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A Non-Linear Locally Finite Simple Group with a
p-Group as Centralizer

U. Meierfrankenfeld

Abstract

We show that there exists a non-linear, locally finite, simple group such that the

centralizer of every non-trivial element is (locally solvable)-by-finite.

In [1, Problem. 3.8] Brian Hartley asked the following question:

Does there exist a non-linear infinite simple locally finite group in which the centralizer
of every non-trival element is almost soluble, that is, has a soluble subgroup of finite index?

In this note we will give a partial answer to Brian’s question: We will show that the
answer is affirmative if solvable is replaced by “locally solvable”. More precisely we prove:

Theorem A (a) There exists a non-linear, locally finite, simple group such that the
centralizer of every non-trivial element is (locally solvable)-by-finite.

(b) Let p be a prime. Then there exists a non-linear, locally finite, simple group with an
element whose centralizer is a p-group.

This theorem and its proof first appeared in my lecture notes on locally finite simple
groups [2].

If W and I are sets, then W I denotes the set of functions from I to W . If X is a
group, Y a subgroup of X and W a Y -set we define

W⇑X
Y = {f : X → W | f(xy) = f(x)y for all x ∈ X, y ∈ Y }.

Note that, if we view X as a Y -set by right multiplication, then W⇑X
Y just consists

of the Y -equivariant maps from X to W .

If W is a Y -module and X/Y is finite, then the following lemma shows that W⇑X
Y is

the induced module for X. And if W is a group with Y acting trivially on W , then W⇑X
Y

is the base group of the wreath product W �X/Y X.
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Lemma 1 Let X be a group, Y a subgroup of X and W a Y -set. Put V = W⇑X
Y . Then

(a) X acts on V by fh(x) = f(hx) for all x, h ∈ X.

(b) Let I be a left transversal to Y in X. Then the restriction map

ρI : V → W I , f → f |I

is a bijection. In particular, V and WX/Y are isomorphic as sets.

(c) Define
π : V → W, π(f) = f(1).

Then π is an onto Y -equivariant map.

(d) Suppose that t is a fixed-point for Y on W . Let w ∈ W and define

κt(w) : X → W, x →
{

wx if x ∈ Y
t if x �∈ Y

.

Then

(a) κt(w) ∈ V and κt : W → V, w → κt(w) is a 1-1 Y -equivariant map.

(b) π(κt(w)) = w.

(c) π(κt(w)x)) = t for all x ∈ X \ Y .

(e) Suppose in addition that W is a Y -group, that is, W is a group and for each y ∈ Y

the map W → W,w → wy is a homomorphism of groups. Then the maps ρI , π and
κ1 all are homomorphism of groups.

Proof. (a): We need to verify that fh ∈ V and fhl = (fh)l for all f ∈ V, h, l ∈ X. Let

x ∈ X and y ∈ Y . Since fh(xy) = f(h(xy)) = f((hx)y) = f(hx)y = (fh(x))y, fh ∈ V .

Also fhl(x) = f((hl)x) = f(h(lx)) = fh(lx) = (fh)l(x) and so (a) holds.
(b): Let x ∈ X. Then x = iy for some unique i ∈ I, y ∈ Y .
Let f ∈ V . Then f(x) = f(iy) = f(i)y and so f is uniquely determined by fI . Thus

ρI is 1-1.

Let g ∈ W I . Define f : X → W by f(x) = f(i)y . It is easy to verify that f ∈ V and
fI = g. Hence ρI is onto.

(c): Let f ∈ V , y ∈ Y . Then π(fy) = fy(1) = f(y · 1) = f(1 · y) = f(1)y = π(f)y .
So π is Y -equivariant. Choose a left transversal containing 1. Then (b) implies that π is
onto.
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(d): Let w ∈ W, y ∈ Y and x ∈ X. Then x ∈ Y if and only if xy ∈ Y . Also by
assumption t = ty and so

κt(w)(xy) =
{

wxy if xy ∈ Y
t if xy �∈ Y

=
{

(wx)y if x ∈ Y
ty if x �∈ Y

= (κt(w)(x))y.

Thus κt(w) ∈ V .
Also yx ∈ Y if and only if x ∈ Y . So

κt(wy)(x) =
{

(wy)x if x ∈ Y
t if x �∈ Y

=
{

wyx if yx ∈ Y
t if yx �∈ Y

= κt(w)(yx) = κt(w)y(x).

Thus κt(wy) = κt(w)y and (d:a) holds.

