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Lengths of Subsets in Coxeter Groups

Sarah B. Hart and Peter J. Rowley

1. Introduction

A Coxeter group W is a group which possesses a presentation of the form

W = 〈R | (rs)mrs = 1, r, s ∈ R〉

where mrs = msr ∈ N ∪ {∞}, mrr = 1 and mrs ≥ 2 for r, s ∈ R, r 
= s. We shall only
deal with finite rank Coxeter groups, so R is assumed to be a finite set. The length of an
element w of W , denoted by l(w), is defined to be

l(w) =
{

min{l | w = r1 · · ·rl, ri ∈ R} if w 
= 1
0 if w = 1.

The notion of the length of an element is a frequent player in proofs of results about
Coxeter groups. It is usually to be observed in inductive arguments and its importance
can be gauged by seeing how many results would remain if we were to deny ourselves the
use of this concept. Undoubtedly its importance has much to do with its interpretation
in terms of the root system of W . Almost all significant results about Coxeter groups
involve some use of the root system which we now prepare the ground for. Let V be a
real vector space with basis Π = {αr | r ∈ R}. Define a symmetric bilinear form 〈 , 〉 on
V by

〈αr, αs〉 =
{

− cos
(

π
mrs

)
if mrs < ∞

−1 if mrs = ∞,

where r, s ∈ R and the mrs are as in the above presentation of W . (By mrs = ∞ we
mean that rs has infinite order.) Now for r, s ∈ R if we define

r · αs = αs − 2〈αr, αs〉αr
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this then extends to an action of W on V which is both faithful and respects the bilinear
form 〈 , 〉 (see [12]). The module V is sometimes called a reflection module for W . The
following subset of V

Φ = {w · αr | r ∈ R,w ∈ W}

is the root system of W . Setting Φ+ = {∑r∈R λrαr ∈ Φ | λr ≥ 0 for all R} and

Φ− = −Φ+ we have the fundamental fact that Φ is the disjoint union Φ+∪̇Φ− (see [12]

again). The sets Φ+ and Φ− are referred to, respectively, as the positive and negative
roots of Φ.
For X a subset of W we define

N(X) = {α ∈ Φ+ | w · α ∈ Φ− for some w ∈ X}.

If X = {w}, we write N(w) instead of N({w}). Clearly N(X) = ∪w∈XN(w). The con-
nection between l(w) and the root system of W mentioned above is that l(w) = |N(w)|
(see Section 5.6 of [12]). For a subset X of W we define its Coxeter length, or C-length,
to be the cardinality of N(X) and denote it by l(X). It is to be hoped that this more
general idea of length will prove to be of some value in investigating Coxeter groups. At
the moment – putting our cards on the table – we have yet to see any results which do
not explicitly or implicitly mention length in their statements. Nevertheless this general
length function has many more properties than one might initially suppose and in this
article we will give a sample of some of these properties. Many of these results are drawn
from [13], [9], [10] and [11], but we also include new results such as Propositions 3.5,
3.6 and 3.10. The main aim of this survey is to bring these ideas and results to a wider
audience.

Our main attention will be focussed upon subsets of W which have a “group theoretic”
flavour. So in Section 2 we look at conjugacy classes, followed by subgroups in Section 3.
In Section 4 we examine cosets and are led to discuss X-posets which are a vast gener-
alization of the Bruhat order of a Coxeter group. Our final section considers some open
questions.

We begin by answering an obvious question – when is l(X) finite?

Lemma 1.1 [Lemma 2.1; [13]] Let X ⊆ W . Then X has infinite Coxeter length if and
only if X is infinite.

To get some inkling of what this general length function looks like, we look at some small
examples. Suppose W is a collection of subsets of W and ar is the number of subsets in
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W whose C-length is r. Then set

ΛW(t) =
∞∑

r=0

art
r .

So ΛW (t) is analogous to the Poincaré series defined in [Section 1.11; [12]]. Choosing W
to be the collection of all subgroups of W we have

ΛW (t) = 1 + 2t+ 3t2 when W is of type A2;

ΛW (t) = 1 + 3t+ 2t2 + 6t3 + t4 + t5 + 16t6 when W is of type A3; and

ΛW (t) = 1 + 4t+ 6t2 + 9t3 + 12t4 + 2t5 + 34t6

+ t7 + 7t8 + 6t9 + 74t10 when W is of type A4.

