
Turk J Math

31 (2007) , Suppl, 113 – 130.

c© TÜBİTAK

Finitary Actions and Invariant Ideals

D. S. Passman

Abstract

Let K be a field and let G be a group. If G acts on an abelian group V , then

it acts naturally on any group algebra K [V ], and we are concerned with classifying

the G-stable ideals of K [V ]. In this paper, we consider a rather concrete situation.

We take G to be an infinite locally finite simple group acting in a finitary manner

on V . When G is a finitary version of a classical linear group, then we show that

the augmentation ideal ωK [G] is the unique proper G-stable ideal of K [V ]. On the

other hand, if G is a finitary alternating group acting on a suitable permutation

module V , then there is a rich family of G-stable ideals of K [V ], and we show that

these behave like certain graded ideals in a polynomial ring.

Key Words: group algebra, invariant ideal, locally finite simple group, finitary

permutation group, permutation module, finitary linear group.

1. Introduction

If H is a nonidentity group, then the group algebra K[H ] always has at least three
distinct ideals, namely 0, the augmentation ideal ωK[H ], and K[H ] itself. Thus it is
natural to ask, as I. Kaplansky did, if groups exist for which the augmentation ideal is
the unique nontrivial ideal. In such cases, we say that ωK[H ] is simple. Certainly H

must be a simple group for this to occur and, since the finite situation is easy enough to
describe, we might as well assume that H is infinite simple. The first examples discovered
were the algebraically closed groups and the universal groups. From this, it appeared that
such groups would be quite rare. But F. Leinen, A. E. Zalesskĭı, and others have shown
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that, for locally finite groups, this phenomenon is really the norm. Indeed, for all locally
finite infinite simple groups, the characteristic 0 group algebras K[H ] tend to have very
few ideals.

As suggested by B. Hartley and A. E. Zalesskĭı, the next stage of this program should
be concerned with certain abelian-by-(quasi-simple) groups. Specifically, these are the
locally finite groups H having a minimal normal abelian subgroup V with H/V being
infinite simple (or perhaps just close to being simple). Note that G = H/V acts as
automorphisms on V , and hence on the group algebra K[V ]. Furthermore, if I is any
nonzero ideal of K[H ], then it is easy to see that I ∩K[V ] is a nonzero G-stable ideal of
K[V ]. Thus, for the most part, this second stage is concerned with classifying theG-stable
ideals of K[V ]. Even in concrete cases, this turns out to be a surprisingly difficult task.
Fortunately, there has been some recent progress on this problem, and a survey of this
material can be found in [7]. For the most part, the methods used in these classifications
are quite different from the usual group ring techniques.

In this paper, we consider a rather concrete situation. We take G to be an infinite
locally finite simple group acting in a finitary manner on V . When G is a finitary version
of a classical linear group, then we show that the augmentation ideal is the only proper
G-stable ideal of K[V ]. On the other hand, if G is a finitary alternating group acting on a
suitable permutation module V , then there is a rich family of G-stable ideals ofK[V ], and
we show that these behave like certain graded ideals in a polynomial ring. This problem
was suggested by F. Leinen at the recent Antalya Algebra Days conference in memory
of Brian Hartley. The author is pleased to thank J. Hall, F. Leinen, U. Meierfrankenfeld
and A. E. Zalesskĭı for helpful conversations.

We close this section with a fairly standard observation on group actions. Let G act
as automorphisms on a ring S. Then S is said to be G-prime if, for all G-stable ideals
A and B of S, AB = 0 implies that A = 0 or B = 0. The following result is based on
I. Connell’s well-known criterion for a group algebra to be prime.

Lemma 1.1 Let G act on the abelian group V and hence on the group algebra K[V ]. If
V contains no nonidentity finite G-stable subgroup, then K[V ] is G-prime. Indeed, if G0

is any subgroup of G of finite index, then K[V ] is G0-prime.

Proof. We can assume that G acts faithfully on V , and we form the semidirect
product G = V �G. If N is a finite normal subgroup of G, then N ∩V is a finite G-stable
subgroup of V and hence, by assumption, N ∩ V = 1. Thus N acts trivially on V and,
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since G/V ∼= G acts faithfully, we conclude that N ⊆ V and hence N = 1. It now follows
from [5, Theorem 4.2.10] that K[G] is prime. Suppose A and B are G-stable ideals of
K[V ] with AB = 0. Then A = A·K[G] = K[G]·A and B = B·K[G] = K[G]·B are ideals
of K[G] with AB = 0. Thus, by primeness, either A or B is zero, and hence either A or
B is zero. In other words, S = K[V ] is G-prime.

Finally, if G0 is a subgroup of G of finite index and if M is a finite G0-stable subgroup
of V , then M has only finitely many G-conjugates {Mx | x ∈ G}, and these finitely
many finite subgroups of V generate MG, a finite G-stable subgroup of V . It follows by
assumption that MG = 1 and hence that M = 1. Thus, by the result of the previous
paragraph, K[V ] is also G0-prime. ✷

2. Permutation Groups

Let Ω be an infinite set and let G ⊆ Sym(Ω) be a group of permutations on Ω.
Assume that G is n-transitive for all integers n. Thus, for example, we could take G to
be Sym(Ω), the full symmetric group, or FSym(Ω), the group of finitary permutations on
Ω, or FAlt(Ω), the group of even finitary permutations. Let F be a field of characteristic
p > 0, and let V = FΩ denote the corresponding permutation module forG. Then G acts
on V , so it acts on any group algebra K[V ], and the goal of this section is to understand
the G-stable ideals of K[V ] when charK 	= p.