Since 1 ∈ Y , π(κt(w)) = κt(w)(1) = w1 = w and so (d:b) holds.
Let x ∈ X \ Y . Then π(κt(w)x) = κt(w)x(1) = κt(w)(x · 1) = κt(w)(x) = t. So also

(d:c) holds.

It remains to prove (e). So suppose that W is a Y -group. Clearly WX is a group via

(fg)(x) = f(x)g(x). Moreover, for f, g ∈ W⇑X
Y , x ∈ X and y ∈ Y we have

(fg)(xy) = f(xy)g(xy) = f(x)yg(x)y = (f(x)g(x))y = (fg)(x)y .

So fg ∈ W⇑X
Y . Similarly f−1 ∈ W⇑X

Y and clearly 1 ∈ W⇑X
Y . Hence W⇑X

Y is a subgroup

of WX .
For any J ⊆ X, the restriction map WX → W J , f → f |J is a homomorphism. Thus

ρI and π are homomorphism. W → W,w → wy and W → W,w → 1 are homomorphisms
and so also κ1 is a homomorphism. ✷

Statement (c:a) in the following lemma is crucial for this paper. It allows us to enlarge
a group Y to a group H while controlling some of the centralizers.

Lemma 2 Let X, Y,W,G be groups with Y ≤ X, G ≤ Y , W ✂ Y , Y = WG and
W ∩ G = 1. Then there exists a semidirect product H = V � X and an embedding
β : Y → H such that

(a) V ∼= WY/X as groups.

(b) V β(y) = V y for all y ∈ Y .

(c) Let y ∈ Y , w ∈ W and g ∈ G with y = wg and y �∈ gW . Then
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(a) V CH(β(y)) = V CY (y).

(b) β(y) �∈ yV .

Proof. Let y ∈ Y and y = wg with w ∈ W, g ∈ G. Let ρ be the projection of Y onto

G, that is ρ(wg) = g. Note that W is a Y -group via w → wρ(y). We denote this Y -group

by Wρ. Put V = Wρ⇑X
Y . Then by Lemma 1 X acts on V and we can form the semidirect

product, H = V � X = {(v, x)|v ∈ V, x ∈ X}. We view V and X as subgroups of H . So
H = V X and V ∩X = 1. Let π : V → W and κ = κ1 : W → V be as in Lemma 1. Let
v ∈ V .

1◦ π(vy) = π(v)ρ(y) = π(v)g and π(vy−1
) = π(v)g−1

.

The first statement follows from 1(c) and the definition of action of Y on Wρ. Since

ρ(y−1) = ρ(y)−1 = g−1, the second statement follows from the first.

2◦ Define
β : Y → H, y → (κ(w), y).

Then β is a monomorphism and V β(y) = V y.

Clearly β is 1-1 and V β(y) = V y. For i = 1, 2 let yi ∈ Y and yi = wigi with wi ∈ W ,
gi ∈ G. Then

y1y2 = w1g1w2g2 = w1w
g−1
1

2 g1g2,

and so

β(y1y2) = (κ(w1w
g−1
1

2 ), y1y2).

On the other hand,

β(y1)β(y2) = (κ(w1), y1)(κ(w2), y2) = (κ(w1)κ(w2)y−1
1 , y1y2).

As κ is a Y -equivariant homomorphism,

β(y1)β(y2) = (κ(w1w
g−1
1

2 ), y1y2)

and so β is a homomorphism.

3◦ Let (v, x) ∈ CH(β(y)). Then κ(w)vy−1
= vκ(w)x−1

and xy = yx.
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We compute

β(y)(v, x) = (κ(w), y)(v, x) = (κ(w)vy−1
, yx)

and

(v, x)β(y) = (v, x)(κ(w), y) = (vκ(w)x−1
, xy)

Thus (3◦) holds.

4◦ Suppose that V CH(β(y)) �= V CY (y). Then y ∈ gW .

Since β(CY (y)) ≤ CH(β(y)) we have V CY (y)
(2◦)
= V β(CY (y)) ≤ V CH(β(y)) and so

there exists (v, x) ∈ CH(β(y)) with x �∈ Y .

By Lemma 1(d:b), π(κ(w)) = w. By (1◦), π(vy−1
) = π(v)k−1

. Also since x �∈ Y and

κ = κ1, Lemma 1(d:c) implies π(κ(w)x−1
) = 1. So applying π to both sides of the first

equation in (3◦) we obtain

wπ(v)g−1
= π(v).

