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Abstract

This paper presents the solution of an integral equation of a mixed type in

three-dimensions in the space L2(Ω)× C[0, T ], where T < ∞, and Ω is the domain

of integration with respect to position. The kernel of position integral term is

considered in the potential function form, while the kernel of time is considered as

a continuous kernel. A linear system of Fredholm integral equations of the first and

second kinds are obtained and solved. Krein’s method is used to solve the Fredholm

integral equation of the first kind, while the second kind is solved numerically.

Key Words: Fredholm integral equations; Potential kernel; Legendre and Jacobi

polynomials; Weber-Sonien integral.

1. Introduction

Many problems of mathematical physics, engineering, and theory of elasticity such as
contact problems lead to the Fredholm-Volterra integral equations of the first kind [2, 6,
8]. In recent publication [3], we discussed the existence and uniqueness of the solution of
the following mixed integral equation:

∫ t

0

∫ 1

−1

F (t, τ )(ln |x− y| − d)φ(y, τ )dydτ +
∫ t

0

G(t, τ )φ(x, τ)dτ = f(x, t), (1.1)
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with (t, τ ∈ [0, T ], T < ∞, and d is a constant.

The solution is obtained in the space L2[−1, 1]×C[0, T ] and depends on the relations
between the derivatives of F (t, τ ) and G(t, τ ) with respect to t for τ ∈ [0, T ].

In the same manner we propose the solution of the following mixed integral equation:

∫ t

0

∫∫
Ω

F (t, τ )k(x− ζ, y − η)ψ(ζ, η)dζdηdτ +
∫ t

0

H(t, τ )ψ(x, y, τ)dτ

= Θ[γ(t) − α(x, y)] = f(x, y, t);

Ω = {(x, y, z) ∈ Ω :
√

x2 + y2 ≤ a, z = 0},

t, τ ∈ [0, T ], T < ∞, k(x− ζ, y − η) = [(x− ζ)2 + (y − η)2]−
1
2

(1.2)

under the condition

∫
Ω

ψ(x, y, t)dx = P (t) < ∞, (1.3)

where Θ and γ(t) and their derivatives are continuous functions.

The mixed integral equation (1.2) is examined with respect to position and time for
the Fredholm integral equation and the Volterra integral equation terms, respectively.
This equation under the condition (1.3) is investigated from the three dimensional semi-
symmetric Hertz contact problem in the theory of elasticity of frictionless impression of
a rigid surface (G, ν) into an elastic material occupying the domain Ω, where G is the
displacement magnitude and ν the Poisson’s coefficient. The upper rigid surface (stamp)
that has base equation α(x, y) is impressed into the lower elastic surface (plane) by a
variable known force P (t). This force exhibits eccentricity of application e(t), t ∈ [0, T ],
and in that case γ(t) is the rigid displacement. The function F (t, τ ) represents the
resistance force of the material in the contact domain Ω through time t ∈ [0, T ]; while the
function H(t, τ ) is the external force of resistance, which is supplied through the contact
domain.

The unknown function ψ(x, y, t) is called the potential function of the integral equation
(1.2) and can be obtained in the space L2(Ω)×C[0, T ]. In order to guarantee the existence
of a unique solution of (1.2), under the condition (1.3), we assume the following:

(i) The kernel of position k(x, y) ∈ C([Ω]× [Ω]), x = x̄(x1, x2), y = ȳ(y1, y2) satisfies
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in the space L2(Ω) the following:
{∫∫

Ω

k2(x, y)dxdy
}1/2

= A,

where A is a constant.
(ii) The two continuous functions F (t, τ ) and H(t, τ ) belong to C([0, T ]× [0, T ]) and

satisfy |F (t, τ )| < B, |H(t, τ )| < D, where B and D are constants. (iii) The given function
f(x, y, t) ∈ L2(Ω) × C[0, T ].

(iv) The unknown function ψ(x, t), x = x̄(x1, x2) is assumed to satisfy Hölder condi-
tion with respect to time and Lipschitz condition with respect to position.

