$.

Proposition 3.4 Let

$$
S=\left\{x_{1}^{p}, x_{2}^{p}, \ldots, x_{p}^{p}\right\} \cup E^{\prime} .
$$

Then S is Lie-free.

BRYANT, STÖHR

Proof. By (3.14), $y_{1}^{p}, c_{2}, \ldots, c_{p} \in L\left(\left\{y_{1}^{p}\right\} \cup E^{\prime}\right)$. Hence it follows from Lemma 3.3 and (3.2) that

$$
\left\{y_{1}^{p}, d_{2}+c_{2}+\alpha_{2,1} y_{1}^{p}+\cdots+\alpha_{2, r} y_{r}^{p}, \ldots, d_{p}+c_{p}+\alpha_{p, 1} y_{1}^{p}+\cdots+\alpha_{p, r} y_{r}^{p}\right\} \cup E^{\prime}
$$

is Lie-free. Therefore, by Lemma 3.1 and (3.1), $\left\{x_{1}^{p}, x_{2}^{p}, \ldots, x_{p}^{p}\right\} \cup E^{\prime}$ is Lie-free.

From the definitions of S and T we see that $\left|S \cap R^{n}(Y)\right|=\left|T \cap R^{n}(Y)\right|$ for all n. Thus there is an isomorphism from $L(S)$ to $L(T)$ induced by a degree-preserving bijection from S to T. It follows that

$$
\begin{equation*}
\operatorname{dim}\left(L(S) \cap R^{n}(Y)\right)=\operatorname{dim}\left(L(T) \cap R^{n}(Y)\right) \tag{3.15}
\end{equation*}
$$

for all n. However, by (3.13), we have $L(T) \cap R^{n}(Y)=L^{n}\left(J_{i, r}\right)$ for $n \neq 1, p$. Clearly $L(S) \cap R^{n}(Y) \subseteq L^{n}\left(J_{i, r}\right)$ for $n \neq 1, p$. Thus, by (3.15),

$$
\begin{equation*}
L(S) \cap R^{n}(Y)=L^{n}\left(J_{i, r}\right) \quad \text { for } n \neq 1, p \tag{3.16}
\end{equation*}
$$

By (3.13),

$$
L(T) \cap R^{p}(Y)=L^{p}\left(J_{i, r}\right) \oplus\left\langle y_{1}^{p}\right\rangle
$$

Thus, by (2.3),

$$
\operatorname{dim}\left(L(T) \cap R^{p}(Y)\right)=p+\operatorname{dim} \widehat{L}^{p}\left(J_{i, r}\right)
$$

By (3.7),

$$
L(S) \cap R^{p}(Y) \subseteq \widehat{L}^{p}\left(J_{i, r}\right) \oplus\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle
$$

where the right-hand side has dimension $p+\operatorname{dim} \widehat{L}^{p}\left(J_{i, r}\right)$. Thus, by (3.15),

$$
\begin{equation*}
L(S) \cap R^{p}(Y)=\widehat{L}^{p}\left(J_{i, r}\right) \oplus\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle \tag{3.17}
\end{equation*}
$$

Therefore, by (2.6), (3.16) and (3.17),
$L(S)=L_{S}\left(J_{i, r}\right)=L^{2}\left(J_{i, r}\right) \oplus \cdots \oplus L^{p-1}\left(J_{i, r}\right) \oplus\left(\widehat{L}^{p}\left(J_{i, r}\right) \oplus\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle\right) \oplus L^{p+1}\left(J_{i, r}\right) \oplus \cdots$.

BRYANT, STÖHR

Thus S is a free generating set for the shifted Lie algebra $L_{S}\left(J_{i, r}\right)$.
Write $Q=L_{S}\left(J_{i, r}\right)=L(S)$ and, for $n \geqslant 2, Q_{n}=Q \cap R^{n}(Y)$. Thus $Q=\bigoplus_{n \geqslant 2} Q_{n}$, where $Q_{n}=L^{n}\left(J_{i, r}\right)$ for $n \neq p$ and $Q_{p}=\widehat{L}^{p}\left(J_{i, r}\right) \oplus\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$. Note that each Q_{n} is a $K H$-module. It will also be convenient to write S as the disjoint union $S=\bigcup_{n \geqslant 2} S_{n}$, where $S_{n}=S \cap R^{n}(Y)$. Thus $S_{n}=E_{n}$ for $n \neq p$ and $S_{p}=\left(E_{p} \backslash E_{p, 2}\right) \cup\left\{x_{1}^{p}, \ldots, x_{p}^{p}\right\}$.