Put r = π(v). Then wgrg−1 = r, wg = rgr−1 and y = wg = gr−1 ∈ gW .

5◦ If β(y) ∈ yV , then y ∈ gW .

Suppose that β(y) = (1, y)(v,1) for some v ∈ V . Then

(κ(w), y) = (v−1 , 1)(1, y)(v, 1) = (v−1, y)(v, 1) = (v−1vy−1
, y)

and so κ(w) = v−1vy−1
. Applying π to both sides we conclude w = π(v−1)π(v)g−1

. Put

r = π(v) then w = r−1grg−1 and y = wg = r−1gr = gr . Thus (5◦) holds.

We are now in a position to prove the lemma: (a) follows from Lemma 1(b),(e); (b)
from (2◦); (c:a) from (4◦); and (c:b) from (5◦). ✷

The preceding Lemma allows to control centralizers under the condition y /∈ gW . The
next lemma provides us with a tool to achieve this condition:

Lemma 3 Let G be a finite group and Π a set of primes. Then there exist a finite abelian
ZG-module W and a monomorphism α : G → W � G such that
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(a) W is a Π-group.

(b) Wα(g) = Wg for all g ∈ G.

(c) α(g) �∈ gW for all non-trivial Π-elements g in G.

(d) If G is perfect, then W = [W,G] and W � G is perfect.

Proof. Let m be the Π-part of |G|. Put B = (Z/mZ)G and H = Z/mZ � G, where
the wreathed product is formed with respect to regular action of G on G. Then B is the
base group of H and H = BG. For f ∈ B put ||f || =

∑
g∈G f(g). Put W = [B,G] and

note that W = {f ∈ B | ||f || = 0}. Then W is a Π-group and (a) holds. Also if G = G′,
the Three Subgroups Lemma implies [B,G,G] = [B,G] and so W = [W,G] and WG is
perfect. Thus (d) holds.

Let b ∈ B be defined by b(1) = 1 and b(g) = 0 for all g ∈ G#. Define α : G →
WG, g → gb = [b, g−1]g. Then α is monomorphism and (b) holds. It remains to prove

(c). So let g be a non-trivial Π-element in G and suppose that gb = ga for some a ∈ W .

Put n = |g| and c = ba−1. Then c ∈ CB(g). Let I be a left transversal to 〈g〉. Then each

element of G can be uniquely written as igk for some i ∈ I and some 0 ≤ k < n. Since

cg = c, c(i) = c(igk). Let s =
∑

i∈I c(i). We conclude that ||c|| = ns. Thus

1 = ||b|| = ||ac|| = ||a||+ ||c|| = 0 + ns = ns

in Z/mZ, a contradiction, as n divides m. ✷

We now combine the embeddings from the two preceding lemmas into one:

Lemma 4 Let G and F be finite groups and Π a set of primes. Then there exist a finite
group G∗ with G ≤ G∗ and normal subgroup V of G∗ such that:

(a) V is an abelian Π-group and G∗/V is simple.

(b) G ∩ V = 1.

(c) Let x be a nontrivial Π-element in G. Then CG∗(x) has a normal solvable Π-subgroup
Mx with CG∗(x) = MxCG(x).

(d) G∗ has a subgroup isomorphic to F .

(e) If G is perfect, G∗ is perfect.
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Proof. Let α and Y = W � G be as in Lemma 3. Let X be any finite simple group
containing Y as a subgroup and such that X has a subgroup isomorphic to F . Let β and
V be as in Lemma 2. Put G∗ = V � X. Let x be a Π-element in G and put γ = β ◦ α.
Let y ∈ CY (α(x)). Then Wy = Wg for some g ∈ G. By Lemma 3(b), Wα(x) = Wx.
From [α(x), y] = 1 we conclude that [x, g] ∈ W ∩ G = 1. Hence g ∈ CG(x) and so

CY (α(x)) ≤ WCG(x) = Wα(CG(x)). By Lemma 3(c) α(x) �∈ xW and so by Lemma
2(c:a), CG∗(β(α(x))) ≤ V CY (α(x)). Thus

CG∗(γ(x)) ≤ V CY (α(x)) ≤ VWα(CG(x)).

By Lemma 2(b), V β(y) = V y for all y ∈ Y and so V α(CG(x)) = V γ(CG(x)). Thus

CG∗(γ(x)) ≤ VWγ(CG(x)) = V WCγ(G)(γ(x)).

