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Cover for Modules and Injective Modules

N. Amiri

Abstract

Let R be a commutative ring with identity and M be an R-module with
Spec(M) # ¢. A cover of the R-submodule K of M is a subset C of Spec(M)
satisfying that for any x € K,z # 0, there is N € C such that ann(z) C (N : M).

If we denote by J = [] (N : M) and assume that M is finitely generated,
Nec

then JM = M implies that M = 0, M is called C-injective provided each R-
homomorphism ¢ : (N : M) — M with N € C can be lifted to an R-homomorphism
A: R — M. If Ris a commutative Noetherian ring and C’ = Spec(R), where
C' ={(N : M)|N € C}, then every C-injective R-module is injective.

Key Words: Commutative ring, D-prime module cover, prime submodule, injective

module, quasi-injective and injective hull.

Definition. Let M be an R-module. A proper submodule P of M is a prime submodule,
if rm € P, for r € R and m € M implies that either m € P or rM C P. The set of all
prime submodules of M is called the spectrum of M and denoted by Spec(M).

Definition. Let M be an R-module. A subset C' of Spec(M) is a cover of M, if for every
0 # x € M there exists P € C such that ann(z) C (P : M). If C is a finite set, then C

is called a finite cover.

Definition. An R-module M is called D-prime provided that M # 0 and ann(N) =

ann(M), for all non-zero submodule N of M.

AMS Mathematics Subject Classification: 13C13, 13C05
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1. Cover for Modules and Localization

Lemma 1. Let M be a non-zero R-module and C' a cover of M and J = (| (P: M)
PeC

if JM = M, then M = 0.

Proof. Suppose that M # 0 and JM = M, then there exists r € R such that r — 1 € J
and M = 0, so rm = 0 for all m € M and r € ann(m). Hence r € J, that is a

contradiction. O

Lemma 2. Let R be a Noetherian ring, M is a finitely generated R-module, C' a cover

of M,IC () (P:M). Then () I"M =0
pPeC n=1

Proof. Let (| I"M = K. Then by Krull’s Theorem IK = K and by Lemma 1, K = 0.
n=1

O

Lemma 3. Let C be a finite subset of Spec(M) such that (P : M) is maximal for every

PeC,and J= (1 (P:M). If | J"M =0, then C is a finite cover of M.
PeC n=1

Proof. If C is not a cover of M, then there is an element 0 # x € M such that ann(z) ¢
(P:M)forall P e C. Hence ann(z)+(P: M)=R. Let l =r+swiths e (P: M) and
r € ann(z). Then for every n € N,1" = (r+s)" ="+ & ,r' € ann(z),s’' € (P: M)™, so
x =71z +sx =5z Hence Rx = (P : M)"z, for every P € C, and so J"z = Rx. Hence

o0
(| J"M # 0, which is a contradiction. O
n=1

Theorem 4. Let R be a Noetherian ring and M a faithful finitely generated R-module.

Then M has a finite cover C and (| J"M =0, where J = () (P : M). In particular, if
n=1 PeC

M = R, then (| J"=0.

n=1
Proof. See [1. Theorem 6]. O

Theorem 5. Let M be a finitely generated R-module and C is a subset of Spec(M).
If for every prime ideal P of R and N € C, N, # Mp, then C is a cover for M over
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R if and only if Cp is a cover for Mp over Rp, for every prime ideal P of R, where
Cp= {NplN S C}

Proof. Let =t € Mp. Since m € M and C' is a cover for M, there exists N € C' such that
ann(m) C (N : M). Let r/s € ann(Z). Since ann(mp) C (Np : Mp),r/s € (Np : Mp)
and ann(%) C (Np : Mp) so Cp is a cover for Mp over Rp. Let m € M, then 2t € Mp
so there exists Np € Cp such that ann(5) C (Np : Mp). Now let r € ann(m). Then
T.% € Np, where ¥ € Mp, so 5% = 2 for some n € N; and so there exists s € R — P
such that rss'y = 'n € N. Hence ss'(ry) € N, and since ss’ ¢ (N : M), ry € N, so
rM C N, and ann(z) C (N : M). O

Theorem 6. Let R be a reduced ring and C' is a subset of Spec(R). Then C is
a cover for R as an R-module if and only if C[|z|] is a cover for R[|z|], where Cl|z|] =
{P[l]]|P € C}.

Proof. Let C be a cover for R and g(z) € ann(f(z)) for f(z),g9(x) € R[|z]].
If g(x) = Y biz® and f(x) = . a;a’, then for every i,b;f(xr) = 0, so for every
n=0 n=0

i,b; € ann(ag) C P, for some P € C and hence g(x) € P[|z]]. Conversely if C[|z|]
is a cover for R[|z|]] and let a € R,r € R such that r € ann(a) C P[|z|], for some
P[lz|] € C[|z|]. So ra =0 and hence r € P[|z|]N R, so r € P. Then ann(a) C P. Hence

C'is a cover for R. O

Proposition 7. Let R be a ring and C is a subset of Spec(R). Then C is a cover
for R as an R-module if and only if C[x] = {P[z]|P € C} is a cover for R[z] as an
R[z]-module.