(Recall that W being of type An means that W is isomorphic to Sym(n+1).) Not much
of a pattern is apparent in the above examples. In Section 3, though, we will give formu-
lae for ΛW(t) when W consists of all conjugates of certain standard parabolic subgroups
of W (with W finite). A standard parabolic subgroup of W is a subgroup of the form 〈I〉
where I is a subset of R – any subgroup of W conjugate to a standard parabolic subgroup
is called a parabolic subgroup of W .

One noticeable feature of the above three polynomials is that the largest coefficient occurs
for the largest power of t. Part of the explanation for this is contained in

Proposition 1.2 (see Proposition 4.1; [10]) Suppose X is a finite subgroup of W which

is not contained in any proper parabolic subgroup of W . Then N(X) = Φ+.

Proposition 1.2 follows immediately from the more general Proposition 3.5, which is
proved in Section 3.

2. Conjugacy Classes

A conjugacy class X of W is called a flat class if all its elements have the same length.
Flat classes in finite irreducible Coxeter groups have been classified in [Theorem 1.3; [14]].
We remark that flat classes are to be found in infinite Coxeter groups. For example, let
W = 〈r, s, t : mrr = mss = mtt = 1, mrs = mrt = mst = 3〉, the Coxeter group of type

Ã2. Then the element rstrst lies in a flat conjugacy class (the other members of which
are strstr and trstrs).
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Theorem 2.1 Let W be an infinite Coxeter group and X a conjugacy class of W . Then
N(X) = Φ+ if and only if X is not a flat class.

Broadly speaking the situation is the same for finite Coxeter groups as we see with our
next result.

Theorem 2.2 Suppose that W is a finite irreducible crystallographic Coxeter group, and
that X is a conjugacy class of W . Then N(X) = Φ+ if and only if X is neither the
identity class or of type Cl(6).

We shall not give the definition of a type Cl(6) class here, referring the reader to
[Definition 1.5 [13]], but remark that such classes are flat. So, from the above mentioned
classification, it can be seen that the only type Cl(6) classes in Theorem 2.2 are:-

(i) X = (x2)W , |X| = 16, l(X) = 22 with W of type F4 and x any Coxeter element of
W .

(ii) X = (x5)W , |X| = 4480, l(X) = 119 with W of type E8 and x any Coxeter element
of W .

This gives us pause for thought – among all the irreducible crystallographic Coxeter
groups and all their non-trivial conjugacy classes X, N(X) 
= Φ+ in only two instances.
For W of type H3 and H4, see [Table 2; [13]] for a list of those non-trivial classes X with

l(X) < |Φ+| (H3 has one and H4 has four).

3. Subgroups

For w ∈ W and a fundamental reflection r (that is r ∈ R), it is well known that
l(rwr) = l(w) ± 2 or l(w). Now if X is a finite subgroup of W and r a fundamental
reflection there is, in general, not such a close relationship between l(X) and l(Xr).
However we do have the following result.

Lemma 3.1 Suppose X is a finite subgroup of W , r ∈ R and let Or be the X-orbit of
αr. Then

l(Xr) < l(X) if Or ⊆ {αr} ∪ (Φ−\{−αr}).
l(Xr) > l(X) if Or ⊆ Φ+ and Or 
= {αr}.
l(Xr) = l(X) if either Or ⊆ {±αr} or both Or ∩Φ− 
= ∅ and Or ∩ Φ+ 
= {αr}.
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Amongst the subgroups of a Coxeter group, the parabolic subgroups and particularly the
standard parabolic subgroups occupy a premier position. So it is to these subgroups that
we turn next.

Theorem 3.2 [Proposition 1.1; [13]] Let X be a finite standard parabolic subgroup of
W , and Y be conjugate to X. Then l(X) ≤ l(Y ), with equality if and only if Y is also a
standard parabolic subgroup of W .

A great deal more specific information about parabolic subgroups has been obtained. For
X any subgroup of W we use X to denote the conjugacy class of X in W and let Xmin be
the set consisting of all Y of minimal Coxeter length in X, and, when it is defined, Xmax

denotes those conjugates of X of maximal length in X.

Theorem 3.3 [Theorem 1.2; [9]]

(i) If W ∼= An and X ∼= Ai, then

ΛX(t) = ti(i+1)/2
n−i∑
r=0

(n + 1− i− r)
(

r + i− 1
i− 1

)
t(i+1)r;

(ii) If W ∼= Bn and X ∼= Bi, then

ΛX(t) = ti
2

n−i∑
r=0

(
r + i− 1
i− 1

)
t2ir;

(iii) If W ∼= Dn and X ∼= Di, then

ΛX(t) = ti(i−1)
n−i∑
r=0

(
r + i− 1
i− 1

)
t2ir.

