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A Decomposition Method for Solving Unsteady

Convection-Diffusion Problems
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Abstract

In this study, a decomposition method for approximating the solutions of un-

steady convection-diffusion problems is implemented. The approximate solution is

calculated in the form of a convergent series with easily computable components.

The calculations are accelerated by using the noise terms phenomenon for nonhomo-

geneous problems. Numerical examples are investigated to illustrate the pertinent

features of the proposed algorithm.

Key Words: Convection-diffusion equation; Decomposition method; Noise terms.

1. Introduction

Consider the following convection-diffusion equation:




∂u
∂t + b1(x, y)∂u

∂x + b2(y)∂u
∂y −

(
a1

∂2u
∂x2 + a2

∂2u
∂y2

)
= f(t, x, y), in Ω× J,

u(x, y, t) = g1(x, t), on ∂Ω × J,

u(x, y, 0) = g2(x, y), in Ω,

(1.1)

where Ω = (0, 1) × (0, 1), J = (0, T ), b1(x, y), b2(y) are smooth functions and a1, a2

are positive constants. This equation may be seen in computational hydraulics and fluid
dynamics to model convection-diffusion of quantities such as mass, heat, energy, vorticity,
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etc. [1]. Several numerical methods have been proposed to solve convection-diffusion
problems approximately. Among them are restrictive Taylor’s approximation [2], the

alternating direction implicit (ADI) method [3], the upwind method [4], and the explicit
predictor method [5].

Recently, the Adomian decomposition method (in short, ADM) [6, 7] has emerged as
an alternative method for solving a wide ranges of problems whose mathematical models

involve algebraic, differential, integro-differential, and partial differential equations. The
decomposition method yields rapidly convergent series solutions for both linear and
nonlinear deterministic and stochastic equations. The technique has many advantages
over the classical techniques, mainly, it avoids discretization and provides an efficient

numerical solution with high accuracy, minimal calculations and avoidance of physically
unrealistic assumptions.

The convergence of the decomposition series has been investigated by several authors.
The theoretical treatment of convergence of the decomposition method has been consid-

ered in the literature [8–12]. They obtained some results about the speed of convergence
of this method. In recent work of Abbaoui et al [13] have proposed a new approach of
convergence of the decomposition series. The authors have given a new condition for ob-
taining convergence of the decomposition series to the classical presentation of the ADM

in [13].
In this paper, various convection-diffusion equations can be handled easily, quickly,

and elegantly by implementing the ADM rather than the traditional methods for finding

analytical as well as numerical solutions.

2. Analysis of the Method

In this section, we outline the steps to obtain analytic solution of the convection-
diffusion equation (1.1) using the ADM. To begin, it is convenient to rewrite the equation
in the standard operator from

Ltu + b1(x, y)ux + b2(y)uy −
(
a1Lxu + a2Lyu

)
= f(x, y, t), (2.1)

where Lt = ∂
∂t , Lx = ∂2

∂x2 , and Ly = ∂2

∂y2 . The inverse of the operator Lt exists and it

can conveniently be taken as the one-fold integration operator L−1
t . Thus, applying the

inverse operator L−1
t to (2.1) yields
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L−1
t Ltu = L−1

t

(
− b1(x, y)ux − b2(y)uy + a1Lxu + a2Lyu + f(x, y, t)

)
. (2.2)

Therefore, it follows that

u(x, y, t) = u(x, y, 0) + L−1
t

(
− b1(x, y)ux − b2(y)uy + a1Lxu + a2Lyu + f(x, y, t)

)
.

(2.3)

Now, we decompose the unknown function u(x, y, t) a sum of components defined by the
series

u(x, y, t) =
∞∑

n=0

un(x, y, t). (2.4)

The zeroth component is usually taken to be all terms arise from the initial conditions
and the integration of the source term f(x, y, t), i.e.,

u0 = u(x, y, 0) + L−1
t f(x, y, t). (2.5)

The remaining components un(x, y, t), n ≥ 1, can be completely determined such that
each term is computed by using the previous term. Since u0 is known,

un = L−1
t

(
− b1(x, y)(un−1)x − b2(y)(un−1)y + a1Lxun−1 + a2Lyun−1

)
, n ≥ 1. (2.6)

