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On the regular elements in Zn

Osama Alkam and Emad Abu Osba

Abstract

All rings are assumed to be finite commutative with identity element. An element

a ∈ R is called a regular element if there exists b ∈ R such that a = a2b, the element

b is called a von Neumann inverse for a. A characterization is given for regular

elements and their inverses in Zn, the ring of integers modulo n. The arithmetic

function V (n), which counts the regular elements in Zn is studied. The relations

between V (n) and Euler’s phi-function ϕ(n) are explored.
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1. Introduction

All rings are assumed to be finite commutative with identity element 1. The numbers
p and q are always assumed to be prime numbers.

Definition 1 An element a ∈ R is called a regular element if there exists b ∈ R such
that a = a2b, the element b is called a von Neumann inverse for a. The ring R is
called a von Neumann regular ring (VNR) if all elements of R are regular.

The following proposition is well known; it shows some basic properties of the regular
elements and their importance in ring theory, (see [3]).

Proposition 1 If a is a regular element in R, then there exists a unique element
a(−1) ∈ R such that:
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(1) a = a2a(−1) and a(−1) = (a(−1))2a.

(2) e = aa(−1) is an idempotent.

(3) u = 1 − e + a is a unit.

(4) a = ue.

(5) aR = eR.

Recall that for each natural number n, the function ϕ(n) is the number of integers t

such that 1 ≤ t ≤ n, and gcd(t, n) = 1, (n) is the number of distinct primes dividing n,
τ (n) is the number of divisors of n and σ(n) is the sum of the divisors of n; see [5].

In section 2, we characterize regular elements in Zn, the ring of integers modulo n,

and find their von Neumann inverses.

In section 3, a new arithmetic multiplicative function V (n), which counts the regular
elements in Zn, is introduced. This new function is related to the famous Euler’s phi-
function ϕ(n). Different definitions of V (n) are given and basic properties are studied.
Many inequalities are proved relating V to some of the famous arithmetic functions. The
asymptotic behavior of V is also studied.

In section 4, some open problems are posed for further research.

Studying and counting the regular elements in Zn is very interesting. The function
V shares with the function ϕ many of its important properties, while it differs in some
others. We think that the function V could be used in cryptography theory and would
be a source for many research problems in ring and number theories.

2. Regular Elements in Zn

It is not always an easy task to determine if a particular element is a regular element
and to find its von Neumann inverse. However if the ring R is a local ring, then
computations are easier. In fact, in this case a regular element is either zero or a
unit. In this section, we use this fact together with the decomposition theorem of finite
commutative rings with identity to determine if a given element in Zn is regular or not
and to find its von Neumann inverse. See also [1]. For each ring R, let Vr(R) be the set
of all regular elements in R.

Lemma 1 Let R be a local ring with M its only maximal ideal. Then Vr(R) = R \ (M \
{0}).
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Proof. Let a ∈ R\ (M \{0}). Then a is a unit or zero and so a ∈ V r(R). If a ∈ V r(R),
then there exists b ∈ R such that a = a2b, which implies that a(1 − ab) = 0. If a is not a
unit, then (1 − ab) is a unit and so a = 0, therefore a ∈ R \ (M \ {0}). ✷

Theorem 1 Let R =
∏
i∈I

Ri where Ri is a local ring for each i ∈ I . Then (ai)i∈I is a

regular element if and only if ai is either zero or a unit in Ri for each i ∈ I .

Proof. (ai)i∈I is regular
⇔ there exists (bi)i∈I such that (ai)i∈I = ((ai)i∈I)2(bi)i∈I = (a2

i bi)i∈I

⇔ ai = a2
i bi for all i ∈ I

⇔ ai = 0 or ai is a unit in Ri for each i ∈ I. ✷

It follows immediately from this theorem that if n =
m∏

i=1

pαi

i , then an element m ∈ Zn

is regular if and only if m is a unit (mod pαi

i ) or m is 0 (mod pαi

i ) for each i.
It is known (Euler’s Theorem) that if a is a unit in Zn, then aϕ(n) ≡ 1 (mod n) and so

aϕ(n)−1 (modn) is the multiplicative inverse of a in Zn. The following theorem generalizes
Euler’s Theorem.