4. Modules

As in $\S 3$, let $Q=L_{S}\left(J_{i, r}\right)$, where $r \geqslant 2$. For $n \geqslant 1$, let $Q_{[<n]}$ denote the Lie subalgebra of Q generated by Q_{2}, \ldots, Q_{n-1}, that is, the subalgebra of Q generated by all its elements of degree less than n, with the convention that $Q_{[<1]}=Q_{[<2]}=0$. Of course, $Q_{[<n]}=L\left(S_{2} \cup \cdots \cup S_{n-1}\right)$. Also, for $n \geqslant 2$, let

$$
I_{n}=Q_{n} \cap Q_{[<n]}=R^{n}(Y) \cap Q_{[<n]}
$$

Thus I_{n} is a $K H$-submodule of Q_{n}. Since $Q_{[<n]}$ has no elements of degree 1 we have $I_{n}=Q_{n} \cap Q_{[<n-1]}$. For $n \leqslant p+1, Q_{[<n-1]}$ is generated by $L^{2}\left(J_{i, r}\right), \ldots, L^{n-2}\left(J_{i, r}\right)$, and so $I_{n}=Q_{n} \cap L\left(J_{i, r}\right)^{\prime \prime}$. Hence, for $n \leqslant p+1$ with $n \neq p$, we have $I_{n}=L^{n}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime}$. Also, by (2.2),

$$
I_{p}=Q_{p} \cap L\left(J_{i, r}\right)^{\prime \prime}=\widehat{L}^{p}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime}=L^{p}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime}
$$

Hence

$$
\begin{equation*}
I_{n}=L^{n}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime} \quad \text { for } \quad n \leqslant p+1, \tag{4.1}
\end{equation*}
$$

and $I_{p} \subseteq \widehat{L}^{p}\left(J_{i, r}\right)$.
Since $Q=L(S)$, we have that

$$
\begin{equation*}
Q_{n}=I_{n} \oplus\left\langle S_{n}\right\rangle \quad \text { for all } n \tag{4.2}
\end{equation*}
$$

Lemma 4.1 For $n \geqslant 2$ with $n \neq p, L^{n}\left(J_{i, r}\right) / I_{n}$ has basis

$$
\left\{e+I_{n}: e \in E_{n, 2} \cup \cdots \cup E_{n, r}\right\}
$$

Also, $\widehat{L}^{p}\left(J_{i, r}\right) / I_{p}$ has basis

$$
\left\{e+I_{p}: e \in E_{p, 3} \cup \cdots \cup E_{p, r}\right\}
$$

BRYANT, STÖHR

Proof. The result for $n \neq p$ is an immediate consequence of (4.2), while the result for $n=p$ follows from (4.1) and (3.7).

Lemma 4.2 For each $n \geqslant 2$, let U_{n} be a subspace of Q_{n} such that $Q_{n}=I_{n} \oplus U_{n}$, and let B_{n} be a basis of U_{n}. Then Q is freely generated by $B_{2} \cup B_{3} \cup \cdots$, that is, $Q=L\left(U_{2} \oplus U_{3} \oplus \cdots\right)$.

Proof. In view of (4.2), for each $n \geqslant 2$ there exists an invertible linear transformation β_{n} of $\left\langle S_{n}\right\rangle$ such that

$$
\left\{b+I_{n}: b \in B_{n}\right\}=\left\{x \beta_{n}+I_{n}: x \in S_{n}\right\}
$$

Hence there is a map $\gamma_{n}: S_{n} \rightarrow I_{n}$ such that

$$
B_{n}=\left\{x \beta_{n}+x \gamma_{n}: x \in S_{n}\right\} .
$$

Therefore, by (3.3), Q is freely generated by $B_{2} \cup B_{3} \cup \cdots$.

We shall aim to find subspaces U_{n} satisfying the hypothesis of Lemma 4.2 such that U_{n} is a $K H$-submodule of Q_{n}.