Theorem 3.3 does not cover the connected parabolic subgroups of type Am when W is of
type either Bn or Dn. For such subgroups see Lemma 3.2 and Theorems 3.10 and 4.5 of
[9]. When X is not connected, the situation appears to be very complicated and there are
virtually no results here – see Section 5 of [9] for an indication of the quagmire waiting
there. When it comes to the finite exceptional Coxeter groups, the connected parabolic
subgroups are dealt with in [9]. To whet the reader’s appetite we give the details for type
E6 in Table 1 (see Table 1 in [9]).
Lengths of parabolic subgroups are particularly important in the light of Proposition 3.5.
In order to state Propositions 3.5 and 3.10, we require the following definition.
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Table 1. Connected parabolic subgroups of E6

Type of X ΛX(t)
A1 6 + 5t3 + 5t5 + 5t7 + 4t9 + 3t11 + 3t13 + 2t15 + t17 + t19 + t21

A2 5t3 + 10t6 + 15t9 + 16t12 + 15t15 + 18t18 + 14t21 + 8t24 + 9t27 + 10t30

A3 5t6 + 12t10 + 9t12 + 8t14 + 16t16 + 14t18 + 38t20 + 14t22 + 16t24

+23t26 + 2t28 + 46t30 + 67t34

A4 4t10 + 4t15 + 28t20 + 10t25 + 40t30 + 130t35

A5 t + 35t35

D4 t12 + 8t20 + 8t28 + 28t36

D5 2t20 + 25t36

Definition 3.4 Let X ≤ W . Define 〈X〉p to be the intersection of all parabolic subgroups
containing X. Similarly, define 〈X〉sp to be the intersection of all standard parabolic
subgroups containing X.

Proposition 3.5 Let X ≤ W be a finite subgroup of W with P = 〈X〉p. Then N(X) =
N(P ).

Note that by Exercise 3.3 of [8], 〈X〉p is a parabolic subgroup of W .

Proof. By a result of Tits, any finite subgroup of a Coxeter group W is contained
in a finite parabolic subgroup of W (see [3], Chapter 5, Section 4). Since X is finite by
hypothesis, P must also be finite. Now X ≤ P , so clearly N(X) ⊆ N(P ). Suppose, for a
contradiction, that there exists α ∈ N(P ) \N(X). Define v ∈ V to be

v =
∑
x∈X

x · α.

Now v 
= 0 because x · α ∈ Φ+ for each x ∈ X, by assumption. In addition P is finite,
which implies that the form 〈 , 〉 is positive definite on the linear span of N(P ) (which
contains v). Thus the radical is trivial and therefore the stabilizer of v cannot be the
whole of P . It is well known that the stabilizer of any non-zero vector in V is a parabolic
subgroup, say Q, of W . Clearly X is contained in Q. But then X ⊆ Q ∩ P � P , which
contradicts the minimality of P . Hence N(X) = N(P ), as stated. ✷

Proposition 3.6 Let X be a finite subgroup of W and assume that X ∈ Xmin. Then
there is a standard parabolic subgroup WI of W such that X ≤ WI with N(X) = N(WI).
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Proof. By Proposition 3.5, N(X) = N(〈X〉p). By Theorem 3.2, 〈X〉p has minimal
length if and only if it is a standard parabolic subgroup. In order for X to have minimal
length in X therefore, we must have 〈X〉p = WI for some I ⊆ R, giving N(X) = N(WI).

✷

Let X and Y be conjugate subgroups of W . We say that X ↘ Y if there exists a
sequence r1, r2, . . . , rn of fundamental reflections such that Y = Xr1···rn , and, for i ≥ 1,
l(Xr1 ···ri−1ri) ≤ l(Xr1···ri−2ri−1 ). We can make an analogous definition, that X ↗ Y if
there exists a sequence r1, r2, . . . , rn of fundamental reflections such that Y = Xr1···rn ,
and, for i ≥ 1, l(Xr1 ···ri−1ri ) ≥ l(Xr1···ri−2ri−1 ). Supposing C is a conjugacy class of
elements of W , we let

Cmin = {w ∈ C | w has minimal length in C}; and
Cmax = {w ∈ C | w has maximal length in C}.

If X is a cyclic subgroup of W , we have

Theorem 3.7 [Theorem 1.2; [13]] Suppose that W is a finite irreducible Coxeter group
and that X = 〈x〉 is a cyclic subgroup of W . Let C denote the W -conjugacy class of x.

