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A Non-Linear Locally Finite Simple Group with a
p-Group as Centralizer

U. Meierfrankenfeld

Abstract
We show that there exists a non-linear, locally finite, simple group such that the

centralizer of every non-trivial element is (locally solvable)-by-finite.
In [1, Problem. 3.8] Brian Hartley asked the following question:

Does there exist a non-linear infinite simple locally finite group in which the centralizer
of every non-trival element is almost soluble, that is, has a soluble subgroup of finite index?

In this note we will give a partial answer to Brian’s question: We will show that the
answer is affirmative if solvable is replaced by “locally solvable”. More precisely we prove:

Theorem A (a) There exists a non-linear, locally finite, simple group such that the

centralizer of every non-trivial element is (locally solvable)-by-finite.

(b) Let p be a prime. Then there exists a non-linear, locally finite, simple group with an
element whose centralizer is a p-group.
This theorem and its proof first appeared in my lecture notes on locally finite simple
groups [2].

If W and I are sets, then W! denotes the set of functions from I to W. If X is a
group, Y a subgroup of X and W a Y-set we define

W= {f: X =W | f(zy) = f(z)! forallz € X,y € Y}.

Note that, if we view X as a Y-set by right multiplication, then Wﬂfﬁ just consists
of the Y-equivariant maps from X to W.
If W is a Y-module and X/Y is finite, then the following lemma shows that W1 is

the induced module for X. And if W is a group with Y acting trivially on W, then W1+
is the base group of the wreath product Wix,y X.
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Lemma 1 Let X be a group, Y a subgroup of X and W a Y-set. Put V = WAs5. Then
(a) X acts on'V by f'(z) = f(hx) for all z,h € X.

(b) Let I be a left transversal to'Y in X. Then the restriction map
pr:V =W f—flr

is a bijection. In particular, V. and WX/Y are isomorphic as sets.

(¢) Define
m: V=W, n(f)= f(1).

Then 7 is an onto Y -equivariant map.

(d) Suppose that t is a fized-point for Y on W. Let w € W and define

w*  ifreY

mt(w):X—>W,x—>{ t ifrdy

Then
(a) ki(w) €V and k- W — V,w — ki (w) is a 1-1 Y -equivariant map.

(b) m(rt(w)) = w.
(c) m(k(w)®)) =t for allz € X\ Y.

(e) Suppose in addition that W is a Y -group, that is, W is a group and for eachy € Y

the map W — W, w — wY is a homomorphism of groups. Then the maps p;, ™ and
k1 all are homomorphism of groups.

Proof. (a): We need to verify that f* € V and f* = (f*)! forall f € V,h,l € X. Let
x € X and y € Y. Since f*(xy) = f(h(zy)) = f((hx)y) = f(ha)? = (f"(2))Y, f* € V.
Also fM(x) = f((hl)z) = f(h(lz)) = f*(lz) = (")} (z) and so (a) holds.

(b): Let z € X. Then x = ¢y for some unique i € I, y € Y.

Let f € V. Then f(z) = f(iy) = f(i)¥ and so f is uniquely determined by f;. Thus
pr is 1-1.

Let g € W!. Define f: X — W by f(x) = f(i)Y. It is easy to verify that f € V and
fr = g. Hence py is onto.

(0): Let f €V, ye Y. Then n(f) = f2(1) = f(y- 1) = f(1-y) = )W = n(f)".
So 7 is Y-equivariant. Choose a left transversal containing 1. Then (b) implies that 7 is
onto.
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(d): Let w e W,y € Y and ¢ € X. Then z € Y if and only if zy € Y. Also by
assumption ¢ = t¥ and so

s ={ 7 gel {7 ey = wwer

Thus x(w) € V.
Also yr € Y if and only if x € Y. So

s ={ ey LR SY — mwm) = m(w) o)

Thus ki (w¥) = ke(w)¥ and (d:a) holds.

Since 1 € Y, m(kt(w)) = r¢(w)(1) = w' = w and so (d:b) holds.