Suppose first that n satisfies $2 \leqslant n \leqslant p-1$. Then $Q_{n}=L^{n}\left(J_{i, r}\right)$, and, by (4.1), $I_{n}=Q_{n} \cap L\left(J_{i, r}\right)^{\prime \prime}$. By $[7, \S 2]$, since we have $n<p, L^{n}\left(J_{i, r}\right)$ splits over $L^{n}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime}$ as a $K H$-module. Thus there is a $K H$-submodule U_{n} of Q_{n} such that $Q_{n}=I_{n} \oplus U_{n}$ and

$$
U_{n} \cong L^{n}\left(J_{i, r}\right) /\left(L^{n}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime}\right) \cong M^{n}\left(J_{i, r}\right) .
$$

In order to deal with the case $n \geqslant p$ we shall use the modules $\widetilde{M}^{n}\left(J_{i, r}\right)$ defined in $\S 2$. By $[7,(3.20)]$, the restriction of $\widetilde{M}^{n}\left(J_{i, r}\right)$ to G is free as a $K G$-module for $r \geqslant 2$ and $n \geqslant p+2$. Exactly the same argument shows that this holds, more generally, when $r \geqslant 2$ and $n+r \geqslant p+3$. Hence, as a $K H$-module,

$$
\begin{equation*}
\widetilde{M}^{n}\left(J_{i, r}\right) \text { is projective when } r \geqslant 2 \text { and } n+r \geqslant p+3 . \tag{4.3}
\end{equation*}
$$

Recall that $E_{n, r}$ consists of all Lie monomials $\left[y_{j_{1}}, y_{r}, y_{j_{3}}, \ldots, y_{j_{n}}\right]$ satisfying $j_{1}<r$,

$$
\begin{equation*}
j_{3} \geqslant \cdots \geqslant j_{n} \tag{4.4}
\end{equation*}
$$

BRYANT, STÖHR

and

$$
\begin{equation*}
\left\{m: j_{m}=1\right\} \subseteq\{1, n-p+2, n-p+3, \ldots, n\} \tag{4.5}
\end{equation*}
$$

We shall require the following technical lemma which gives a simplified treatment of the essential content of [7, Lemma 3.5] and an argument on page 361 of [7].

Lemma 4.3 Suppose that $n \geqslant p$ and $r \geqslant 3$. Then $\left(I_{n} \cap L\left(J_{i, r}\right)^{\prime \prime}\right) \oplus\left\langle E_{n, r}\right\rangle$ is a $K H$ submodule of $L^{n}\left(J_{i, r}\right)$.

Proof. Let $F_{n, r}$ be the set of all Lie monomials $\left[y_{j_{1}}, y_{r}, y_{j_{3}}, \ldots, y_{j_{n}}\right]$ satisfying $j_{1}<r$ and (4.5) (but not necessarily (4.4)). For each $f \in F_{n, r}$ there is a unique element f^{*} of $E_{n, r}$ obtained from f by re-arranging the entries $y_{j_{3}}, \ldots, y_{j_{n}}$ to satisfy (4.4). Clearly

$$
\begin{equation*}
f-f^{*} \in L\left(J_{i, r}\right)^{\prime \prime} . \tag{4.6}
\end{equation*}
$$

We shall show that we also have

$$
\begin{equation*}
f-f^{*} \in I_{n} . \tag{4.7}
\end{equation*}
$$

For $e \in E_{n, r}$ and $x \in H$, it is easy to see that ex may be written as a linear combination of elements of $F_{n, r}$. Thus, given (4.7), we obtain

$$
e x \in\left(I_{n} \cap L\left(J_{i, r}\right)^{\prime \prime}\right) \oplus\left\langle E_{n, r}\right\rangle,
$$

and Lemma 4.3 follows. It remains to prove (4.7).
For $n=p$ and $n=p+1,(4.7)$ follows from (4.6) and (4.1). Thus we may assume that $n \geqslant p+2$. Let