2. Method of solution

To obtain the solution of the integral equation (1.2) under the condition (1.3), with
respect to position, we use polar coordinates:

∫ t

0

∫ a

0

∫ π

−π

F (t, τ )ψ(ρ, φ, τ)ρdρdφdτ√
r2 + ρ2 − 2rρ cos (θ − φ)

+
∫ t

0

H(t, τ )ψ(r, θ, τ )dτ = f(r, θ, t), (2.1)

and ∫ a

0

∫ π

−π

ψ(ρ, φ, t)ρdρdφ = P (t). (2.2)

To separate the variable, one assumes

ψ(r, θ, t) = ψm(r, t)




cosmθ

sinmθ
, f(r, θ, t) = fm(r, t)




cosmθ

sinmθ.
(2.3)

Using (2.3) in (2.1) and (2.2), we get
∫ t

0

∫ 1

0

F (t, τ )Km(r, ρ)ψm(ρ, τ )ρdρdτ +
∫ t

0

H(t, τ )ψm(r, τ )dτ = fm(r, t), (a = 1)

(2.4)

and

∫ 1

0

ψm(ρ, t)ρdρ =




P(t)
2π m = 0

0 m ≥ 1,
(2.5)
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where

Km(r, ρ) =
∫ π

−π

cosmθdφ√
r2 + ρ2 − 2rρ cos φ

(2.6)

Abdou [2] obtained the kernel of Eq. (2.6) in the form of Weber-Sonien integral form as

Km(r, ρ) = 2π
∫ ∞

0

Jm(αr)Jm(αρ)dα, (2.7)

where Jm(x) is the Bessel function of order m.
Using (2.7), in (2.4), and assuming φm(r, t) =

√
rψm(r, t), gm(r, t) =

√
rfm(r, t) in

Eqs. (2.4) and (2.5), we have
∫ t

0

∫ 1

0

F (t, τ )W (r, ρ)φm(ρ, τ )dρdτ +
∫ t

0

H(t, τ )φm(r, τ )dτ = gm(r, t), (2.8)

∫ 1

0

φm(ρ, t)
√
ρdρ =




P(t)
2π m = 0

0 m ≥ 1,
(2.9)

where

W (r, ρ) = 2π
√
rρ

∫ ∞

0

Jm(αr)Jm(αρ)dα. (2.10)

In Eqs. (2.8), and (2.9), we divide the interval [0, T ], 0 ≤ t ≤ T < ∞ as 0 = t0 ≤ t1 <

... < tN = T , where t = tl, l = 1, 2, ..., N . In the same way as discussed in [3], we obtain

l∑
j=0

vjHj,lφj,m(r) +
l∑

j=0

ujFj,l

∫ 1

0

W (r, ρ)φj,mdρ = gl,m(r) (2.11)

∫ 1

0

φl,m(ρ)
√
ρdρ =

Pl

2π m = 0

0 m ≥ 1,
(2.12)

where the following notations are used

F (tl, tj) = Fl,j, H(tl, tj) = Gl,j,

φm(r, tj) = φm,j(r) and fm(r, tl) = fl,m(r), l = 0, 1, ...N ; 0 ≤ j ≤ l.

(2.13)
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The characteristic points vj and uj [3, 5] depend on the number of derivatives of H(t, τ )
and F (t, τ ), respectively, with respect to t ∈ [0, T ]. Thus, we can discuss the following.

(i) When H(t, τ ) has i times derivatives with respect to t, for i < l, l = 1, 2, ...N , the
integral equation (2.11) becomes

i∑
j=0

vjHj,iφj,m(r) +
i∑

j=0

ujFj,i

∫ 1

0

W (r, ρ)φj,mdρ = gi,m(r), (2.14)

i+1∑
j=0

ujFj,i

∫ 1

0

W (r, ρ)φj,m(ρ)dρ = gi,m(r) −
i∑

k=0

µkφk,m(r), (2.15)

where φk(r), 0 ≤ k ≤ i represent the solutions of the linear system of Eqs. (2.14) and
µk are constants and represent the corresponding coefficients of φk(r). The linear system
of Eqs.(2.14) represent Fredholm integral equations of the second kind with a potential
kernel given by Eq.(2.10), in the form of a Weber-Sonien integral. On the other hand,
the formula (2.15) represents a system of Fredholm integral equations of the first kind
with a potential kernel.