Let z € X \'Y. Then 7(ki(w)*) = ki(w)*(1) = ke(w)(z - 1) = ke(w)(z) = t. So also
(d:c) holds.

It remains to prove (e). So suppose that W is a Y-group. Clearly W* is a group via
(fg)(z) = f(z)g(z). Moreover, for f,g € Wi, z € X and y € Y we have

(f9)(xy) = f(zy)g(zy) = f(2)g(x)Y = (f(x)g(x))” = (fg)(x)".

So fg € Wos. Similarly f~! € Wiy and clearly 1 € W1sr. Hence WAy is a subgroup

of WX,
For any J C X, the restriction map WX — WY f — f|; is a homomorphism. Thus

pr and w are homomorphism. W — W, w — w¥ and W — W, w — 1 are homomorphisms
and so also k1 is a homomorphism. O

Statement (c:a) in the following lemma is crucial for this paper. It allows us to enlarge

a group Y to a group H while controlling some of the centralizers.

Lemma 2 Let X, Y, W G be groups with Y < X, G <Y, WQY,Y = WG and
W NG = 1. Then there exists a semidirect product H = V x X and an embedding
B :Y — H such that

(a) V=2WY/X as groups.

(b)) VB(y) =Vy forallyeY.

(c) Letye Y, weW and g € G withy =wg and y ¢ g"V'. Then
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(a) VCu(B(y)) = VCy(y).

(b) Bly) €y
Proof. Lety €Y and y =wg with w € W, g € G. Let p be the projection of Y onto
G, that is p(wg) = g. Note that W is a Y-group via w — wP® . We denote this Y-group
by W,. Put V = Wpﬂff . Then by Lemma 1 X acts on V' and we can form the semidirect

product, H =V x X = {(v,z)|lv € V,z € X}. We view V and X as subgroups of H. So

H=VXandVNX=1Letm:V —->Wand k =k1: W — V be as in Lemma 1. Let
veV.

1° 7)) =7(0)® = x(v)? and T(v¥ ) =m(v)9

The first statement follows from 1(c) and the definition of action of ¥ on W,. Since

p(y=1) = p(y)~! = g1, the second statement follows from the first.

2° Define
8:Y = Hy— (k(w),y).

Then (3 is a monomorphism and V3(y) = Vy.

Clearly §is 1-1 and V3(y) = Vy. Fori=1,21let y; € Y and y; = w;g; with w; € W,
gi € G. Then

—1
g
Y1Y2 = Wi1gi1Wags = W1Wy" G192,

and so

1

B(y1y2) = (n(wlwg; ) Y1y2)-
On the other hand,

Bly1)By2) = (s(wr), y1) ((w2), y2) = (s(wr)s(w2)", y1ye).
As k is a Y-equivariant homomorphism,

—1

By1)By2) = (K(wiwy" ), y1y2)

and so [ is a homomorphism.

3°  Let (v,z) € Cu(B(y)). Then k(w)v?  =vk(w)®  and zy = ya.
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We compute

and

Thus (3°) holds.

4° Suppose that VCr(B(y)) # VCy(y). Theny € g".

. 2°
Since 5(Cy (1)) < Cir(B(y) we have VCy(y) = VB(Cy(y)) < VO (B(y)) and so
there exists (v,z) € Cy(B(y)) with x € Y.

By Lemma 1(d:b), m(r(w)) = w. By (1°), m(v¥ ') = w(v)* . Also since z ¢ Y and
% = k1, Lemma 1(d:c) implies 7(r(w)® ) = 1. So applying 7 to both sides of the first

equation in (3°) we obtain

Put r = m(v). Then wgrg~! =r, wg =rgr~! and y = wg = gTﬁ1 cg".