Theorem 2 An element a is regular in Zn if and only if aϕ(n)+1 ≡ a (mod n).

Proof. Let n =
m∏

i=1

pαi

i . Suppose that a is a regular element in Zn. If a ≡ 0 (mod pαi

i ),

then aϕ(n)+1 ≡ a (mod pαi

i ). So assume that a is a unit (mod pαi

i ), which implies, using

Euler’s theorem, that aϕ(n) ≡ (aϕ(pαi
i ))

ϕ(n)
ϕ(pαi

i ) ≡ 1 (mod pαi

i ). Therefore, aϕ(n)+1 ≡ a

(mod pαi

i ), hence aϕ(n)+1 ≡ a (mod n).
Conversely, a ≡ aϕ(n)+1 ≡ a2aϕ(n)−1 (mod n), and so a is a regular element. ✷

The following corollary determines the von Neumann inverse for a regular element in
Zn.

Corollary 1 If a is a regular element in Zn, then aϕ(n)−1 is a von Neumann inverse for
a in Zn. In fact, a(−1) ≡ aϕ(n)−1 (mod n).
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Remark 1 Let a be a regular element in Zn. As a consequence of Proposition 1,
(a(−1))(−1) = a, therefore, by Corollary 1,

a ≡ (a(−1))(−1) ≡ (a(−1))ϕ(n)−1 ≡ (aϕ(n)−1)ϕ(n)−1 (mod n).

Example 1 It is known that Z36 	 Z4 × Z9. 25 ≡ 1(mod 4) and 25 ≡ 7(mod 9), so 25
is a regular element in Z36. Moreover, 13 ≡ 2511 ≡ (25)ϕ(36)−1 ≡ (25)(−1)(mod 36) is
a von Neumann inverse for 25 in Z36. On the other hand, 18 ≡ 2 (mod 4) and 18 ≡ 0
(mod 9), so 18 is not a regular element in Z36.

3. Number of Regular Elements in Zn

In this section, we study the function V (n); it is the number of regular elements in
the ring Zn. We also relate it to Euler’s phi-function.

Using Lemma 1 and Theorem 1 in Section 2, one can deduce easily that if R =
m∏

i=1

Ri, where Ri is a local ring with Mi its unique maximal ideal for each i, then

|Vr(R)| =
m∏

i=1
(|Ri| − |Mi| + 1 ). Recall that if n =

m∏
i=1

pαi

i , then Zn 	
m∏

i=1
Zp

αi
i

and

ϕ(n) =
m∏

i=1

(pαi

i − pαi−1
i ) = n

∏
p|n

(1 − 1
p
). Hence the following theorem easily follows.

Theorem 3 (1) V (pα) = pα − pα−1 + 1 = ϕ(pα) + 1 = pα(1 − 1
p + 1

pα ).

(2) If n =
m∏

i=1

pαi

i , then V (n) =
m∏

i=1

V (pαi

i ) =
m∏

i=1

(pαi

i −pαi−1
i +1) =

m∏
i=1

(ϕ(pαi

i )+1) =

n
m∏

i=1
(1 − 1

pi
+ 1

p
αi
i

).

(3) If gcd(m, k) = 1, then V (mk) = V (m)V (k), i.e. the function V is a multiplicative
function.

We now give another formula for finding V (n). But first we give the following
definition.

Definition 2 Let a and b be two positive integers. We say that a is a unitary divisor

of b if a | b and gcd(a, b
a ) = 1. In this case, we write a ‖ b, see [7].
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We now use the unitary divisors of an integer to calculate the number of regular
elements.

Theorem 4 V (n) =
∑
d‖n

ϕ(d). Moreover, V (n)
ϕ(n) =

∑
d‖n

1
ϕ(d) .

Proof. The proof follows immediately using the formula V (n) =
∏

pα‖n

(ϕ(pα) + 1). ✷

Example 2 90 = 21 × 32 × 51. The unitary divisors of 90 are: 1, 2, 5, 9, 10, 18, 45, 90.
Hence V (90) = 70 = ϕ(1) + ϕ(2) + ϕ(5) + ϕ(9) + ϕ(10) + ϕ(18) + ϕ(45) + ϕ(90).