We start with a special case having two additional assumptions, namely that K

contains a primitive pth root of unity and that F = GF(p). We then drop each of these
assumptions in turn. While the general case could be handled at once, this approach will
hopefully make the arguments somewhat more transparent. Note that the coefficient ring
of the polynomial ring given below is irrelevant so, for simplicity, we just take it to be
the ring of integers Z. Specifically, we are concerned with ideals of Z[ζ1, ζ2, . . . , ζp] that
are generated by monomials. We say that such an ideal I is cancellative provided that,
for any monomial α, we have α ∈ I if and only if αζi ∈ I for all i = 1, 2, . . . , p.

Proposition 2.1 Let Ω be an infinite set and let G be a subgroup of Sym(Ω) that acts
n-transitively for all integers n. Let V = GF(p)Ω be the permutation module for G over
GF(p), and letK be a field of characteristic 	= p that contains a primitive pth root of unity.
Then there is a one-to-one order-preserving correspondence between the G-stable ideals
of the group algebra K[V ] and the ideals of the polynomial ring Z[ζ1, ζ2, . . . , ζp] that are
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generated by monomials and are cancellative. In particular, the lattice of G-stable ideals
of K[V ] is Noetherian, and any G-stable ideal is generated by the G-conjugates of finitely
many of its elements.

Proof. We write V multiplicatively as the weak direct product V =
∏

x∈Ω Vx, where
Vx = 〈x〉 corresponds to GF(p)x and is cyclic of order p. Since K contains ε, a
primitive pth root of unity, it follows that K[Vx] is a direct sum of p copies of K.
Indeed, K[Vx] = ⊕∑p

i=1 Ke(i, x), where e(i, x) is the primitive idempotent of K[Vx]
corresponding to the linear character given by x → εi. We say that e(i, x) is of type i and
we assign the symbol [i] to this type. It is clear that the action of G on such idempotents
preserves type, namely e(i, x)g = e(i, xg) for all g ∈ G.

Next, let x1, x2, . . . , xn be n distinct elements of Ω and consider the finite direct
product W = Vx1 × Vx2 × · · ·× Vxn . Then K[W ] is a direct sum of |W | = pn copies of K
with corresponding primitive idempotents given by the products

e = e(j1, x1)e(j2, x2) · · ·e(jn, xn) =
n∏

k=1

e(jk, xk).

For convenience, we say that such idempotents are locally primitive in K[V ]. Now, for
each 1 ≤ i ≤ p, let ni denote the number of subscripts k with jk = i, and then we let
the symbol

∏p
i=1[i]

ni denote the type of this locally primitive idempotent e. Notice that
the type of e is the formal product of the types of the individual idempotents e(jk, xk).
Since G is n-transitive on Ω for all n, it is clear that two locally primitive idempotents
are G-conjugate if and only if they have the same type.

Now let I be a G-stable ideal of K[V ]. If α ∈ I, then α ∈ I ∩ K[W ] for some
W = Vx1 × Vx2 × · · · × Vxn , as above. Hence α =

∑
e aee, where ae ∈ K and where the

sum is over the pn primitive idempotents e of K[W ]. Since these primitive idempotents
are orthogonal, it follows that aee = eα ∈ I, and hence I is the K-linear span of all the
locally primitive idempotents that it contains. Since I is G-stable, we know that e ∈ I

implies that eg ∈ I for all g ∈ G. But these G-classes of locally primitive idempotents
correspond precisely to the type of the idempotent. Thus, I is uniquely determined by the
types of the locally primitive idempotents it contains. We encapsulate this information
into the polynomial ring Z[ζ1, ζ2, . . . , ζp] as follows.

If I is as above, define T (I) ⊆ Z[ζ1, ζ2, . . . , ζp] to be the Z-linear span of all monomials
of the form ζn1

1 ζn2
2 · · · ζnp

p when
∏p

i=1[i]
ni is the type of a locally primitive idempotent

contained in I. Then certainly I determines T (I) and, by the observations of the
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preceding paragraph, this map is one-to-one. It still remains to understand the possible
images of T . We know at least that each T (I) is a Z-submodule of the polynomial ring
and it is generated by monomials.

To continue, suppose e =
∏n

k=1 e(jk, xk) is a locally primitive idempotent contained
in I. Then I � K[V ] implies that eK[V ] ⊆ I, and certainly eK[V ] is the ideal of K[V ]
consisting of all elements β with β = eβ. In particular, eK[V ] is the K-linear span of
all locally primitive idempotents e′ with e′ = ee′, and it follows easily that any such e′

must be of the form e′ = e
∏m

k=n+1 e(jk, xk), where xn+1, xn+2, . . . .xm are finitely many

elements of Ω distinct from x1, x2, . . . , xn. With this, we see that if
∏p

i=1[i]
n′

i is the type
of e′ and if

∏p
i=1[i]

ni is the type of e, then we must have n′
i ≥ ni for all i. In other words,

in the polynomial ring, the monomial
∏p

i=1 ζ
n′

i

i is a multiple of
∏p

i=1 ζ
ni

i . Furthermore, it
is clear that any such multiple can occur by taking a suitable locally primitive idempotent
e′ ∈ eK[V ] ⊆ I, and it follows that T (I) is indeed an ideal of Z[ζ1, ζ2, . . . , ζp] generated
by monomials.

Now suppose that α is a monomial in the polynomial ring with αζi ∈ T (I) for all i,
and let f be a locally primitive idempotent of K[V ] having type corresponding to α. If
Vy is disjoint from the support of f , then f ·e(i, y) is a locally primitive idempotent of
K[V ] of type αζi ∈ T (I), and hence f ·e(i, y) ∈ I. But

∑p
i=1 e(i, y) = 1, so f ∈ I and

hence α is contained in T (I). In other words, T (I) is cancellative.