(ii) When H(t, τ ) and F (t, τ ) have the same number of derivatives with respect to
t, the integral equation (2.4) for all values of 0 ≤ j ≤ l represents a linear system of
Fredholm integral equation of the second kind. Thus, our aim is to solve the linear
system of Eqs. (2.14) and (2.15), respectively.

3. Fredholm integral equation of the second kind

To solve the linear system of Eq. (2.11), we use the recurrence relation, and write it
in the form

µiφi,m(r) + λi

Z 1

0

W (r, ρ)φi,m(ρ)dρ = gi,m(r)−
h i−1X

k=0

µiφk,m(r) +

i−1X
k=0

λi

Z 1

0

W (r, ρ)φk,m(ρ)dρ
i

(3.1)

then for i = 0,

µ0φ0,m(r) + λ0

∫ 1

0

W (r, ρ)φ0,m(ρ)dρ = g0,m(r), (3.2)
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where µi = viHi,i, λi = uiFi,i.
Under the condition

∫ 1

0

φ0,m(ρ)
√
ρdρ = q, q =




P0
2π m = 0

0 m ≥ 1,
(3.3)

the solution of (3.2) depends on the kernel (2.10) and the formula of the surface f0,m(r).
So, we write g0,m(r) in MacLaurin expansion around r = 0:

f0,m(r) =
f

′′
0,m(0)

2!
r2 + · · · +

f
(n)
0,m(0)
n!

rn + · · · (3.4)

The formula (3.4) is obtained after considering the initial and the tangent points of the
surface that are in contact with the origin O. Also, the formula (3.4) gives the degree of
displacement of the surface for any degree. For example, if the displacement is very small

such that Ak = 0, Ak =
f
(k)
0,m(0)

k!
, k ≥ 3, we obtain the displacement as f0,m(r) = A2r

2.
In general, we write

f0,m(r) = A2mr2m, f0,m(r) = Θ[γ(0) − αm(r)], (3.5)

where m is the harmonic order of the contact problem. Hence, the function g0,m(r) of
Eq. (3.2), in view of (3.5), takes the form

g0,m(r) = (∆0 − ΘA2mr2m)
√
r, ∆0 = Θγ(0), Θ = G(1 − ν)−1, (3.6)

which represents a polynomial of degree r2m+ 1
2 . In view of Eq. (3.6) and the boundary

condition (3.3) the integral equation (3.2) takes the form

µ0Z0,m(r) + λ0

∫ 1

0

W (r, ρ)Z0,m(ρ)dρ = r2m+ 1
2 (3.7)

and

∆0

∫ 1

0

Z0,0(r)
√
rdr− A2m

∫ 1

0

Z0,m(r)
√
rdr =

P0

2π
(3.8)

where

φ0,m(r) = ∆0Z0,0(r) − A2mZ0,m(r), m ≥ 1. (3.9)

88



ABDOU, ABD AL-KADER

To obtain the value of φ0,m(r) of Eq. (3.9) or of Eq. (3.2), we must obtain the solution
of Eq. (3.7). To do this, we use the formula (7.39-(11)) of [9], and with the aid of [1], we
can write the kernel of (2.10) in the form

W (r, ρ) =
√

2π(rρ)m+ 1
2

∞∑
j=0

Γ2(j + m + 3/4)Pm
j (r)Pm

j (ρ)
Γ2(j + 1 + m)(2j + m + 3/4)−1

, (3.10)

where P
(m,−1/2)
j (x) is the Jacobi polynomial

P
(m)
j (x) = P

(m,−1/2)
j (1 − 2x2), (3.11)

and [7]