(i) For each Y ∈ X there exists Y ′ ∈ Xmin such that Y ↘ Y ′.

(ii) If w ∈ Cmin, then 〈w〉 ∈ Xmin.

Theorem 3.8 [Theorem 1.3; [13]] Suppose that W is a finite irreducible Coxeter group
and that X = 〈x〉 is a cyclic subgroup of W . Let C denote the W -conjugacy class of x.

(i) For each Y ∈ X there exists Y ′ ∈ Xmax such that Y ↗ Y ′.

(ii) If w ∈ Cmax, then 〈w〉 ∈ Xmax.

These results are obtained with the aid of analogous results about elements w ∈ W in [7]
and [6]. Our next Proposition may be viewed as a generalization of Theorem 3.2.9 (ii) of
[8].

Proposition 3.9 Let X be a finite subgroup of W and suppose Y1, Y2 ∈ Xmin. Then
there exist g ∈ W and r1, . . . , rn ∈ R such that, writing Z = Y g

1 , the following hold:

(i) N(Z) = N(Y2) and l(Y1g) = l(Y1) + l(g); and
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(ii) Y2 = rn · · ·r1Zr1 · · · rn, and for 1 ≤ i ≤ n, N(Zr1···ri) = N(Y2), and hence, in
particular, l(Zr1···ri ) = l(Y2).

Proof. Let Y1, Y2 ∈ Xmin. Then by Corollary 3.6, there exist I, J ⊆ R such that
N(Y1) = N(WI) and N(Y2) = N(WJ). In particular WI and WJ are conjugate, which
implies that there exists g ∈ W , a minimal double coset representative of WI in W , such
that J = Ig . Then N(g−1) ∩ N(Y1) = N(g−1) ∩ N(WI ) = ∅, and so, using Lemma 4.3
(see Section 4),

N(Xg) = g−1N(Y1)∪̇N(g).

Thus l(Xg) = l(Y1) + l(g), and setting Z = Y g
1 we see that 〈Z〉p = W g

I = WJ , so giving

N(Z) = N(Y2). We have now established part (i).
For part (ii), note that Z and Y2 are both contained in the standard parabolic sub-
group WJ . They are therefore conjugate in WJ . So there exist r1, . . . , rn ∈ J ⊆ R with
Y2 = rn · · ·r1Zr1 · · · rn. It is easy to see that for any set H with N(H) = N(WJ), and

any r ∈ J , we have N(rHr) = N(H) = Φ+
J , and (ii) immediately follows. ✷

If X ≤ W , it is possible that for each Y ∈ X, l(Y ) = l(X). If this holds, we say that X

is a flat subgroup of W . The following result gives a condition which is necessary for this
to occur.

Proposition 3.10 Let X 
= 1 be a finite subgroup of W , and let WI denote the standard

parabolic subgroup 〈X〉sp of W . If X is flat, then N(X) = Φ+
WI

.

Proof. By a result of Tits (see [3], Chapter 5, Section 4), X is contained in a finite
parabolic subgroup of W . This implies that 〈X〉p is finite. Suppose now that X is flat.
Then all conjugates of X have the same length. We may therefore assume, without loss
of generality, that 〈X〉p is a finite standard parabolic subgroup WK for some K ⊆ R.

Hence, by Proposition 3.5, N(X) = N(Φ+
WK

). Clearly WK is a standard parabolic sub-

group of WI . Suppose, for a contradiction, that K 
= I. By definition of WI , we see
that there must exist r ∈ K and s ∈ I \K such that mrs > 2 (if this were not the case,

then we would haveXW ⊆ WK � WI). Letting Y = sXs, we will show that l(Y ) > l(X).

Let α ∈ Φ+
WK

= N(X). Then s · α ∈ Φ+, because αs /∈ Φ+
WK

. Choose x ∈ X with

α ∈ N(x). Then we have

(sxs) · (s · α) = sx · α ∈ s · (Φ−
WK

) ⊆ Φ−.
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Therefore s ·Φ+
WK

⊆ N(Y ). Now the stabilizer of αs is a parabolic subgroup of W which

is not equal to WK . Since WK is the intersection of all parabolic subgroups containing
X, we deduce that X is not contained in the stabilizer of αs. Hence there exists x ∈ X

with x · αs ∈ Φ+ \ {αs} and hence

(sxs) · αs = −s(x · αs) ∈ Φ−.