Proof. Let C be a cover for R and f(x) € R[z], g(z) € ann(f(z)), then f(z)g(z) = 0.
k m
If g(x) = 3 bizt, and f(x) = 3. a;z?, then there is an element a such that ag(x) = 0 so
i=0 i=1
b; € ann(a) C P for some P € C. So g(x) € P[z] and hence C[z] is a cover for R[z].

Conversely, let C[x] be a cover for R[z], and let a € R,r € R, and r € ann(a). As
ann(a) C Plz] so r € Plz]N R = P. Thus C is a cover for R. O
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2. C-injective Modules

Definition. Let R be a ring M, X are R-modules, C is a cover of M. We say that
X is C-injective provided every R-homomorphism ¢ : (N : M) — X, where N € C can
be lifted to an R-homomorphism A : R — X. In the next results we shall be interested
in ring R with the following properties:

(P1) for every proper ideal I there exists a finite set of prime ideals Py, Ps,---, P,
such that Pi1Py--- P, <I<PiNPFPnN---Nk,.

(P2) The ascending chain condition on prime ideals.
Proposition 8. Let R be a Noetherian ring. Then R satisfies (P1) and (P2).

Proof. Since R is Noetherian then R satisfies (P2). Suppose R does not satisfy (P1).
Let S = {J| (P1) fails for J}. Suppose I be a maximal element of S. Then I is not
prime ideal, so there exists ideal I; and I properly containing I such that I1Is < I. By

the choice of I, (P1) holds for each I; and I3, and hence for I, which is a contradiction.
O

Proposition 9. Let R be a ring which satisfies (P1) and (P2). Then every non-zero

R-module contains a D-prime submodule.

Proof. Let M be a non-zero R-module. Let I = ann(M). The there exists prime ideal
P, P, - P,suchthat P, Py---P, <I< P NP,N---NP,. Thus PPy ---P,M =0 and
it follows that there exists Py such that Pym = 0, for some m € M. Suppose B={P: P
is a prime ideal and Px = 0 for some 2 € M }. Let @ be a maximal element of B and
let y € M such that Qy = 0. We show that N = Ry is a D-prime submodule of M. let
K be a non-zero submodule of N. Then @ < ann(K), we show that Q = ann(K). Let
Q # ann(K).

Then there exists prime ideal g1, g2, - - - , ¢, such that ¢1g2 - - - g, < ann(K) < g1NgaN
-+ N @m. If follows that ¢1q2 - - - ¢ K = 0, and there exists € K such that ¢;xz = 0 for
some i. But @ < ann(K) < ¢; and this contradicts the choice of Q). Hence ) = ann(K),
and so N is D-prime submodule of M.

Theorem 10. Let M be an R-module and R satisfies (P1) and (P2), C' a cover of M.

Then M is C-injective if and only if M is an injective R-module.

Proof. Let M be a C-injective and I be an ideal of R and ¢ : I — M an R-
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homomorphism. By zorn lemma there exists an ideal J containing I maximal with respect
to the property that ¢ can be lifted to a homomorphism A : J — M. We show that J = R.

Suppose J # R. Thus ? is a non-zero R-module and so ? has a D-prime submodule. O

Let K be an ideal containing J such that § is a D-prime submodule of ?. Let

ke K,k ¢ J. Then w is a D-prime module. Let P = {r € R|rk € J}. Then

% ~ Rkj‘], and hence P is a prime ideal of R. As P = (N : M), where N € C, define
v: P — M ~v(x) = Mkx). Then ~ is a homomorphism, and because P = (N : M) for
N € C, there exists m € M such that y(x) = mz. Now define § : kR+ J — M by
O(rk + j) = rm + A(j), so 0 is well-defined, 6 is a homomorphism and 6 extends A and

hence ¢. This contradiction shows that J = R. it follows that M is injective.

3. Quasi-Injective Modules

Definition. An R-module M is said to be quasi-injective if every R-homomorphism
¢ : N — M, N a submodule of M, is induced by an R-endomorphism of M.

Notation. Let C be a cover for R-module M, denote C(M) = {z € M|(N : M) C
ann(z), for some N € C}.

Lemma 11. C'(M) is a submodule of M.

Proof. It is obvious. O

Theorem 12. An R-module M is quasi-injective if and only if M = E[C(M)], where
E[C(M)] is injective hull of C'(M).

Proof. If M is quasi-injective. Then M < E[C(M)], we show that E[C(M)] < M. Let
y € E[C(M)], then there exists N € C such that (N : M) C ann(y); and since C is a
cover for M there exists € M such that ann(z) C (N : M). We define « : Rz — Ry by
a(z) =y. Let E = E[M], so we have the mapping

0—-Rx—M—F

al A
E

Now ¢ = A/M maps z onto y; and since M is quasi-injective, it is fully invariant in
E, then y € M so that E[C(M)] < M, and equality holds. Conversely, suppose that

115



AMIRI

M = E[C(M)], since E[C(M)] is a injective R-module so is M, and since every injective

R-module is quasi-injective. Hence M is quasi-injective R-modules. O

Corollary 13. Let C be a cover for an R-module M. Then the following are equivalent.
(1) M is quasi-injective R-module.
(2) M is a injective R-module.
(3) M = E[C(M)).
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