P (α,β)
n (y) =

(
n + α

n

)
2F1(−n, n + α + β + 1;α + 1;

1 − y

2
), (3.12)

where Γ(x) and 2F1(α, β; γ; z) are the Gamma and hypergeometric functions, respectively.
Hence, the solution of Eq. (3.7) with the kernel (3.10) is equivalent to the solution of the
linear system

µ0Xi + Ci

∞∑
j=0

EijXj = fi, (3.13)

where

fi = (2i + m +
3
4

)
1
4

∫ 1

0

fm(r)rm+1Pm
i (r)dr, (3.14)

Ci =
πλ0Γ2(i + m + 3/4)(2i + m + 3/4)

1
4

Γ2(i + m + 1)
, (3.15)

Eij = (2j + m + 3/4)(2i + m + 3/4)
∫ 1

0

r2m+1P
(m)
i (r)P (m)

j (r)dr. (3.16)

The infinite linear system of Eq. (3.13) is solvable under the conditions

∞∑
j=0

|CiEij| < µ0. (3.17)
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Using the orthogonality of the Jacobi polynomials, the solution of Eq. (3.7) takes the
form

µ0Z0,m(r) = r2m+ 1
2 − πλ0

∞∑
j=0

Γ2(j + m + 3/4)rmPm
j (r)Xj

(j + m + 1)(2j + m + 3/4)−3
4
. (3.18)

Hence, the complete solution of Eq. (3.9) becomes

µ0φ0,m(r) =r
1
2 (Θγ(0) − A2mr2m) + πλ0

∞∑
j=0

[Γ2(j + m + 3/4)rmPm
j (r)Xm

j

(j + m + 1)(2j + m + 3/4)−
3
4

− Θγ(0)
Γ2(j + 3/4)P 0

j (r)

(j + 1)(2j + 3/4)−3
4

]
.

(3.19)

Hence by mathematical induction, the solution of Eq. (3.1) can be obtained.

4. Fredholm integral equation of the first kind

Many different methods can be used to obtain the solution of Fredholm integral
equation. Krein’s method is considered one of the best methods in the applied science for
solving the singular integral equations, because singularity disappears and the integral
equations can be solved directly without singularity [4, 11]. To use Krein’s method, firstly
we adapt Eq. (2.15) to the form

ulFl,l

∫ 1

0

W (r, ρ)φl,m(ρ)dρ = gl,m(r) −
i∑

k=0

µkφk,m(r) −
l−1∑

j=i+1

ujFj,l

∫ 1

0

W (r, ρ)φj,m(ρ)dρ.

(4.1)

The solution of Eq. (4.1) can be obtained using the recurrence relation, where φk,m(r),
0 ≤ k ≤ i can be obtained from Eq.(2.14) with the aid of Eq. (3.19). Hence for l = i+ 1,
firstly, we can write Eq. (4.1) as

µi+1

∫ 1

0

W (r, ρ)φi+1,m(ρ)dρ = gi+1,m(r) −
i∑

k=0

µkφk,m(r), (µi+1 = ui+1Fi+1,i+1).

(4.2)
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Secondly, we can write Eq. (4.2) in the form

β

∫ 1

0

k(r, ρ)ψ(ρ)ρdρ = h(r), (4.3)

where

β = µi+1, ψ(r) = φi+1,m(r)√
r

,

h(r) = 1√
r
[gi+1,m(r) − ∑i

k=0 µkφk,m(r)],
(4.4)

and

k(r, ρ) = 2π
∫ ∞

0

Jm(rt)Jm(ρt)dt. (4.5)

Also, the state condition (2.12) becomes

∫ 1

0

ψρdρ =
P

2π
. (4.6)

Using Krein’s principal method [4, 11], with a kernel in the form of Eq. (4.5) and under
the condition (4.6), the general solution of Eq. (4.3) takes the form