A slight modification to the ADM was proposed by Wazwaz [14] that gives some flexibility
in the choice of the zeroth component u0 to be any simple term and modify the term u1

accordingly. Since the computation in (2.6) depends heavily on u0 the whole computations

to find the solution will be simplified considerably. For example an alternative to (2.6)
might be

u0 = u(x, y, 0)

u1 = L−1
t f(x, y, t) + L−1

t

(
− b1(x, y)(u0)x − b2(y)(u0)y + a1Lxu0 + a2Lyu0

)
,

un = L−1
t

(
− b1(x, y)(un−1)x − b2(y)(un−1)y + a1Lxun−1 + a2Lyun−1

)
, n ≥ 2.

(2.7)
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Finally an N-term approximate solution is given by

ΦN (x, y, t) =
N−1∑
n=0

un(x, y, t), N ≥ 1, (2.8)

and the exact solution is u(x, y, t) = limN→∞ΦN .

To show the effectiveness of the proposed decomposition method and to give a clear

overview of the methodology, some examples of the convection-diffusion problem (1.1)
will be discussed in the following section.

3. Numerical Examples

We shall illustrate the numerical scheme by three examples. These examples are
somewhat artificial in the sense that the exact answer is known in advance and the
initial and boundary conditions are directly taken from this answer. Nonetheless, such

an approach is needed to evaluate the accuracy of the numerical scheme. All the results
are calculated by using the symbolic calculus software Mathematica.

Example 1 We consider the following homogeneous Convection-diffusion problem

∂u

∂t
+

∂u

∂x
+

∂u

∂y
− ∂2u

∂x2
− ∂2u

∂y2
= 0, (x, y, t) ∈ Ω × J, (3.1)

subject to the initial condition

u(x, y, 0) = exp[−(x− 0, 05)2 − (y − 0.5)2]. (3.2)

The exact solution is given by [3]

u(x, y, t) =
1

4t+ 1
exp

[
− (x − t − 0.05)2

4t+ 1
− (y − t − 0.05)2

4t+ 1

]
. (3.3)

To find the approximate solution of the initial value problem (3.1) and (3.2), we apply
the scheme (2.6). This gives
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u0 = exp[−(x − 0, 05)2 − (y − 0.5)2],

u1 = exp[−(x − 0, 05)2 − (y − 0.5)2](4x2 − 2x + 4(y − 1.28078)(y+ 0.780778))t,

u2 = e−(x−0,05)2−(y−0.5)2(8x2 − 8x3 + 16x2(y − 1.64194)(y+ 1.14194)

−8x(y − 1.68614)(y + 1.18614) + 8(y − 2.13746)(y − 1)(y + 0.5)(y + 1.63746))t2,

u2 = exp[−(x − 0, 05)2 − (y − 0.5)2](10.6667x6 − 16x5 + 32x4(y − 1.92705)(y+ 1.42705)

−32x3(y − 1.98805)(y+ 1.48805)+ 32x2(y − 2.42821)(y − 1.312)(y + 0.813201)
(y + 1.92821)− 16x(y − 2.45578)(y − 1.37237)(y + 0.872374)(y+ 1.95574)
+10.6667(y − 2.7968)(y − 1.77639)(y − 0.859479)(y+ 0.359479)(y+ 1.27639)
(y + 2.2968))t3,

...

(3.4)

in this manner the components of the decomposition series (2.4) are obtained as far as
we like.

In order to verify numerically whether the proposed methodology lead to higher
accuracy, we can evaluate the numerical solutions using the N -term approximation (2.8).
Table 1 shows the difference of analytical solution and numerical solutions of the absolute
errors. It is to be noted that six terms only were used in evaluating the approximate

solutions. We achieved a very good approximation with the actual solution of the equation
by using only 6-terms of the decomposition series solution derived above. It is evident
that the overall errors can be made smaller by adding new terms of the decomposition
series.