$$
f=\left[y_{j_{1}}, y_{r}, y_{j_{3}}, \ldots, y_{j_{n}}\right] \in F_{n, r}
$$

In order to re-arrange the entries $y_{j_{3}}, \ldots, y_{j_{n}}$ we need to be able to interchange $y_{j_{t}}$ and $y_{j_{t+1}}$ when $j_{t}<j_{t+1}$. However, by (4.5), we do not need an interchange with $y_{j_{t}}=y_{1}$ unless $t \geqslant n-p+2$. By the Jacobi identity,

$$
\left[y_{j_{1}}, y_{r}, \ldots, y_{j_{t}}, y_{j_{t+1}}, \ldots, y_{j_{n}}\right]-\left[y_{j_{1}}, y_{r}, \ldots, y_{j_{t+1}}, y_{j_{t}}, \ldots, y_{j_{n}}\right]=u
$$

where

$$
u=\left[y_{j_{1}}, y_{r}, y_{j_{3}}, \ldots, y_{j_{t-1}},\left[y_{j_{t}}, y_{j_{t+1}}\right], y_{j_{t+2}}, \ldots, y_{j_{n}}\right] .
$$

BRYANT, STÖHR

Therefore it suffices to verify that $u \in I_{n}$ in each of the two cases (i) $1<j_{t}<j_{t+1}$ and (ii) $j_{t}=1$ with $t \geqslant n-p+2$. Let $a=\left[y_{j_{1}}, y_{r}, y_{j_{3}}, \ldots, y_{j_{t-1}}\right]$ and $b=\left[y_{j_{t}}, y_{j_{t+1}}\right]$. Thus we have $u=\left[a, b, y_{j_{t+2}}, \ldots, y_{j_{n}}\right]$. By repeated use of the Jacobi identity (see [7, (2.1)]), we may write u as a sum of elements of the form

$$
\begin{equation*}
\left[\left[a, y_{k_{1}}, \ldots, y_{k_{s}}\right],\left[b, y_{k_{s+1}}, \ldots, y_{k_{n-t-1}}\right]\right] \tag{4.8}
\end{equation*}
$$

where the list $y_{k_{1}}, \ldots, y_{k_{n-t-1}}$ is a re-arrangement of the list $y_{j_{t+2}}, \ldots, y_{j_{n}}$. It suffices to show that each element (4.8) belongs to I_{n}. Thus it suffices to show that (4.8) belongs to $Q_{[<n]}$. Write $a^{*}=\left[a, y_{k_{1}}, \ldots, y_{k_{s}}\right]$ and $b^{*}=\left[b, y_{k_{s+1}}, \ldots, y_{k_{n-t-1}}\right]$. Thus $a^{*} \in L^{t+s-1}\left(J_{i, r}\right)$ and $b^{*} \in L^{n-t-s+1}\left(J_{i, r}\right)$. It suffices to show that $a^{*} \in Q_{t+s-1}$ and $b^{*} \in Q_{n-t-s+1}$. The result for a^{*} is clear if $t+s-1 \neq p$ and the result for b^{*} is clear if $n-t-s+1 \neq p$. However, if $t+s-1=p$ then $a^{*} \in \widehat{L}^{p}\left(J_{i, r}\right) \subseteq Q_{p}$ because a^{*} involves y_{r} and $r \geqslant 3$. Suppose finally that $n-t-s+1=p$. Then $t=n-p-s+1<n-p+2$. Hence case (ii) cannot arise here: we must be in case (i). Thus $j_{t+1} \geqslant 3$. Since b^{*} involves $y_{j_{t+1}}$ we have $b^{*} \in \widehat{L}^{p}\left(J_{i, r}\right) \subseteq Q_{p}$, as required.

We can now prove the key result of this section.
Proposition 4.4 For $r=2, I_{p}=\widehat{L}^{p}\left(J_{i, r}\right)$, and, for $r \geqslant 3$,

$$
\widehat{L}^{p}\left(J_{i, r}\right) / I_{p} \cong \widetilde{M}^{p}\left(J_{i, 3}\right) \oplus \cdots \oplus \widetilde{M}^{p}\left(J_{i, r}\right)
$$

For $n \geqslant p+1$ and $r \geqslant 2$,

$$
L^{n}\left(J_{i, r}\right) / I_{n} \cong \widetilde{M}^{n}\left(J_{i, 2}\right) \oplus \cdots \oplus \widetilde{M}^{n}\left(J_{i, r}\right)
$$

Proof. We first consider the case where $r=2$. Clearly, $\widehat{L}^{p}\left(J_{i, 2}\right)=L^{p}\left(J_{i, 2}\right) \cap L\left(J_{i, 2}\right)^{\prime \prime}$. Thus, for $r=2,(4.1)$ gives $I_{p}=\widehat{L}^{p}\left(J_{i, r}\right)$.