βφ(r) =
δ

π2
√

1 − r2
− 1

π2

∫ 1

r

du√
u2 − r2

d2

du2

∫ u

0

th(t)dt√
u2 − t2

, (4.7)

where

δ = [
d

du

∫ u

0

th(t)dt√
u2 − t2

]u=1. (4.8)

The solution of the integral formula (4.7) can be derived in the following theorem.
Theorem When the known function h(t) takes a Legendre polynomial form, the

eigenfunctions of Eq. (4.7) have the form

βφ(r) =
(−1)nBn22n(2n + 1)(n!)2

π2
√

1 − r2(2n)!
P2n(

√
1 − r2) (4.9)

where P2n(y) is the Legendre polynomial, and

Bn =
√
πΓ(n + 1)

2Γ(n + 3/2)
. (4.10)
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The proof of this theorem depends on the following two lemmas.
Lemma 1 For all integers (n > 0) the value of the term

Ln(r) =
d2

dr2

∫ r

0

tP2n(
√

1 − t2)dt√
r2 − t2

(4.11)

takes the form

Ln(r) = (2n + 1)rBn[3P (0,32 )
n−1 (2u2 − 1) + (2n + 3)u2P

(1,52 )
n−2 (2u2 − 1)], (4.12)

where Bn is given by (4.10) and P
(α,β)
n (x) is the Jacobi polynomial of order n (Eq. (3.12));

and n ≥ 0, where P
(α,β)
n (x) = 0 for n < 0.

Proof: To prove lemma 1, we assume the new parameters ξ =
√

1 − r2, η =
√

1 − t2,
in the integral

L(1)
n (r) =

∫ r

0

tP2n(
√

1 − t2)dt√
r2 − t2

, (4.13)

to have

L(1)
n (

√
1 − ξ2) =

∫ 1

ξ

ηP2n(η)dη√
η2 − ξ2

, (4.14)

which can be adapted to the form

L(1)
n (

√
1 − ξ2) =

∫ 1

ξ

P
(0,−1

2 )
n (2η2 − 1)ηdη√

η2 − ξ2
(4.15)

through using the relation [7]

P2n(x) = C
1
2
2n(x) = P

(0,−1
2 )

n (2x2 − 1),

where Cλ
n(x) is the Gegenbauer polynomial.

Putting in (4.15) t = 2ξ2−1, v = 2η2−1, then using the transformation v = 1−(1−t)τ ,
the formula (4.15) becomes

L(1)
n (

√
1 − t

2
) = 2−

3
2

∫ 1

0

(1 − t)
1
2 (1 − τ )

1
2P

(0,−1
2 )

n (1 − (1 − t)τ )dτ. (4.16)
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Using the integral relation Eq. (7.39-2), pp.856 of [9])

∫ 1

0

tλ−1(1 − t)µ−1P (α,β)
n (1 − γt)dt =

Γ(n + α + 1)Γ(λ)Γ(µ)
Γ(α + 1)Γ(λ + µ)n!

× 3F2(−n, n + α + β, λ;α + 1; λ + µ; γ/2),

(4.17)

integral (4.16), becomes

L(1)
n (r) = rBnP

(−1,12 )
n (2r2 − 1), (4.18)

where Bn is given by Eq. (4.10).
In view of the Jacobi differential relation [7],

∂

∂x
P (α,β)

n (x) =
n + α + β + 1

2
P

(α+1,β+1)
n−1 (x). (4.19)

Differentiating Eq. (4.19) with respect to r, then using Eq. (4.19), we get

d

dr
L(1)

n (r) = Bn[P (−1,12 )
n (2r2 − 1) + (2n + 1)r2P

(0,32 )
n−1 (2r2 − 1)]. (4.20)

The value of δ in Eq. (4.8) can be obtained from (4.20) by putting r = 1, to have

δ = (2n + 1)Bn. (4.21)

The required result of Eq.(4.12) is obtained after differentiating Eq. (4.21) with respect
to r, and using Eq. (4.20) again. ✷

Lemma 2 The following relations hold:

z 3F2(−n + 2, n +
5
2
, 1; 2,

5
2

; z) =
3

(2n + 3)(n− 1)
− 3

√
π(n − 2)!