Conversely, let T be an ideal of Z[ζ1, ζ2, . . . , ζp] that is generated by monomials and
is cancellative, and define I ⊆ K[V ] to be the K-linear span of all locally primitive
idempotents of type

∏p
i=1[i]

ni with
∏p

i=1 ζ
ni

i ∈ T . Then the above argument shows that
I is a G-stable ideal of K[V ], and certainly T (I) ⊇ T . It remains to show that the
latter inclusion is an equality. To this end, let e =

∏n
k=1 e(jk, xk) be a locally primitive

idempotent contained in I. Then, by the definition of I, there exists m ≥ n such that e is a
K-linear sum of idempotents f having types corresponding to elements of T and with the
support of each f being a partial product ofW = Vx1×Vx2×· · ·×Vxm . Suppose some f has
its support missing the factor Vxa . Then we can replace f by f = f ·1 = ∑p

i=1 f ·e(i, xa),
and note that the types of the idempotents f ·e(i, xa) are each multiples of the type of f
and hence correspond to elements of T . Continuing in this manner, we can now assume
that e is a K-linear combination of a set L of primitive idempotents of K[W ], with each
of the latter having type corresponding to an element of T .

Of course, L =
∑

f∈L Kf is an ideal of K[W ], and we know that e ∈ L. In particular,
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for any integers jn+1, jn+2, . . . , jm, from 1 to p, we have

e′ = e·e(jn+1, xn+1)e(jn+2 , xn+2) · · ·e(jm, xm) ∈ L

and, since the primitive idempotents of K[W ] are linearly independent, it follows that
e′ ∈ L. In other words, if γ is the monomial in Z[ζ1, ζ2, . . . , ζp] corresponding to the type
of e then, by considering the type of e′, we see that γ·ζjn+1ζjn+2 · · ·ζjm ∈ T for all choices
of the subscripts jn+1, jn+2, . . . , jm. But T is cancellative, so this clearly implies that
γ ∈ T , and hence T (I) = T , as required. This proves the one-to-one correspondence, and
the Noetherian results are now immediate. ✷

Note that if I = K[V ], then T (I) = Z[ζ1, ζ2, . . . , ζp], so the backmap sends the full
polynomial ring to I. Moreover, if J = (ζ1, ζ2, . . . , ζp) is the augmentation ideal of the
polynomial ring, then it is easy to see that the backmap also sends J to I. Indeed, this
is true of any power of J . Thus the above one-to-one correspondence certainly requires
that we restrict our attention to cancellative ideals in the polynomial ring. Of course,
the cancellative property of T � Z[ζ1, ζ2, . . . , ζp] can be reformulated by saying that, for
all monomials α, the inclusion αJ ⊆ T implies that α ∈ T .

Next, we show how to drop the assumption that K contains a primitive pth root of
unity. For this, we need the following presumably standard result on algebras and field
extensions.

Lemma 2.2 Let A be an algebra over the field K, let E/K be a finite Galois extension
with Galois group H, and let B = E ⊗K A be the extended E-algebra. Then extension
and intersection yield a one-to-one order-preserving correspondence between the ideals of
A and the H-stable ideals of B.

Proof. Obviously H acts as automorphisms on B and, for each σ ∈ H, the map
σ : B → B is a left and right A-module homomorphism. Furthermore, if tr : E → K

denotes the Galois trace determined by H, then this trace map extends to an A-module
homomorphism tr : B → A. In particular, if J is an H-stable ideal of B, then tr(J) is an
ideal of A contained in J . Hence tr(J) ⊆ J ∩A

Conversely, let I be an ideal of A. Then the extension Ie = E ⊗K I = EI is an
H-stable ideal of B containing I. Since tr : E → K is onto, we have tr(Ie) = tr(EI) =
tr(E)I = KI = I. Thus the extension map is one-to-one with trace as its inverse.
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Furthermore, suppose that J is any H-stable ideal of B. Then J ⊇ E(J ∩A) = (J ∩A)e,
so tr(J) ⊇ tr((J ∩A)e) = J ∩A, and hence tr(J) = J ∩A.

Finally, let {w1, w2, . . . , wn} be a basis for E over K. Then we know that the dis-
criminant matrix [tr(wiwj)] is nonsingular, and therefore we can solve the system of
n linear equations

∑n
i=1 yi·tr(wiwj) = wj , with j = 1, 2, . . . , n, for the n unknowns

yi ∈ E. Since {w1, w2, . . . , wn} is also a basis for B over A, it then follows that∑n
i=1 yi·tr(wib) = b for all b ∈ B. With this, we see that if J is an H-stable ideal of

B, then J ⊆ ∑n
i=1 yi·tr(wiJ) =

∑n
i=1 yi·tr(J) ⊆ tr(J)e and hence J = tr(J)e = (J ∩A)e,

as required. ✷

Now let K be an arbitrary field of characteristic different from p and let ε be a
primitive pth root of 1 in the algebraic closure of K. Since, charK 	= p, we know that
K[ε]/K is a finite Galois extension with Galois group, say G. Then G acts faithfully on
the cyclic group 〈ε〉 = {ε1, ε2, . . . , εp}, and hence we can think of G as a certain group of
permutations on the set of exponents {1, 2, . . . , p}. In this way, G also acts naturally on
the polynomial ring R = Z[ζ1, ζ2, . . . , ζp] by permuting the variables as it permutes the
subscripts. With this notation, we have

Lemma 2.3 Let Ω be an infinite set and let G be a subgroup of Sym(Ω) that acts n-
transitively for all integers n. Let V = GF(p)Ω be the permutation module for G over
GF(p), and let K be a field of characteristic 	= p. Now suppose G is the Galois group of
K[ε]/K, where ε is a primitive pth root of unity, and let G act naturally on the polynomial
ring R = Z[ζ1, ζ2, . . . , ζp]. Then there is a one-to-one order-preserving correspondence
between the G-stable ideals of the group algebra K[V ] and the G-stable ideals of the
polynomial ring R that are generated by monomials and are cancellative. In particular,
the lattice of G-stable ideals of K[V ] is Noetherian, and any G-stable ideal is generated
by the G-conjugates of finitely many of its elements.