Now suppose that $r=2$ and $n \geqslant p+1$. Let $v, w \in E_{n, 2}$, where

$$
v=[y_{1}, \underbrace{y_{2}, \ldots, y_{2}}_{n-p}, \underbrace{y_{1}, \ldots, y_{1}}_{p-1}], \quad w=[y_{1}, \underbrace{y_{2}, \ldots, y_{2}}_{n-1}] .
$$

Let V be the $K G$-submodule of $L^{n}\left(J_{i, r}\right)$ generated by v. By [7, Lemma 3.4], V is a regular $K G$-module, and its unique one-dimensional submodule is spanned by w. However, both
y_{1} and y_{2} are eigenvectors for h, and hence V is a $K H$-submodule. Since $w \in E_{n, 2}$, we have $w \notin I_{n}$, by Lemma 4.1. It follows that $V \cap I_{n}=0$. However,

$$
\operatorname{dim}\left(L^{n}\left(J_{i, 2}\right) / I_{n}\right)=\left|E_{n, 2}\right|=p=\operatorname{dim} V
$$

Thus $L^{n}\left(J_{i, 2}\right) / I_{n} \cong V$. Since the image of w in $M^{n}\left(J_{i, 2}\right)$ is non-zero, V is isomorphic to its image in $M^{n}\left(J_{i, 2}\right)$. However, this image is clearly contained in $\widetilde{M}^{n}\left(J_{i, 2}\right)$, and both V and $\widetilde{M}^{n}\left(J_{i, 2}\right)$ have dimension p. Thus $V \cong \widetilde{M}^{n}\left(J_{i, 2}\right)$ and we have $L^{n}\left(J_{i, 2}\right) / I_{n} \cong \widetilde{M}^{n}\left(J_{i, 2}\right)$.

We now suppose that $r \geqslant 3$ and use induction. Thus we may assume that Proposition 4.4 holds with $r-1$ in place of r. We shall need to consider the shifted Lie algebra $L_{S}\left(J_{i, r-1}\right)$. For this we use notation similar to that for $L_{S}\left(J_{i, r}\right)$, but with a superscript $(i, r-1)$. Thus we write $L_{S}\left(J_{i, r-1}\right)=Q^{(i, r-1)}=\bigoplus_{n \geqslant 2} Q_{n}^{(i, r-1)}$, where $Q_{n}^{(i, r-1)}=$ $Q^{(i, r-1)} \cap R^{n}\left(J_{i, r-1}\right)$. Furthermore, $I_{n}^{(i, r-1)}=Q_{n}^{(i, r-1)} \cap Q_{[<n]}^{(i, r-1)}$, and so on.

Let $\delta: R\left(J_{i, r}\right) \rightarrow R\left(J_{i, r-1}\right)$ be the homomorphism induced by the deletion map $J_{i, r} \rightarrow J_{i, r-1}$. Since δ is a module homomorphism,

$$
x_{k} \delta=\left(y_{1} g^{k-1}\right) \delta=\left(y_{1} \delta\right) g^{k-1}=y_{1}^{(i, r-1)} g^{k-1}=x_{k}^{(i, r-1)}
$$

for $k=1, \ldots, p$. Also, it is easily verified that $\widehat{L}^{p}\left(J_{i, r}\right) \delta=\widehat{L}^{p}\left(J_{i, r-1}\right)$. Thus, by (2.6), $Q \delta=Q^{(i, r-1)}$, and it follows that $Q_{n} \delta=Q_{n}^{(i, r-1)}$ for all n. Therefore $I_{n} \delta \subseteq I_{n}^{(i, r-1)}$, and so δ induces surjective homomorphisms of $K H$-modules

$$
\bar{\delta}_{n}: L^{n}\left(J_{i, r}\right) / I_{n} \rightarrow L^{n}\left(J_{i, r-1}\right) / I_{n}^{(i, r-1)}, \quad \text { for } n \geqslant p+1
$$

and

$$
\bar{\delta}_{p}: \widehat{L}^{p}\left(J_{i, r}\right) / I_{p} \rightarrow \widehat{L}^{p}\left(J_{i, r-1}\right) / I_{p}^{(i, r-1)}
$$