2(2n + 3)Γ(n + 1
2)

P
( 1
2 ,1)

n−1 (1 − 2z);

(4.22)

z 3F2(−n + 2, n +
5
2
, 1; 2,

3
2

; z) =
1

(2n + 3)(n− 1)
−

√
π(n− 2)!

(2n + 3)Γ(n− 1
2 )

P
(−1

2 ,2)
n−1 (1 − 2z),

(4.23)

where 3F2(a1, a2, a3; b1, b2; z) is the generalized hypergeometric function
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Proof: To prove Eq. (4.22) we use Eq. (4.17) to obtain

∫ 1

0

(1 − t)
1
2P

(1,52 )
n−2 (1 − (1 − ξ)t)dt =

2(n − 1)
3 3F2(−n + 2, n +

5
2
, 1; 2;

5
2

; z). (4.24)

Assume

f(z) = z 3F2(−n + 2, n +
5
2
, 1; 2;

5
2

; z), (4.25)

then differentiate it, to have

df(z)
dz

= 2F1(−n + 2, n +
5
2

;
5
2

; z). (4.26)

Here, we use the famous relation [7]

3F2(−n + 2, n +
5
2
, 1; 2;

5
2

; z) =
∞∑

m=0

(−n + 2)m(n + 5
2)m(1)m

m!(2)m(5
2 )m

zm. (4.27)

The formula (4.26) can be adapted with the help of Eq. (3.12) to obtain

df(z)
dz

=
2
√
π(n− 2)!

4Γ(n + 1
2)

P
(3
2 ,2)

n−2 (1 − 2z). (4.28)

Integrating Eq. (4.28), then using the formula (4.19) with the condition f(0) = 0, we
have

f(z) =
3

(2n + 3)(n− 1)
− 3

√
π(n− 2)!

2(2n + 3)Γ(n + 1
2 )

P
(1
2 ,1)

n−1 (1 − 2z). (4.29)

Using the same approach, we can prove

g(z) =z 3F2(−n + 2, n +
5
2
, 1; 2,

3
2

; z)

=
1

(2n + 3)(n− 1)
−

√
π(n− 2)!

(2n + 3)Γ(n− 1
2 )

P
(−1

2 ,2)
n−1 (1 − 2z) (4.30)

which completes the proof of the lemma. ✷

Now, the integral term

C(r) =
1
π2

∫ 1

r

du√
u2 − r2

d2

du2

∫ u

0

sh(s)ds√
u2 − s2

(4.31)
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of Eq. (4.7) can be evaluated. To achieve this, we introduce the value of (4.12) into (4.31)
to get

Cn(t) =
(2n + 1)Bn

π2

[
3

∫ 1

t

uP
(0,32 )
n−1 (2u2 − 1)√

u2 − t2
du + (2n + 3)

∫ 1

t

u3P
(1,52 )
n−2 (2u2 − 1)√

u2 − t2
du

]
.

(4.32)

Using the substitutions ξ = 2t2−1, η = 2u2−1, then taking the parameter η = 1−(1−ξ)τ ,
0 < τ < 1, the formula (4.32) can be written in the form

Cn(t) =
(2n + 1)Bn

2
3
2π2

√
1 − ξ

[
3Gn(ξ) +

1
2

(2n + 3)(1 − ξ)Qn(ξ) +
1
2

(2n + 3)(1 + ξ)Hn(ξ)
]
,

(4.33)

where

Gn(ξ) =
∫ 1

0
(1 − τ )−

1
2P

(0,32 )
n−1 (1 − (1 − ξ)τ )dτ

Qn(ξ) =
∫ 1

0
(1 − τ )−

1
2P

(1,52 )
n−2 (1 − (1 − ξ)τ )dτ

Hn(ξ) =
∫ 1

0
(1 − τ )−

1
2P

(1,52 )
n−1 (1 − (1 − ξ)τ )dτ,

(4.34)

with the aid of the integral formula (4.17) the values of Gn(ξ), Qn(ξ) and Hn(ξ) can be
obtained in the form