3.1. Basic properties

It is well known that ϕ(n) is even for all n > 2. But this is not true for V (n) as it is
shown below.

Theorem 5 V (n) is even if and only if 2 ‖ n, i.e. n ≡ 2 (mod 4).

Proof. V (n) =
∏

pα‖n

(ϕ(pα) + 1). For p = 2, ϕ(pα) + 1 is an odd number. For p = 2

and α = 1, ϕ(2)+1 = 2 is even. For p = 2 and α > 1, ϕ(2α)+1 is odd. Hence the result. ✷

Theorem 6 For each regular element a ∈ Zn, aV (n) ≡ aV (n)−ϕ(n) (mod n).

Proof. Suppose that n =
m∏

i=1
pαi

i . Let a be a regular element in Zn. If a ≡ 0

(mod pαi

i ), then since V (n) ≥ ϕ(n), it follows that aV (n) ≡ aV (n)−ϕ(n) (mod pαi

i ). So

assume that a is a unit (mod pαi

i ), hence aV (n) ≡ aV (n)−ϕ(n)(aϕ(p
αi
i ))

ϕ(n)

ϕ(p
αi
i

) ≡ aV (n)−ϕ(n)

(mod pαi

i ).
Thus aV (n) ≡ aV (n)−ϕ(n) (mod n). ✷

We now calculate the summatory function of the arithmetic function V. Let F (n) =∑
d|n

V (d).
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Theorem 7 Let n =
m∏

i=1
pαi

i . Then F (n) =
m∏

i=1
F (pαi

i ) =
m∏

i=1
(pαi

i + αi).

Proof. F (pα) =
α∑

k=0

V (pk) = V (1)+
α∑

k=1

V (pk) = 1+
α∑

k=1

(ϕ(pk)+1) = ϕ(1)+
α∑

k=1

ϕ(pk)+

α∑
k=1

1 =
α∑

k=0

ϕ(pk) +
α∑

k=1

1 = pα + α.

Since the function V is multiplicative we can obtain the general case easily. ✷

3.2. Inqualities

For each n, we have
√

n ≤ V (n) ≤ n, since
√

n ≤ ϕ(n) for all n not 2 or 6.

Since pαi−1
i ≤ pαi−1

i + 1 ≤ pαi−1
i (pi − 1) + 1 ≤ pαi

i , it follows that
m∏

i=1
pαi−1

i ≤
m∏

i=1

(pαi−1
i + 1) ≤ V (

m∏
i=1

pαi

i ) ≤
m∏

i=1

pαi

i .

It is known that 6
π < ϕ(n)σ(n)

n2 < 1; see [6, 1.21]. It is clear that V (4)σ(4)
16 > 1. In

fact, if we choose the subsequence {nk} such that nk is the product of the first k prime

numbers, then V (nk) = nk and V (nk)σ(nk)
(nk)2 = σ(nk)

nk
=

kQ

i=1
(pi+1)

kQ

i=1
pi

=
k∏

i=1
(1 + 1

pi
) → ∞ as

k → ∞. In fact, V (pα)σ(pα) = (pα − pα−1 + 1)(
α∑

k=0

pk) = pα(1 − p−1 + p−α)(
α∑

k=0

pk) =

pα(1 + pα +
α∑

k=2

p−k) = p2α(1 + p−α +
α∑

k=2

p−(α+k)).

Since both V and σ are multiplicative functions, if n =
m∏

i=1

pαi

i , then V (n)σ(n)
n2 =

m∏
i=1

(1 + p−αi

i +
αi∑

k=2

p
−(αi+k)
i ).

It is known that σ(n) + ϕ(n) ≤ n τ (n) with equality if and only if n is a prime; see
[6]. For any prime number p, σ(p) + V (p) = 2p + 1 > 2p = pτ (p). We show now that if
n is a composite number, then σ(n) + V (n) ≤ n τ (n).