Proof. Let A = K[V ] and let B = K[ε] ⊗K A = K[ε][V ]. Then, by Lemma 2.2,
extension and intersection yield a one-to-one order-preserving correspondence between the
ideals of A and the G-stable ideals of B. Furthermore, it is clear that this correspondence
preserves G-stable ideals. Thus, it suffices to understand the ideals in B = K[ε][V ] that
are both G-stable and G-stable.

To this end, we now continue with the proof of Proposition 2.1, using its notation,
but replacing K by E = K[ε]. Suppose first that e(i, x) is the primitive idempotent of
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E[Vx] corresponding to the linear character x → εi. If σ ∈ G satisfies σ(εi) = εj , then it
is clear that σ(e(i, x)) = e(j, x). Thus we see that the action of G on E[V ] corresponds
to the natural permutation action of G on the idempotent types. Furthermore, since any
G-stable ideal I of E[V ] is determined by the types of the locally primitive idempotents
it contains, we see that I is G-stable if and only if the collection of these types is stable
under the permutation action of G. By definition of T (I) and of the action of G on R, it
therefore follows that I is G-stable if and only if T (I) is G-stable in R. ✷

Finally, we indicate the modifications needed to handle arbitrary fields F of charac-
teristic p > 0. Here, we are concerned with polynomial rings of the form

R = Z[ζi,d | i ∈ {1, 2, . . . , p}, d ∈ ∆],

for some set ∆, and again with ideals T generated by monomials. We say that such an
ideal T is ∆-cancellative if, for any monomial α ∈ R and any d ∈ ∆, we have α ∈ T if
and only if αζi,d ∈ T for all i = 1, 2, . . . , p.

The following is the main result of this section.

Theorem 2.4 Let Ω be an infinite set and let G be a subgroup of Sym(Ω) that acts n-
transitively for all integers n. Let F be a field of characteristic p > 0 having a basis ∆
over GF(p), let V = FΩ be the permutation module for G over F , and let K be a field of
characteristic 	= p. Suppose G is the Galois group of K[ε]/K, where ε is a primitive pth
root of unity, and let G act naturally on the polynomial ring

R = Z[ζi,d | i ∈ {1, 2, . . . , p}, d ∈ ∆]

via its permutation action on the first subscript of the variables. Then there is a one-
to-one order-preserving correspondence between the G-stable ideals of the group algebra
K[V ] and the G-stable ideals of the polynomial ring R that are generated by monomials
and are ∆-cancellative. In particular, it follows that the lattice of G-stable ideals of K[V ]
is Noetherian if and only if dimGF(p) F = |∆| < ∞.

Proof. Let us first assume that K contains a primitive pth root of unity. Since we are
only concerned with the additive group structure of V , the multiplicative nature of F is
essentially irrelevant. Let ∆ denote, as above, a basis for F over GF(p), and let G act on
the set ∆ × Ω by acting trivially on the first component. Since F = GF(p)∆, it is clear
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that V is G-isomorphic to the permutation module GF(p)(∆× Ω). Hence, without loss
of generality, we can assume that V = GF(p)(∆ ×Ω).

In multiplicative notation, V is the weak direct product V =
∏

(d,x)∈∆×Ω V(d,x),

where V(d,x) is the cyclic group of order p generated by the element (d, x). Obviously,
the nature of K implies that K[V(d,x)] = ⊕∑p

i=1 Ke(i, d, x), where e(i, d, x) is the
primitive idempotent corresponding to the linear character (d, x) → εi. As in the proof
of Proposition 2.1, we let [i, d] denote the type of this idempotent. More generally, if
e =

∏n
k=1 e(ik, dk, xk) is a locally primitive idempotent with the various pairs (dk, xk)

being distinct elements of ∆ × Ω, then the type of e is given by the formal product∏n
k=1[ik, dk]. Since G is n-transitive on Ω for all n, we know that two locally primitive

idempotents are G-conjugate if and only if they have the same type. With this, the
argument of Proposition 2.1 yields a one-to-one order-preserving correspondence between
the G-stable ideals I of K[V ] and the ideals T (I) of R that are generated by monomials
and are ∆-cancellative.

Finally, if K is an arbitrary field of characteristic 	= p, we extend the field to K[ε],
where ε is a primitive pth root of unity. The argument of Lemma 2.3 then clearly yields
the required correspondence. Note that if |∆| = dimGF(p) F < ∞, then R has only
finitely many variables and hence is Noetherian. The correspondence then implies that
the set of G-stable ideals of K[V ] is also Noetherian. On the other hand, if |∆| = ∞,
then R has infinitely many variables fixed by G, namely all variables of the form ζp,d

with d ∈ ∆. In this case, since the ideal (ζp,d | d ∈ ∆) is G-stable, ∆-cancellative and
infinitely generated, the above correspondence now shows that set of G-stable ideals of
K[V ] is no longer Noetherian, and the result follows. ✷

Note that if Z is the free abelian semigroup on a set of variables, then the ideals of
the polynomial ring Z[Z] that are generated by monomials correspond in a one-to-one
manner to the semigroup ideals of the semigroup Z. Thus, the preceding theorem can
easily be reformulated, replacing ideals in R with suitably cancellative semigroup ideals
in Z = 〈ζi,d | i ∈ {1, 2, . . . , p}, d ∈ ∆〉.