We have now shown that s ·N(X)∪̇{αs} ⊆ N(Y ). But this means that l(Y ) ≥ l(X) + 1,
contradicting our assumption that X is flat. Therefore I = K, which gives N(X) =

N(WI ) = Φ+
WI

, so proving Proposition 3.10. ✷

4. Cosets

We begin by examining the length of Xr where r is a fundamental reflection and X
is a subset of W . We draw the reader’s attention to the fact that our group elements are
written on the right of X – so when X is a subgroup we are looking at right cosets of X.
We return to discuss what is behind this choice shortly.

Proposition 4.1 [Proposition 1.6; [10]] If X is a finite subset of W and r ∈ R, then

l(Xr) =




l(X) + 1 if αr /∈ N(X);
l(X) − 1 if αr ∈ N(x) for all x ∈ X;
l(X) otherwise.

Setting |X| = 1, we retrieve the familiar fact that for each w ∈ W , r ∈ R, we have

l(wr) =
{

l(w) + 1 if w · αr ∈ Φ+;
l(w)− 1 if w · αr ∈ Φ−.

If we demand that X be a subgroup of W then we have

Proposition 4.2 [Proposition 1.7; [10]]Let g = r1 · · ·rk ∈ W be a reduced expression for
g and let X be a finite subgroup of W . Then

l(X) ≤ l(Xr1) ≤ · · · ≤ l(Xr1 · · · rk) = l(Xg).

In particular, for all g ∈ G, l(Xg) ≥ l(X).
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The ‘left handed’ versions of Propositions 4.1 and 4.2, comparing the length of gX with
the length ofX, do not hold. This lack of symmetry is due to the fact that we are acting on
the left of Φ. For example let W be the Coxeter group of type A4. Then W ∼= Sym(5) and
if we take r = (12) and X = {(132), (12)(34)} we have N(X) = {α(12), α(23), α(34), α(13)}.
Thus l(X) = 4 but l(rX) = 2 < l(X) − 1. If we take X to be the parabolic subgroup
generated by (13) and (45), then l(X) = 4 but l((12)X) = 3 < l(X).

It is sometimes useful to know N(Xg) explicitly. To this end, we have the following

Lemma 4.3 [Lemma 2.2; [10]] Suppose that X is a subgroup of W . Then for g ∈ W ,

N(Xg) = N(g)∪̇g−1(N(X)\N(g−1))

and hence, when X is finite,

l(Xg) = l(g) + l(X) − |N(X) ∩N(g−1)|.

The following is Proposition 3.3 of [10] – we denote the set of reflections of W by Ref(W ).

Proposition 4.4 Let X be a finite subset of W and let s ∈ Ref(W ). If l(Xs) ≤ l(X),
then there exists x ∈ X such that l(xs) < l(x).

Proposition 4.4 implies that for the specified x ∈ X, xs precedes x in the well-known
Bruhat order on W (see Section 5.9 of [12]). In [10] and [11] a generalized notion of
the Bruhat order on cosets of subgroups in a finite Coxeter groups is introduced and
investigated. In [5], Deodhar extended the usual Bruhat order on finite Coxeter groups
to a partial order on the (right) cosets of a standard parabolic subgroup X ofW . The fact
that every right coset of X has a unique element whose length is minimal in that coset is
crucial in this construction. For cosets Xg,Xh, this partial order is defined by Xg < Xh

if g < h (where g and h are the elements of minimal length in their cosets). We shall
write B(X) for this partial order on the (right) cosets ofX inW . A further generalization
of B(X) (where X is a standard parabolic subgroup of W ), called generalized quotients,
was given in [2] by Björner and Wachs. This poset has many properties in common
with B(X). For example the Möbius function of generalized quotients (and B(X)) takes
values −1, 0 or 1 [Corollary 3.6; [2]]. However the Möbius function for the posets to be
introduced in Definition 4.5 does not necessarily take values in {−1, 0, 1} (see [11]) and
so these posets do indeed differ from generalized quotients.
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Definition 4.5 Suppose that X ≤ W where W is a finite Coxeter group.

(i) For right cosets Xg and Xh of X we write Xg ∼ Xh whenever Xgt = Xh for some
t ∈ Ref(W ) and l(Xg) = l(Xh). Let ≈ be the equivalence relation generated by ∼ on the
set of right cosets of X in W and let X be the set of ≈ equivalence classes.

(ii) Let x,x′ ∈ X. We write x � x′ if there is a right coset Xg in x and a right coset
Xh in x′ such that Xgt = Xh for some t ∈ Ref(W ) and l(Xg) < l(Xh). The partial
order � on X is defined by x � x′ if and only if there exist x1, . . . ,xm ∈ X such that
x� x1 � . . .� xm � x′. We shall call X the X-poset (of W ).