Theorem 8 If n is a composite number, then σ(n) + V (n) ≤ n τ (n).
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Proof. It is clear that
∑
d|n

1
d ≤ τ (n) − 1, since there are at least 2 divisors d with

1
d
≤ 1

2
(namely d = n and any other divisor of n that is greater than 1). So σ(n)

n
=∑

d|n
1
d
≤ τ (n) − 1. Thus σ(n) + n ≤ nτ (n). Now the result follows, since V (n) ≤ n. ✷

3.3. Asymptotic Behaviour

The sequence {V (n)
n

} has no limit, since the subsequences {V (2n)
2n } and {V (3n)

3n } have

different limits. However V (p)
p

= 1 if p is a prime and since V (n) is at most n for all n,

one can conclude that lim sup
n→∞

V (n)
n = 1.

Theorem 9 For any ε > 0, lim
n→∞

V (n)
(n)1−ε = ∞.

Proof. It is suffices to consider n = pm.

V (pm)
(pm)1−ε = pm(1−p−1+p−m)

pm−mε = pmε(1 − p−1 + p−m) → ∞ as pm → ∞. Now it is easy to

deduce the general case. ✷

The subsequence {V (p)
ϕ(p) }p is prime converges to 1, while the subsequnce {V (nk)

ϕ(nk) } where

nk is the product of the first k prime numbers, diverges since V (nk)
ϕ(nk) =

k∏
i=1

(1 + 1
pi−1), so

one can conclude the following.

Theorem 10 (1) limsup
n→∞

V (n)
ϕ(n) = ∞. (2) lim inf

n→∞
V (n)
ϕ(n) = 1.

3.4. Factorial Equations

It is known that for any prime number p,

1. τ (p!) = 2τ ((p − 1)!).

2. σ(p!) = (p + 1)σ((p − 1)!).

3. ϕ(p!) = (p − 1)ϕ((p − 1)!).
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In the case of V , we have V (p!) = V (p(p − 1)!) = V (p)V ((p − 1)!) = pV ((p − 1)!).

Although lim
n→∞

V (n)
n does not exist as shown above, the situation is different when

dealing with factorials.

Theorem 11 lim
n→∞

V (n!)
n! = 0.

Proof. The result follows immediately since V (n!)
n! =

∏
pα‖n!

(1− 1
p + 1

pα ) =
∏

pα‖n!

(1−(1
p −

1
pα )). But

∑ (
1
p − 1

pα

)
diverges, and Lim

(
1
p − 1

pα

)
= 0, so V (n!)

n! =
∏

pα‖n!

(1 − 1
p + 1

pα )

diverges to zero, see [2, 12–55]. ✷

We now extend the results of F. Luca in [4] to V (n).

Theorem 12 Let a be any positive rational number. Then the equation V (n!)
m! = a has

finitely many solutions (m, n).

Proof. Notice that V (n!) is odd for all n ≥ 4, (see Theorem 5). Let a = c
d be a

positive rational number. Consider the equation V (n!) = c
dm!. If there are infinitely

many solutions (m, n) for the equation, then there is an m0 > d such that c
d
m! is even

for all m ≥ m0 , a contradiction. ✷

We now use the above theorem to solve the equation V (n!)
m! = a, for a = 1.

Corollary 2 V (n!)
m! = 1, has a solution only for n = 1, 2, and 3.

Proof. For n, m ≥ 4, V (n!) is odd while m! is even. ✷

4. Open Problems

1. If n is a product of distinct primes, then V (n) = n. It is clear that gcd(pα, V (pα)) =
1. So V (qpα) � qpα. We use computer calculations to show that V (n) � n up to a
large n such that n is not a product of distinct primes. Does V (n) � n for all n

which is not a product of distinct primes?
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2. Let V1(n) = V (n) and for all j ≥ 1, Vj+1(n) = V (Vj(n)). Since n is a finite
number and Vj+1(n) ≤ Vj(n), then for each n, there exist k and m such that
m = Vk(n) = Vj(n) for all j ≥ k. Can one estimate k and m for each number n?

3. For all n ≥ 2 × 109, V (n) > ϕ(n) > n
2 ln(ln n) , see [4]. Is it true that for all

n ≥ 9, V (n) > n
2 ln(ln n)? In fact we verified this using computer calculations for very

large values of n.
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