5° If B(y) €y, then y € g™V

Suppose that B(y) = (1,%)Y for some v € V. Then

1

(s(w),y) = (v, (L, y)(v, 1) = (v, 1) = (01" y)

and so k(w) = v~'v¥ . Applying 7 to both sides we conclude w = 7(v~!)7(v)? . Put

1

r = m(v) then w =r~tgrg=! and y = wg = r~'gr = g". Thus (5°) holds.

We are now in a position to prove the lemma: (a) follows from Lemma 1(b),(e); (b)
from (2°); (c:a) from (4°); and (c:b) from (5°). O
The preceding Lemma allows to control centralizers under the condition y ¢ g"'. The

next lemma provides us with a tool to achieve this condition:

Lemma 3 Let G be a finite group and I1 a set of primes. Then there exist a finite abelian
ZG-module W and a monomorphism o : G — W x G such that
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(a) W is a II-group.
(b) Wal(g) =Wy for all g € G.
(c) a(g) &€ g for all non-trivial I-elements g in G.

(d) If G is perfect, then W = [W,G] and W x G is perfect.

Proof. Let m be the Il-part of |G|. Put B = (Z/mZ)% and H = Z/mZ G, where
the wreathed product is formed with respect to regular action of G on G. Then B is the
base group of H and H = BG. For f € B put [|f|| = >_ . f(g9). Put W = [B,G] and

note that W = {f € B | ||f|| = 0}. Then W is a II-group and (a) holds. Also if G = G’,
the Three Subgroups Lemma implies [B,G,G] = [B,G] and so W = [W, G| and WG is
perfect. Thus (d) holds.

Let b € B be defined by b(1) = 1 and b(g) = 0 for all ¢ € G#. Define a : G —
WG, g — g* = [b,g7']g. Then a is monomorphism and (b) holds. It remains to prove
(c). So let g be a non-trivial II-element in G and suppose that g* = g¢ for some a € W.
Put n = |g| and ¢ = ba~!. Then ¢ € Cp(g). Let I be a left transversal to (g). Then each
element of G' can be uniquely written as ig* for some i € I and some 0 < k < n. Since
g =c, c(i) = c(igh). Let s = Y,; c(i). We conclude that ||c|| = ns. Thus

1= [[b]] = [lacl| = [lal| + [l]| = 0+ ns = ns

in Z/mZ, a contradiction, as n divides m. |

We now combine the embeddings from the two preceding lemmas into one:

Lemma 4 Let G and F be finite groups and I1 a set of primes. Then there exist a finite
group G* with G < G* and normal subgroup V of G* such that:

(a) V is an abelian -group and G* [V is simple.
(b) GNV =1.

(¢) Let x be a nontrivial I-element in G. Then Cg+(x) has a normal solvable T1-subgroup
M, with Ca+(xz) = M;Cq(z).

(d) G* has a subgroup isomorphic to F.

(e) If G is perfect, G* is perfect.
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Proof. Let a and Y =W x G be as in Lemma 3. Let X be any finite simple group
containing Y as a subgroup and such that X has a subgroup isomorphic to F'. Let § and
V be as in Lemma 2. Put G* =V x X. Let x be a II-element in G and put v = o a.

Let y € Cy(a(z)). Then Wy = Wy for some g € G. By Lemma 3(b), Wa(z) = Wx.
From [a(x),y] = 1 we conclude that [z,g9] € W NG = 1. Hence g € Cg(z) and so
Cy(a(z)) < WCg(z) = Wa(Cg(r)). By Lemma 3(c) a(zr) ¢ 2" and so by Lemma
2(c:a), Co=(B(a(z))) < VCy(a(x)). Thus

Co-(4(x)) < VOy () < VIWa(Cal(x)):

By Lemma 2(b), V3(y) = Vy for ally € Y and so Va(Cg(x)) = Vy(Cg(x)). Thus

Co-(7(x)) < VWA(Cq(x)) = VIWCy ) ((2)).