3. Linear Groups

We again consider the problem of invariant ideals, but now we assume that G is a
locally finite, finitary linear group acting naturally on a vector space V . As we will
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see, the answer is far less interesting than for permutation groups and modules. Indeed,
there is only one nontrivial G-stable ideal of K[V ], namely the augmentation ideal. We
are concerned below with the finitary versions of the special linear groups, the symplectic
groups, and the orthogonal and special unitary groups. These will be defined in a manner
that will allow us to quickly and efficiently prove our results.

We start with the finite dimensional situation. These groups are discussed, for
example, in [1, Chapter 1], or in [2] or in [4, Chapter 6]. Let F be a locally finite
field of characteristic p > 0 and let V 	= 0 be a finite dimensional F -vector space. Then,
as usual, GL(V ) denotes the group of invertible linear transformations on V , and SL(V )
is the subgroup consisting of all such linear transformations of determinant 1. Now let
us assume that V is endowed with a nonsingular bilinear form ( , ) : V × V → F having
certain additional properties. An invertible linear transformation g is then said to be an
isometry with respect to ( , ) if (vg, wg) = (v, w) for all v, w ∈ V . Certainly, the set of
all such g is a subgroup of GL(V ).

We say that the form ( , ) is symplectic if (v, v) = 0 for all v ∈ V . In other words,
all vectors in V are isotropic, and it follows easily that (v, w) = −(w, v) for all v, w ∈ V .
The group of all isometries for such a form is the symplectic group denoted by Sp(V ).
It is known that det Sp(V ) = 1 and hence Sp(V ) ⊆ SL(V ). Furthermore, V admits a
nonsingular symplectic form if and only if dimV is even, and then all such forms are
equivalent. Hence Sp(V ) exists, and is essentially unique, for all even dimensional vector
spaces.

Next, we consider nonsingular symmetric forms defined on V . In general, such forms
are not necessarily equivalent, but for locally finite fields there are at most two equivalence
classes. The group of isometries of either form is an orthogonal group and, in a somewhat
imprecise manner, we will denote either group by O(V ). Furthermore, when charF = 2,
then for the type of problem we are considering, we can usually assume that the orthogonal
groups that are the building blocks for finitary groups are symplectic. Thus, in the case
of orthogonal groups, we will restrict our attention to fields F having odd characteristic.
It follows that, for the purposes of this paper, ( , ) : V × V → F is an orthogonal form if
it is nonsingular, symmetric, and if V has an orthogonal basis. Indeed, if {v1, v2, . . . , vn}
is such a basis, then the nature of the form depends upon whether or not

∏
i(vi, vi) is a

square in F . Now, it turns out that detO(V ) = ±1 and then the commutator subgroup
of O(V ), denoted by Ω(V ), is a subgroup of SL(V ). Since F is a locally finite field, the
set of norms (v, v), with v ∈ V , is the entire field F , provided dimV ≥ 2.
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Finally, suppose the locally finite field F admits an automorphism σ of order 2. If V
is a finite dimensional F -vector space and if ( , ) : V ×V → F is a nonsingular Hermitian
form with respect to σ, then V has an orthonormal basis and hence ( , ) is unique up
to equivalence. The set of isometries of V is, of course, the unitary group U(V ), and
SU(V ) = U(V ) ∩ SL(V ) is the special unitary group. Since F is a locally finite field, the
set of norms (v, v), with v ∈ V , is easily seen to be the fixed field F σ.

The following result is standard. For convenience, we include its simple proof.

Lemma 3.1 Let F be a locally finite field and let V be a finitely dimensional F -vector
space with dimV ≥ 3. Assume that V is endowed with a suitable nonsingular bilinear
form, and let G be the group of isometries on V .

i. V is the linear span of its isotropic vectors.

ii. Two nonzero vectors of V are G-conjugate if and only if they have the same norm.

iii. If dimV ≥ 4, then V contains no proper G-stable subgroup.

Proof. (i) This is clear if the form is symplectic. Now suppose that ( , ) : V × V → F

is orthogonal, let {u, v, w} be an orthogonal set, and choose field elements a, b ∈ F with
(u, u)+ a2(v, v) + b2(w,w) = 0. Then u+ av+ bw and u− av− bw are isotropic and sum
to 2u. The result is now clear since charF 	= 2, since V has an orthogonal basis and since
any scalar multiple of an isotropic vector is also isotropic. Similarly, if ( , ) is Hermitian,
let {u, v} be orthonormal and choose distinct elements a, b ∈ F having Galois norm −1.
Then au+ v and bu+ v are both isotropic and have difference equal to (a− b)u.

(ii) Suppose x and y are nonzero elements of V with the same norm. If (x, x) 	= 0,
set X = Fx, Y = Fy, and note that the map X → Y given by x → y is an isometry.
Furthermore, since F is a finite field, it is easy to see that ( , ) restricted to X⊥ and Y ⊥

are equivalent, and hence there is an isometry X⊥ → Y ⊥. Combining these two maps
yields an isometry g ∈ G on V = X ⊕X⊥ = Y ⊕ Y ⊥ with xg = y. On the other hand,
if x is isotropic, then by (i) there exists an isotropic vector x′ with (x, x′) 	= 0 and, by
scaling x′, we can assume that (x, x′) = 1. Similarly, there exists an isotropic vector y′

with (y, y′) = 1. If we set X = Fx⊕ Fx′ and Y = Fy ⊕ Fy′, then there is an isometry
X → Y given by x → y and x′ → y′. As above, there is also an isometry from X⊥ to Y ⊥,
and these two maps yields an isometry g ∈ G on V = X ⊕X⊥ = Y ⊕ Y ⊥ with xg = y.