Gn(ξ) =
√

π(n−1)!
Γ(n+ 1

2 )
P

(1
2 ,1)

n−1 (ξ),

Qn(ξ) = 2
(2n+3)(1−ξ)

[
2 −

√
π(n−1)!

Γ(n+ 1
2 )

P
(1
2 ,1)

n−1 (ξ)
]
,

Hn(ξ) = 4
(2n+3)(1−ξ)

[
1 −

√
π(n−1)!

Γ(n−1
2 )

P
(− 1

2 ,2)
n−1 (ξ)

]
.

(4.35)

Substituting the results of Eq. (4.35) in Eq. (4.32), we get

Cn(t) =
(2n + 1)

√
1 − ξBn

2 3
2π2

{2
√
π(n − 1)!

Γ(n− 1
2
)

[ 1 − ξ

n− 1
2

P
( 1
2 ,1)

n−1 (ξ) − (1 + ξ)P (−1
2 ,2)

n−1 (ξ)
]

+ 4
}
.

(4.36)

Our aim is to represent the Jacobi polynomial in (4.36) in the form of Legendre polyno-
mial. Firstly, we write

E(1)
n (ξ) =

1 − ξ

n− 1
2

P
( 1
2 ,1)

n−1 (ξ), (4.37)
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then use the famous relation [7]

P
( 1
2 ,1)

n−1 (t) =
(−1)n

(2n + 1)t
d

dt

[
P2n(

√
1 − t2)

]
, (4.38)

to have

E(1)
n (ξ) =

4(−1)n

(4n2 − 1)

√
1 − t2

t

[
(1 − y)2P

′
2n(y)

]
, y =

√
1 − t2 (4.39)

Using the recurrence relation [7]

(1 − x2)P
′
n(x) = (n + 1)[xPn(x) − Pn+1(x)], (4.40)

the final formula of E(1)
n (ξ) becomes

E(1)
n (ξ) =

4(−1)n

(2n− 1)
y

1 − y2
[yP2n(y) − P2n+1(y)], (y =

√
1 − t2, t =

√
1 + ξ

2
).

(4.41)

Secondly, we write

E(2)
n (ξ) = (1 + ξ)P (− 1

2 ,2)
n−1 (ξ), (4.42)

which can be adapted to the form

E(2)
n (ξ) = 2t2P (− 1

2 ,2)
n−1 (2t2 − 1). (4.43)

Using the famous relation [7]

Cγ
2n(x) = (γ)n(

1
2

)nP
(γ− 1

2 ,− 1
2 )

n (2x2 − 1), (4.44)

formula (4.43) takes the form

E(2)
n (ξ) =

6t2(−1)n−1

(2n + 1)(2n− 1)
C

n
2

n−2(t). (4.45)

Using the relation (see [7])

DmCγ
n(x) = 2m(γ)mCγ+m

n−m(x), Dm =
dm

dxm
, 0 ≤ m ≤ n, (4.46)
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the value of E(2)
n (ξ) becomes

E(2)
n (ξ) =

2(−1)n−1(1 − y2)
(4n2 − 1)

d2P2n(y)
dy2

. (4.47)

To obtain the relation between the second derivatives of Legendre polynomial with zero
derivatives, we use the Legendre differential equations [7],

(1 − y2)P
′′
2n(y) − 2yP

′
2n(y) + 2n(2n + 1)P2n(y) = 0 (4.48)

and

(1 − y2)P
′
2n(y) = (2n + 1)[yP2n(y) − P2n+1(y)]. (4.49)

Hence Eq. (4.47) becomes

E(2)
n (ξ) =

4(−1)n−1

(2n− 1)

[y2P2n(y) − yP2n+1(y)
(1 − y2)

− 2nP2n(y)
]
. (4.50)

Using the final results of Eqs. (4.40) and (4.50) in (4.36), we obtain

Cn(t) =
(2n + 1)Bn

π2
√

1 − t2

[
1 − (−1)n

√
πn!