For each n, let W_{n} be the $K H$-submodule of $L^{n}\left(J_{i, r}\right)$, or $\widehat{L}^{p}\left(J_{i, r}\right)$ when $n=p$, such that $W_{n} \supseteq I_{n}$ and $W_{n} / I_{n}=\operatorname{ker} \bar{\delta}_{n}$. By the inductive hypothesis, the image of $\bar{\delta}_{n}$ is isomorphic to $\widetilde{M}^{n}\left(J_{i, 2}\right) \oplus \cdots \oplus \widetilde{M}^{n}\left(J_{i, r-1}\right)$, or $\widetilde{M}^{p}\left(J_{i, 3}\right) \oplus \cdots \oplus \widetilde{M}^{p}\left(J_{i, r-1}\right)$ when $n=p$. By (4.3), this image is projective, and hence $\bar{\delta}_{n}$ splits over its kernel W_{n} / I_{n}. Thus it suffices to show that $W_{n} / I_{n} \cong \widetilde{M}^{n}\left(J_{i, r}\right)$ for all $n \geqslant p$.

For $n \geqslant p+1$, Lemma 4.1 shows that $L^{n}\left(J_{i, r}\right) / I_{n}$ has basis

$$
\left\{e+I_{n}: e \in E_{n, 2} \cup \cdots \cup E_{n, r}\right\}
$$

BRYANT, STÖHR

while $L^{n}\left(J_{i, r-1}\right) / I_{n}^{(i, r-1)}$ has a similar basis corresponding to $E_{n, 2}^{(i, r-1)} \cup \cdots \cup E_{n, r-1}^{(i, r-1)}$. It is easy to see that δ maps $E_{n, 2} \cup \cdots \cup E_{n, r-1}$ bijectively to $E_{n, 2}^{(i, r-1)} \cup \cdots \cup E_{n, r-1}^{(i, r-1)}$, whereas $E_{n, r} \delta=0$. It follows that W_{n} / I_{n} has basis $\left\{e+I_{n}: e \in E_{n, r}\right\}$. Similarly, $\widehat{L}^{p}\left(J_{i, r}\right) / I_{p}$ has a basis corresponding to $E_{p, 3} \cup \cdots \cup E_{p, r}$ while $\widehat{L}^{p}\left(J_{i, r-1}\right) / I_{p}^{(i, r-1)}$ has a basis corresponding to $E_{p, 3}^{(i, r-1)} \cup \cdots \cup E_{p, r-1}^{(i, r-1)}$. Again we find that W_{p} / I_{p} has basis $\left\{e+I_{p}: e \in E_{p, r}\right\}$.

Let $Z=\left(I_{n} \cap L\left(J_{i, r}\right)^{\prime \prime}\right) \oplus\left\langle E_{n, r}\right\rangle$, the module given by Lemma 4.3. We know that I_{n} and $\left\langle E_{n, r}\right\rangle$ span their direct sum in $L^{n}\left(J_{i, r}\right)$. So, too, do $L^{n}\left(J_{i, r}\right) \cap L\left(J_{i, r}\right)^{\prime \prime}$ and $\left\langle E_{n, r}\right\rangle$, since the image of $E_{n, r}$ in $M^{n}\left(J_{i, r}\right)$ is a basis of $\widetilde{M}^{n}\left(J_{i, r}\right)$. Hence

$$
Z \cap I_{n}=I_{n} \cap L\left(J_{i, r}\right)^{\prime \prime}=Z \cap L\left(J_{i, r}\right)^{\prime \prime} .
$$

However, $I_{n}+Z=W_{n}$ and the image of Z in $M^{n}\left(J_{i, r}\right)$ is $\widetilde{M}^{n}\left(J_{i, r}\right)$. Thus

$$
W_{n} / I_{n} \cong Z / Z \cap I_{n}=Z / Z \cap L\left(J_{i, r}\right)^{\prime \prime} \cong \widetilde{M}^{n}\left(J_{i, r}\right),
$$

as required. This completes the proof of Proposition 4.4.