(iii) Finally, let W be a nonzero G-stable subgroup of V . If W contains a nonzero
isotropic vector then, by (ii), W must contain all such vectors since it is G-stable, and
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hence W = V since the isotropic vectors span. On the other hand, if v ∈ W is not
isotropic, then V = Fv ⊕ (Fv)⊥ and dim(Fv)⊥ ≥ 3. Thus (Fv)⊥ contains a nonzero
isotropic vector u, and we note that v and v+u have the same norm. Thus, by (ii) again,
v + u = vg ∈ W , for some g ∈ G, and hence u = (v + u) − v ∈ W . We conclude that W
contains a nonzero isotropic vector, and W = V , as required. ✷

If F is a finite field of characteristic p > 0 and if V is a finite dimensional F -vector
space, then V is a finite elementary abelian p-group. Thus the additive linear characters
on V are additive homomorphisms λ : V → GF(p). Furthermore, if G acts on V , then G

acts on V̂ , the group of all such characters, by λg(v) = λ(vg−1) for all v ∈ V .

Lemma 3.2 Let F be a finite field of characteristic p > 0 and let tr : F → GF(p) denote
the Galois trace. Suppose V is a nonzero finite dimensional F -vector space endowed with
an appropriate nonsingular bilinear form ( , ) : V × V → F and let G denote the group
of isometries on V . Then every linear character λ : V → GF(p) is uniquely of the form
λw : x → tr(x, w) for some w ∈ V . Furthermore, for all g ∈ G we have λg

w = λwg.

Proof. The map θ : w → λw is clearly a group homomorphism from V to V̂ . Since
|V | = |V̂ | < ∞, we need only show that θ is one-to-one. But if θ(w) = 0, then tr(V, w) = 0
and hence w = 0 since (V, w) is an F -subspace contained in the kernel of the trace map.
Finally, if g is an isometry, then (vg, wg) = (v, w) for all v, w ∈ V . Replacing v by vg−1

then yields λg
w(v) = tr(vg−1 , w) = tr(v, wg) = λwg(v), as required. ✷

Next, we consider group algebras K[V ]. The following lemma contains the key idea.
The remaining work is then fairly routine.

Lemma 3.3 Let F be a finite field of characteristic p > 0, let V be a finite dimensional
F -vector space, and let ( , ) : V × V → F be a suitable nonsingular bilinear form.
Furthermore, let G be the group of isometries on V , let K be a field of characteristic
different from p, and let I be a proper G-stable ideal of K[V ]. If V has a nonsingular
subspace U such that I ∩K[U ] 	= 0 and dimU⊥ ≥ 2, then I = ωK[V ] is the augmentation
ideal of K[V ].

Proof. Let us first assume that K contains a primitive pth root of unity ε. Of course,
when studying the group algebraK[V ], we must necessarily think of V as a multiplicative
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group. Since V is an elementary abelian p-group, the linear characters of V are then
homomorphisms ϕ : V → 〈ε〉, and these are clearly all of the form ϕλ : v → ελ(v) where λ

is an additive homomorphism λ : V → GF(p). The corresponding primitive idempotents
of K[V ] are given by eλ = |V |−1

∑
v∈V ελ(v)v−1, and it is easy to see that if g acts on V

then eg
λ = eλg .

Now suppose V = U ⊕ U⊥ and use fµ to denote primitive idempotents in K[U ] and
f ′

η to denote primitive idempotents in K[U⊥]. Here, µ : U → GF(p) and η : U⊥ → GF(p).

Then it is easy to see that fµf
′
η = eµ#η where µ#η : V = U ⊕ U⊥ → GF(p) is the linear

functional that extends µ on U and η on U⊥.

By assumption, I∩K[U ] 	= 0, and hence I∩K[U ] contains some primitive idempotent
fµ0 for some fixed functional µ0 : U → GF(p). In particular, since I is an ideal of K[V ],
I must contains all the idempotents eµ0#η = fµ0f

′
η as η runs through all the linear

functionals η : U⊥ → GF(p). Now, by the previous lemma, µ0(x) = tr(x, u0) for some
u0 ∈ U and η(x) = tr(x, w) for w ∈ U⊥. Furthermore, since U and U⊥ are orthogonal, it
follows easily that µ0#η(x) = tr(x, u0 + w).

We have therefore shown that I contains all the primitive idempotents eλ of K[V ]
where λ = λv and v = u0 + w for all w ∈ U⊥. Indeed, since I is G-stable, I contains
all the primitive idempotents eg

λ = eλg and, by Lemma 3.2, λg
u0+w = λ(u0+w)g. Now

note that (u0 +w, u0 +w) = (u0, u0) + (w,w) and, since dimU⊥ ≥ 2, (w,w) takes on all
allowable values. Thus (u0+w, u0+w) also takes on all possible values, and it follows from
Lemma 3.1(ii) that I contains all eλv with v 	= 0. In other words, I contains all primitive
idempotents of K[V ] except possibly the principal idempotent, and hence I ⊇ ωK[V ] as
required.