Γ(n + 1
2 )

P2n(
√

1 − t2)
]
. (4.51)

Introducing the value of δ of Eq. (4.21) and the value of Cn(t) of Eq. (4.51) in (4.7), the
formula (4.9) is obtained.

5. Numerical Results

The behavior of the function φ0m(r) is obtained for the first harmonic m = 1 in Figure
1, for the second harmonic m = 2 in Figure 2, and for certain values of µ0, λ, θ, and γ0.
It is seen from these figures that as we move away from origin, oscillations are increasing
and there is no damping. In Figure 2, the first zero of the function occurs at larger values
of r in comparison with Figure 1.
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0 0.2 0.4 0.6 0.8 1
r

-1.5 × 107

-1× 107

-5× 106

0

5× 106

φ 0
m

(r
)

{{A_2m, m,λ _0, µ _0, q ,γ _0}={0.1, 1, 0.1, 0.1, 0.1, 0.1}}

Figure 1. The behavior of the function φ0m(r) is illustrated for the first harmonic m = 1. The

parameters are assumed have the values: µ0 = 0.1, λ = 0.1, θ = 0.1, and γ0 = 0.1.

0 0.2 0.4 0.6 0.8 1r

-2×  

0

2× 106

4× 106

φ 0
m

(r
)

{{A_2m,m, λ _0, µ _0,q, γ _0}={0.1, 2 , 0.1,0.1,0.1,0.1}}

106

Figure 2. The same of Fig. 1 but m = 2.
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In Figure 3, the values of the potential function ψ(x, y, t) for the unit values of t are
obtained. For r = 0.1 the surface has minima and increases as θ increases. The stability
of the surface is obtained for higher values of θ.

Figure 3. The 3-dimensional plot of potential function ψ(θ, r, t) for the unit values of t.

6. Conclusions and Remarks

From the above results and discussion the following may be concluded.

(1) In three-dimensional semi-symmetric Hertz contact problem when the impress
force is variable with time, t ∈ [0, T ], and when the resistance of the material of contact
domain with the external resistance are also variable with time, we get an integral
equation of mixed type.

(2) The potential kernel of Fredholm integral term W (u, v) = 2π
√
uv

∫ ∞
0

Jm(tu)Jm(tv)dt,
takes the form of a Weber-Sonien integral and its kernel satisfies the form

( ∂2

∂u2
− ∂2

∂v2

)
W (u, v) = [h(u) − h(v)]W (u, v), (6.1)
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where

h(x) = (m2 − 1
4

)x−2.

Formula (6.1) represents a nonhomogeneous wave equation.
(3) The elliptic integral form can be obtained as a special case of this work when

m = 0 in the value of the kernel of Eq. (2.10), as

W (x, y) =
1

π(x + y)
E

( 2
√
xy

(x + y)

)
. (6.2)

Kovalenko [10], developed the Fredholm integral equation of the first kind for the mechan-
ics mixed problem of continuous media and obtained the eigenfunctions of the problem,
when the kernel is in the form of elliptic function of the form (6.2).

(4) The integral equation with logarithmic kernel with respect to position is contained
as a special case of this work when m = ±1

2 for symmetric and skew symmetric cases,
respectively, in Eq. (2.10).

(5) The eigenfunctions for the contact problem of zero harmonic symmetric kernel of
the potential function are included when m = 0. Also, the eigenfunction for the contact
problem of the first and higher order harmonic, m ≥ 1, is included as a special case.

(6) Krein’s method is considered one of the best methods for solving the integral
equation of the first kind for contact problems depending on the known function and by
avoiding singular point.
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