(iii) If, in (i) and (ii), we use the set of fundamental reflections instead of Ref(W ) we
may define, analogously, the weak X-poset (of W ) denoted by Xw with ordering �w .

For the coset Xg we use [Xg], respectively [Xg]w, to denote the ≈ equivalence class,
respectively the ≈w equivalence class containing Xg. Of many results about X-posets to
be found in [10] we mention the following.

Theorem 4.6 (Theorems 1.2 and Theorem 1.3(iii); [10]) Suppose W is a finite
Coxeter group, X ≤ W and let X, respectively Xw, denote the X-poset, respectively
weak X-poset. Then both X and Xw have a unique minimal element, namely the ≈
(respectively ≈w) equivalence class containing X. In addition, both the weak X-poset and
the X-poset are symmetric. That is if [Xg] � [Xh], respectively [Xg]w �w [Xh]w, then
[Xhw0] � [Xgw0], respectively [Xhw0]w �w [Xgw0]w (where w0 is the unique longest
element of W ).

For x ∈ X, l(x) is defined to be l(Xg) for any Xg ∈ x. As an example of an X-
poset, Figure 1 gives the X-poset in the case where W is of type F4, with Coxeter graph

✉ ✉ ✉ ✉

r1 r2 r3 r4
and X = 〈[r3r2r3r4r3r2r3r4]〉 ∼= Z2. Elements on the

same horizontal level have their length indicated on the right. In fact this is the Hasse
diagram of the poset, which is a ranked poset as labelled by the length of the elements.
For a collection of Hasse diagrams of X-posets of all shapes and sizes we direct the reader
to [11].
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Figure 1. W ∼= F4, X = 〈[r3r2r3r4r3r2r3r4]〉 ∼=Z2
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5. Some Open Questions

Theorems 3.7 and 3.8 may be seen as generalizing the results of Geck, Pfeiffer [7] and
Geck, Kim, Pfeiffer [6] to cyclic groups. So we ask the following.

Question 5.1 Suppose that X is a subgroup of the finite irreducible Coxeter group W .

(i) For each Y ∈ X, does there exist Y ′ ∈ Xmin such that Y ↘ Y ′?

(ii) For each Y ∈ X, does there exist Y ′ ∈ Xmax such that Y ↗ Y ′?

Enlisting the aid of Magma [4], Question 5.1 part (i) has been answered in the affir-
mative for all finite irreducible Coxeter groups of rank less than or equal to 6 (much to
our surprise, as we expected to find a counterexample). We have yet to do comparable
calculations for Question 5.1 part (ii).

Another obvious question is whether there is a maximal analogue of Proposition 3.9.

Question 5.2 Suppose X is a finite subgroup of W and that Y1, Y2 ∈ Xmax. Do there
exist g ∈ W and r1, . . . , rn ∈ R such that, writing Z = Y g

1 , the following hold:

(i) N(Z) = N(Y2) and l(Y1g) = l(Y1)− l(g);

(ii) Y2 = rn · · ·r1Zr1 · · · rn, and for 1 ≤ i ≤ n, N(Zr1···ri ) = N(Y2), and hence, in
particular, l(Zr1···ri) = l(Y2).

One difficulty in establishing Question 5.2 is that we do not understand where subgroups
of maximal length in a conjugacy class may be found. Because of Proposition 3.5, this
reduces to the problem of parabolic subgroups of maximal length, about which we have
limited knowledge. Thus we ask

Question 5.3 For X ≤ W , with X finite and of maximal length in its conjugacy class,
what can be said about the location of X in W?

As was proved in 3.10, ifX is a finite subgroup, W is irreducible and X is a flat class, then
N(X) = Φ+. However, having N(X) = Φ+ does not guarantee that X is flat. A trivial
illustration this occurs in W of type An where X is generated by the longest element of
W .

Question 5.4 Find conditions that characterize flat classes of subgroups.
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We recall that a ranked poset is a poset P such that for each p ∈ P all maximal chains
in {q ∈ P|q ≤ p} have the same finite length, called the rank of p. A graded poset is a
ranked poset with a minimum and a maximum element (see [1]). The following, which
we believe to be true, has caused the present authors much anguish to date.

Question 5.5 Suppose W is a finite irreducible Coxeter group, and X a subgroup of W .
Is the X-poset X graded?
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