Finally, let K be an arbitrary field of characteristic different from p and let K = K[ε],
where ε is a primitive pth root of unity. If I is a proper G-stable ideal of K[V ], then
I = K·I is a proper G-stable ideal of K [V ] and, by the above, I = ωK[V ]. But K[V ] is
free over K[V ], so I = I ∩K[V ] = ωK[V ] ∩K[V ] = ωK[V ], and the result follows. ✷

The simple, locally finite, finitary linear groups are characterized in [3] and described
via a pairing of vector spaces. We use a more concrete description to simplify the proof
of Theorem 3.4. Let V be an F -vector space and let {Wi | i ∈ I} be an infinite family of
finite dimensional subspaces such that V = ⊕∑

i∈I Wi is the direct sum of the various
Wi. We say that {Wi | i ∈ I} is a partition of V and, for convenience, we assume that
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dimWi ≥ 2 for each i. For each finite subset J ⊆ I, we write WJ = ⊕∑
j∈J Wj and

W ′
J = ⊕∑

j /∈J Wj , so that WJ is finite dimensional and V = WJ ⊕W ′
J . A nonsingular

linear transformation g on V is said to be finitary if, for some finite J , g stabilizes WJ
and acts like the identity on W ′

J . For fixed J , the set of all such g is clearly isomorphic
to GL(WJ ), and we let FGL(V ) denote the group of all such finitary transformations.
Furthermore, we let FSL(V ) denote the subgroup of all such g that have determinant 1
in their action on WJ for all sufficiently large J .

Now suppose V admits a nonsingular bilinear form that is either symplectic, orthog-
onal or Hermitian, and assume that it is compatible with the partition. By this we mean
that each Wi is a nonsingular subspace and that (Wi,Wj) = 0 for all i 	= j. We then
let FSp(V ), FO(V ) and FU(V ) denote the subgroup of FGL(V ) consisting of all those
finitary linear transformations that act as isometries on WJ for all sufficiently large finite
J ⊆ I. In addition, we let FΩ(V ) and FSU(V ) denote the obvious normal subgroups
of FO(V ) and FU(V ), respectively. If F is a locally finite field, then all of the above
are infinite locally finite groups with FSL(V ), FSp(V ), FΩ(V ) and FSU(V ) being infinte
simple (see [3]). The main result of this section is

Theorem 3.4 Let F be a locally finite field of characteristic p > 0, let V be a suitably
partitioned infinite dimensional F -vector space, and let G = FSL(V ), FSp(V ), FΩ(V ) or
FSU(V ) act on V . If K is a field of characteristic different from p, then ωK[V ] is the
unique proper G-stable ideal of K[V ].

Proof. We will consider the special linear group at the end of this argument. For
now, let us assume that V is endowed with a suitable bilinear form ( , ) : V × V → F

compatible with the partition {Wi | i ∈ I}. We proceed in a series of steps.

First, let F be a finite field and let G = FSp(V ), FO(V ) or FU(V ) according to
the nature of the form. In other words, G is the full group of finitary isometries. If
I is a nonzero G-stable ideal of K[V ], then there exists a finite subset J0 ⊆ I with
I ∩ K[WJ0 ] 	= 0. Set U = WJ0 and let J be any finite subset of I strictly larger than
J0. Then IJ = I ∩ K[WJ ] is an ideal of K[WJ ] that is stable under the full group
of isometries of WJ . Furthermore, IJ ∩ K[U ] = I ∩ K[U ] 	= 0 and the orthogonal
complement of U in WJ has dimension at least 2. By the preceding lemma, we conclude
that I ⊇ IJ ⊇ ωK[WJ ] and, since J > J0 is arbitrary, it follows that I ⊇ ωK[V ].

We continue with F being a finite field, but now we letG0 be the normal subgroup ofG
given by G0 = FSp(V ), FΩ(V ) or FSU(V ), respectively. Note that, if J is a finite subset
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of I, then |O(WJ ) : Ω(WJ )| ≤ 4 and |U(WJ ) : SU(WJ )| ≤ |F |1/2. See, for example,
[2, Theorems 9.11, 9.12, 11.28 and 11.29]. Since |F | is fixed, it now follows easily that
|G : G0| < ∞ with the same bounds as above. Furthermore, in view of Lemma 3.1(iii), G
stabilizes no nontrivial finite subgroup of V , and then Lemma 1.1 implies that S = K[V ]
is G0-prime. Now let I be a G0-stable ideal of K[V ] and let {1 = g0, g1, . . . , gn} be a
transversal for G0 in G. Then the product P = Ig1Ig2 · · ·Ign is a G-stable ideal of the
commutative ring S and each Igi is G0-stable since G0 � G. In particular, if P 	= 0 then,
by the above, I ⊇ P ⊇ ωK[V ]. On the other hand, if P = 0, then the G0-primeness of S
implies that Igi = 0 for some i, and hence I = 0. This completes the proof in the case of
finite fields.

Next, we let F be an infinite locally finite field. The result in this case actually follows
fairly easily from the main theorems of [9] or [6]. However, here we take a simple approach
using the fact that F is a union of its finite subfields. To start with, we fix a finite basis
Bi = {wi1, wi2, . . .} for each Wi with i ∈ I according to the nature of the form. In the
symplectic case, we choose Bi so that (wij, wik) = 0 or ±1, and we let F0 = GF(p). In
the orthogonal case, we fix a nonsquare d ∈ F if there is one, let Bi be orthogonal with
norms 1 or d, and we take F0 = GF(p)[d]. Finally, in the unitary case, we let Bi be
orthonormal and let F0 be a finite subfield of F not contained in the fixed field F σ. Set
B =

⋃
i∈I Bi so that B is a basis for V . In particular, Wi = FBi and V = FB. Now

let G0 = FSp(V ), FΩ(V ) or FSU(V ), and let I be a nonzero G0-stable ideal of K[V ].