Put Mx = CV W (γ(x)). Then CG∗(γ(x)) = MxCγ(G)(γ(x)). Identifying G with its

image in G∗ under γ we see that all parts of the lemma hold. ✷

Let G be a locally finite group. Recall that a Kegel-cover for G is a set K of pairs of
subgroups of G such that

(i) If (H,M) ∈ K, then H is a finite subgroup of G, M ✂ H and H/M is simple.

(ii) For each finite subgroup F of G there exists (H,M) ∈ K with F ≤ H and F ∩M .

Otto Kegel proved that every locally finite, simple group has a Kegel cover. The
following well-known Lemma is a partial converse:

Lemma 5 Let G be a locally finite group with a Kegel cover K. Suppose that for all
(H,M) ∈ K, H is perfect and M is solvable. Then G is simple.

Proof. Let L be a non-trivial normal subgroup of G. Let g ∈ G. It suffices to show
that g ∈ L. For this let 1 �= l ∈ L and put F = 〈l, g〉. Then F is finite and so there

exists (H,M) ∈ K with F ≤ H and F ∩M = 1. Since l ∈ H \M we have L ∩ H � M .

Since L ∩ H is normal in H and H/M is simple this implies H = (L ∩ H)M . Thus
H/L ∩H ∼= M/M ∩L and since M is solvable, H/L ∩H is solvable. As H is perfect we
conclude that H = L ∩H . Thus g ∈ F ≤ H ≤ L. ✷
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Proposition 6 Let G0 be a finite, perfect group, Π a non-empty set of primes and for
each positive integer n let Fn be a finite group. Then there exists a locally, finite simple
group G with G0 ≤ G and such that:

(a) If x is a nontrivial Π-element of G, then CG(x) has a locally solvable, normal Π-
subgroup Mx of finite index.

(b) If x is a nontrivial Π-element in G0, then CG(x) = MxCG0(x).

(c) Fn is isomorphic to a subgroup of G.

Proof. We will produce finite groups Gn, n ∈ Z+, and normal subgroups Mn of Gn

such that for all n ∈ Z+

1◦

(a) Gn is perfect.

(b) Mn is abelian and Gn/Mn is simple.

(c) Gn−1 ≤ Gn and Gn−1 ∩Mn = 1.

(d) If x is a nontrivial Π-element in Gn−1, then there exists a solvable normal Π-subgroup
Mnx of CGn(x) with CGn(x) = MnxCGn−1(x).

(e) Gn has a subgroup isomorphic to Fn.

Let i ≥ 0 and suppose we already found G1, . . . , Gi such that (a) -(e) hold for 1 ≤ n ≤ i.
Then Gi is perfect and so we can apply Lemma 4 to G = Gi and F = Fi+1. Put
Gi+1 = G∗, Mi = V and Mix = Mx. Then by Lemma 4 we conclude that (a) to (e) hold
for n = i + 1.

Put G =
⋃n

i=1 Gn. Then {(Gn,Mn) | n ≥ 1} is a Kegel cover for G and by Lemma 5,
G is simple. Let x ∈ G be a nontrivial Π-element. Then x ∈ Gn for some n. Put Mn

x = 1

and inductively, Mm+1
x = Mm

x M(m+1)x. It follows from (1◦)(d) and induction that:

2◦ Let m ≥ n. Then Mm
x is a solvable, normal Π-subgroup of CGm(x) and CGm(x) =

Mm
x CGn(x).

Put Mx =
⋃∞

m=n Mm
x . Then by (2◦), Mx is a locally solvable, normal Π-subgroup of

CG(x) and CG(x) = MxCGn(x). Thus the proposition is proved. ✷
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Corollary 7 Let Π be a non-empty set of primes. Then there exists a non-linear, locally
finite, simple group G such that

(a) The centralizer of every non-trivial Π-element has a locally solvable Π-subgroup of
finite index.

(b) There exists an element whose centralizer is a locally solvable Π-group.

Proof. Fix p ∈ Π and put G0 = Alt(2p+ 1). Let x the product of two disjoint p-cycle
in Sym(2p + 1). Then x ∈ G0, G0 is perfect and CG0(x) ∼= Cp × Cp. In particular,

CG0(x) is solvable Π-group. Apply Lemma 6 to this G0 and with Fn = Sym(n). The
resulting G is not linear and fulfills (a). Moreover, (b) holds for the element x ∈ G0 ≤ G.✷

Proof of Theorem A:

Apply Corollary 7(a) with Π the set of all primes and Corollary 7(b) with Π = {p}.
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