We now apply Proposition 4.4 to obtain, for $n \geqslant p$, a $K H$-submodule U_{n} of Q_{n} satisfying $Q_{n}=I_{n} \oplus U_{n}$. We have $Q_{p}=\widehat{L}^{p}\left(J_{i, r}\right) \oplus\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle$. By Proposition 4.4 and (4.3), we may write $\widehat{L^{p}}\left(J_{i, r}\right)=I_{p} \oplus V_{p}$ where

$$
V_{p} \cong \widetilde{M}^{p}\left(J_{i, 3}\right) \oplus \cdots \oplus \widetilde{M}^{p}\left(J_{i, r}\right) .
$$

Thus we may take $U_{p}=\left\langle x_{1}^{p}, \ldots, x_{p}^{p}\right\rangle \oplus V_{p}$. For $n \geqslant p+1, Q_{n}=L^{n}\left(J_{i, r}\right)$. Thus, by Proposition 4.4 and (4.3), we may take $Q_{n}=I_{n} \oplus U_{n}$ where

$$
U_{n} \cong \widetilde{M}^{n}\left(J_{i, 2}\right) \oplus \cdots \oplus \widetilde{M}^{n}\left(J_{i, r}\right) .
$$

It now follows that the modules U_{2}, U_{3}, \ldots have all the properties required for Theorems 2.1 and 2.2.

References

[1] Bakhturin, Yu. A.: Identical relations in Lie algebras, Nauka, Moscow, 1985 (Russian). English translation: VNU Science Press, Utrecht, 1987.

BRYANT, STÖHR

[2] Bourbaki, N.: Lie groups and Lie algebras, Part I: Chapters 1-3 (Hermann, Paris, 1975).
[3] Brandt, A. J.: The free Lie ring and Lie representations of the full linear group, Trans. Amer. Math. Soc. 56 (1944), 528-536.
[4] Bryant, R. M.: Modular Lie representations of groups of prime order, Math. Z. 246 (2004), 603-617.
[5] Bryant, R. M.: Modular Lie representations of finite groups, J. Austral. Math. Soc. 77 (2004), 401-423.
[6] Bryant, R. M., Kovács, L. G. and Stöhr, R.: Free Lie algebras as modules for symmetric groups, J. Austral. Math. Soc. (Ser. A) 67 (1999), 143-156.
[7] R. M. Bryant, L. G. Kovács and Stöhr, R.: Lie powers of modules for groups of prime order, Proc. London Math. Soc. (3) 84 (2002), 343-374.
[8] Bryant, R. M., Kovács, L. G. and Stöhr, R.: Invariant bases for free Lie rings, Q. J. Math. 53 (2002), 1-17.
[9] Bryant, R. M., Kovács, L. G. and Stöhr, R.: Lie powers of modules for GL(2,p), J. Algebra 260 (2003), 617-630.
[10] Bryant R. M. and Stöhr, R.: Lie powers in prime degree, Q. J. Math. 56 (2005), 473-489.
[11] Hughes, I. and Kemper, G.: Symmetric powers of modular representations for groups with a Sylow subgroup of prime order, J. Algebra 241 (2001), 759-788.
[12] Klyachko, A. A.: Lie elements in the tensor algebra, Sibirsk Mat. Ž. 15 (1974), 1296-1304, 1430 (Russian). English translation: Siberian Math. J. 15 (1974), 914-921 (1975).
[13] Kraśkiewicz, W. and Weyman, J.: Algebra of coinvariants and the action of a Coxeter element, Bayreuth. Math. Schr. 63 (2001), 265-284.
[14] Stöhr, R.: Restricted Lazard elimination and modular Lie powers, J. Austral. Math. Soc. 71 (2001), 259-277.
R. M. BRYANT and Ralph STÖHR

Received 13.09.2007
School of Mathematics
University of Manchester
Manchester
M13 9PL
United Kingdom
e-mail: Roger.Bryant@manchester.ac.uk
e-mail: Ralph.Stohr@manchester.ac.uk

[^0]: 2000 AMS Mathematics Subject Classification: 17B01.