Then there exists a finite subfield F̃ of F with F̃ ⊇ F0 and I ∩ K[F̃B] 	= 0. If F ′ is

any finite subfield of F containing F̃ , then I ∩K[F ′B] is a nonzero ideal of K[F ′B] that
is stable under the natural subgroup of G0 corresponding to V ′ = F ′B. By the above,
I ⊇ I ∩K[V ′] ⊇ ωK[V ′] and, since V is the union of all such subspaces V ′, we conclude
that I ⊇ ωK[V ].

Finally, we briefly consider the group FSL(V ) with F an arbitrary locally finite field.
In this case, group terms so that each Wi has even dimension, define a nonsingular sym-
plectic form on each such subspace, and extend this to all of V . Then FSL(V ) ⊇ FSp(V ),
so any proper FSL(V )-stable ideal is FSp(V )-stable and consequently equal to the aug-
mentation ideal ωK[V ]. This completes the proof. ✷
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4. Finitely Equivalent Groups

Theorem 2.4 seems somewhat surprising. The various groups Sym(Ω), FSym(Ω) and
FAlt(Ω) have such different structures and yet give rise to the same set of G-stable ideals
in K[FΩ]. However, there is a good reason for this to occur. These groups are finitely
equivalent, namely they act in the same way on finite subsets of FΩ.

More generally, let V be a group, and let G and H both act on V . We say that
G is finitely smaller than H , and write G �V H , if for all finitely many elements
v1, v2, . . . , vn ∈ V and g ∈ G, there exists h ∈ H such that vg

i = vh
i for all i = 1, 2, . . . , n.

Certainly G ⊆ H ⊆ Aut(V ) implies that G �V H . Furthermore, for fixed V , it is clear
that �V is a reflexive and transitive relation. If G �V H and H �V G, then we say that
G and H are finitely equivalent and write G ≈V H .

Lemma 4.1 Let G and H act on V and hence on the group algebra K[V ].

i. If G �V H, then any H-stable ideal of K[V ] is G-stable.

ii. If G ≈V H, then the lattices of G-stable and of H-stable ideals of K[V ] are identical.

Proof. For part (i), let I be an H-stable ideal of K[V ] and let α =
∑n

i=1 kivi ∈ I. If
g ∈ G, then since G �V H , there exists h ∈ H with vg

i = vh
i for all i = 1, 2, . . . , n. Thus

αg =
∑n

i=1 kiv
g
i =

∑n
i=1 kiv

h
i = αh ∈ I and, since this is true for all α ∈ I and g ∈ G, we

conclude that I is G-stable. Part (ii) is now immediate. ✷

The relevance to Theorem 2.4 is of course given by the following obvious result.

Lemma 4.2 Let Ω be an infinite set and let G and H be subgroups of Sym(Ω) that act
n-transitively for all integers n. If V is the permutation module FΩ, then G ≈V H.

There is also an analogous result for finitary linear groups, namely

Lemma 4.3 Let V be an infinite dimensional F -vector space partitioned by the finite
dimensional subspaces {Wi | i ∈ I}. The GL(V ) ≈V FSL(V ).

Proof. Since FSL(V ) ⊆ GL(V ), we need only show that GL(V ) �V FSL(V ). To
this end, let g ∈ GL(V ) and let U be the F -linear span of finitely many elements of V .
Then U is a finite dimensional F -subspace of V and g : U → Ug is an F -isomorphism.
Now choose a finite subset J ⊆ I, so that U and Ug are both proper subspaces of
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W = ⊕∑
j∈J Wj , and let A and B be subspaces of W that complement U and Ug,

respectively. Since dimU = dimUg, we have dimA = dimB, and there is a vector space
isomorphism A → B. By combining this map with the map g : U → Ug, we obtain a
vector space isomorphism h : W = U ⊕ A → Ug ⊕ B = W that agrees with g on U .
Furthermore, since A and B are nonzero, we can easily modify the map A → B so that
det h = 1. If we let h act like the identity on W ′ = ⊕∑

j /∈J Wj , then h ∈ FSL(V ) and,
since g and h agree on U , we conclude that GL(V ) �V FSL(V ). ✷

Unfortunately, there is no analogous result for the finitary isometry groups. Indeed, if
( , ) : V × V → F is a suitable bilinear form, then we can certainly choose g ∈ GL(V ) to
send a pair of orthogonal vectors to a pair of non-orthogonal vectors, and then obviously
g cannot agree with an isometry on these vectors. We close this paper with an amusing
application of the above, namely an alternate proof of the FSL(V ) aspect of Theorem 3.4.

Lemma 4.4 Let F be a finite field of characteristic p > 0, let V be a countably infinite
dimensional F -vector space having a partition {Wi | i ∈ I}, and let G = FSL(V ). If K
is a field of characteristic 	= p, then ωK[V ] is the unique proper G-stable ideal of K[V ].

Proof. Since V is countably infinite dimensional, we can identify V with the additive
subgroup of F , the algebraic closure of F . Then F

•
, the multiplicative group of F , acts on

V = F
+
by multiplication, so F

• ⊆ GL(V ). Hence F
• �V FSL(V ) = G by transitivity

and the preceding lemma. In particular, it follows from Lemma 4.1(i) that any G-stable

ideal of K[V ] is F
•
-stable. But, we know from [8] that the only proper F

•
-stable ideal

of K[V ] is the augmentation ideal, so the result follows. ✷

It is, of course, a simple matter to drop the countability assumption in the dimension
of the vector space V above. Indeed, all of these problems reduce to the countable case.
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