Put M, = Cyw(y(z)). Then Cg-(y(x)) = MzCy(a)(y(x)). Identifying G with its

image in G* under v we see that all parts of the lemma hold. O

Let G be a locally finite group. Recall that a Kegel-cover for G is a set K of pairs of
subgroups of G such that

(i) If (H,M) € K, then H is a finite subgroup of G, M < H and H/M is simple.
(ii) For each finite subgroup F' of G there exists (H, M) € K with F < H and F N M.

Otto Kegel proved that every locally finite, simple group has a Kegel cover. The
following well-known Lemma is a partial converse:

Lemma 5 Let G be a locally finite group with a Kegel cover K. Suppose that for all
(H,M) € K, H is perfect and M is solvable. Then G is simple.

Proof. Let L be a non-trivial normal subgroup of G. Let g € G. It suffices to show
that ¢ € L. For thislet 1 #1 € L and put F = (I, g). Then F is finite and so there
exists (H,M) € K with F < H and FNM = 1. Since l € H\ M we have LN H £ M.
Since L N H is normal in H and H/M is simple this implies H = (L N H)M. Thus

H/LNH=M/MnNL and since M is solvable, H/L N H is solvable. As H is perfect we
conclude that H=LNH. Thusge F< H < L. O
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Proposition 6 Let Gy be a finite, perfect group, Il a non-empty set of primes and for
each positive integer n let F, be a finite group. Then there exists a locally, finite simple
group G with Gy < G and such that:

(a) If x is a nontrivial TI-element of G, then Cg(x) has a locally solvable, normal TI-
subgroup M, of finite index.

(b) If x is a nontrivial I1-element in Gy, then Cq(x) = MyCq, ().

(¢) F, is isomorphic to a subgroup of G.

Proof. We will produce finite groups G,,,n € Z*, and normal subgroups M,, of G,
such that for all n € Z*

10
(a) G, is perfect.

(b) M, is abelian and G,,/M,, is simple.
(¢) Gno1 <Gy and Gp—1 N M, = 1.

(d) If x is a nontrivial I1-element in G,,—1, then there exists a solvable normal I1-subgroup
M, of Cq, (x) with Cq, () = Myp:Caq,,_, ().

(e) G, has a subgroup isomorphic to F,.

Let ¢ > 0 and suppose we already found G1, ... ,G; such that (a) -(e) hold for 1 < n <.
Then G; is perfect and so we can apply Lemma 4 to G = G; and F = F;;;. Put
Giy1 =G*, M; =V and M;, = M,. Then by Lemma 4 we conclude that (a) to (e) hold
forn=1i+1.

Put G =}, Gyn. Then {(G,,M,) | n > 1} is a Kegel cover for G and by Lemma 5,
G is simple. Let € G be a nontrivial II-element. Then = € G}, for some n. Put M) =
and inductively, M" ™ = M7 M, 41y, It follows from (1°)(d) and induction that:

2° Let m > n. Then M is a solvable, normal II-subgroup of Cq,, (x) and Cg,, (z) =
M;nCGn (x) ‘

Put M, =J;._,, MJ". Then by (2°), M, is a locally solvable, normal II-subgroup of
Cg(x) and Cg(x) = M,Cg, (z). Thus the proposition is proved. O

102



MEIERFRANKENFELD

Corollary 7 Let II be a non-empty set of primes. Then there exists a non-linear, locally
finite, simple group G such that

(a) The centralizer of every non-trivial I-element has a locally solvable TI-subgroup of

finite indez.

(b) There exists an element whose centralizer is a locally solvable TI-group.

Proof. Fix p € Il and put Gy = Alt(2p+1). Let z the product of two disjoint p-cycle
in Sym(2p + 1). Then z € Gy, Gy is perfect and Cgq,(z) = Cp x Cp,. In particular,
Cg,(x) is solvable II-group. Apply Lemma 6 to this Gy and with F,, = Sym(n). The
resulting G is not linear and fulfills (a). Moreover, (b) holds for the element 2 € Gy < G.O

Proof of Theorem A:

Apply Corollary 7(a) with II the set of all primes and Corollary 7(b) with II = {p}.
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