Example 2 We next consider the following Convection-diffusion problem

∂u

∂t
− ∂2u

∂x2
− ∂2u

∂y2
= 0, (x, y, t) ∈ Ω× J, (3.5)
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subject to the initial condition

u(x, y, 0) = sin(πx) sin(πy) (3.6)

Using (2.5) and (2.6)to determine the individual terms of the decomposition series (2.4),

we find

Table 1. The absolute difference between the present solution Φ6 and the exact solution of the

equation (3.1) with initial values (3.2) when t = 0.1.

y/x 0.2 0.4 0.6 0.8 1.0

0.2 1.07142E-03 1.00905E-03 3.73240E-04 3.08426E-04 5.00628E-04
0.4 1.00905E-03 9.38058E-04 2.91148E-04 3.83625E-04 5.40541E-04

0.6 3.73240E-04 2.91148E-04 1.65995E-04 5.59178E-04 4.98117E-04
0.8 3.08426E-04 3.83625E-04 5.59178E-04 5.81031E-04 2.92605E-04
1.0 5.00628E-04 5.40541E-04 4.98117E-04 2.92605E-04 4.67080E-05

u0 = sin(πx) sin(πy),

u1 = −2π2t sin(πx) sin(πy),

u2 = 4π4t2

2!
sin(πx) sin(πy),

u3 = −8π6t3

3! sin(πx) sin(πy),

...

(3.7)

and so on; in this manner the rest of components of the decomposition series (2.4) can
be obtained. The solution for the convection-diffusion equation (3.5) in a series form is
given by

u(x, y, t) = sin(πx) sin(πy)
[
1− 2π2t+

4π4t2

2!
− 8π6t3

3!
+ ....

]
. (3.8)
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It can be easily observed that (3.8) is equivalent to the exact solution

u(x, y, t) = e−2π2t sin(πx) sin(πy). (3.9)

This can be verified through substitution.

It is worth noting that exact solution (3.8) is obtained by using the initial condition

only. Moreover, the obtained solution can be used to justify the given boundary condi-
tions. It is also worth to point out that the Adomian decomposition method does not
require discretization of the variables, i.e. time and space, it is not effected by computa-
tion round off errors and one is not faced with necessity of large computer memory and

time. The approach is implemented directly in a straightforward manner without using
restrictive assumptions or linearization.

Example 3 We next consider the following nonhomogeneous Convection-diffusion prob-
lem

∂u

∂t
+

∂u

∂x
+

∂u

∂y
− ∂2u

∂x2
− ∂2u

∂y2
= 3x2 − 6x + 2t+ 1, (x, y, t) ∈ Ω× J, (3.10)

subject to the initial conditions

u(x, y, 0) = x3 + y. (3.11)

Since the computations depends heavily on u0, we will use the modified ADM (2.7)
for defining the components of the decomposition series. This will ease the computation
considerably. Thus

u0 = x3 + y

u1 = 3tx2 − 6tx + t2 + t+ L−1
t

(
− b1(x, y)(u0)x − b2(y)(u0)y + a1Lxu0 + a2Lyu0

)
,

un = L−1
t

(
− b1(x, y)(un−1)x − b2(y)(un−1)y + a1Lxun−1 + a2Lyun−1

)
, n ≥ 2.

(3.12)

Solving these equations recursively we obtain
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u0 = x3 + y,

u1 = t2 − t+ 6xt− 3tx2 + t − 6xt+ 3tx2,

u2 = 0,

u3 = 0,

...

(3.13)

We observe the appearance of noise terms between the components of u1. By canceling
the noise terms from u1 and verifying that the remaining terms of u0 and u1 justify the
equation we obtain the exact solution in the form

u(x, y, t) = x3 + y + t2. (3.14)

One important note to be made here is, we obtained the exact solution by using two
components only. This is due to the fact that nonhomogeneeous equations may give rise
to noise terms that accelerate the convergence of the solution, as presented in Example
3.

4. Conclusions

In conclusion, Adomian decomposition method was used for finding exact and ap-
proximate solutions of the convection-diffusion problems (1.1). The numerical results
obtained justify the advantage of this methodology. The nonhomogeneous case was ef-

fectively handled by employing the effect of noise terms phenomenon, where the exact
solution was obtained by using two components only. It may be concluded that Adomian
methodology is a very powerful and efficient technique in finding exact and approximate
solutions for wide classed of problems.

There are two important points to make here. First, as the decomposition method
does not require discretization of the variable, i.e., time and space, it is not effected
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by computation round off error and necessity of large computer and time. Second, the
technique avoids the cumbersome of the computational methods.

The method was analyzed and tested on two homogeneous and one nonhomogeneous
problems from the literature.
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