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A Note on a Problem of J. Galambos
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Abstract

For any x ∈ (0, 1], let

x =
1

d1
+

a1

b1

1

d2
+ · · ·+ a1a2 · · · an

b1b2 · · · bn

1

dn+1
+ · · ·

be the Oppenheim series expansion of x. In this paper, we investigate the Hausdorff

dimension of the set Bm = {x : 1 < dj/hj−1(dj−1) ≤ m, j ≥ 1} which J. Galambos

posed as an open question in 1976(see[6]). In [11], it has been considered with the

condition hj(d) → ∞ as d → ∞. In this note, we give a bound estimation of more

general case without the former assumption.

Key Words: Oppenheim series expansion; Restricted Oppenheim series expansion;
Lüroth series; Hausdorff dimension.

1. Introduction

Let an and bn, n ≥ 1, be two sequences of positive integer-valued functions defined on
N. The algorithm 0 < x ≤ 1, x = x1, and, for any n ≥ 1, with positive integers dn(x),

1
dn(x)

< xn ≤ 1
dn(x)− 1

, xn =
1

dn(x)
+
an(dn(x))
bn(dn(x))

· xn+1 (1)

leads to the series expansion

x =
1

d1(x)
+

∞∑

n=1

a1(d1(x)) · · ·an(dn(x))
b1(d1(x)) · · · bn(dn(x))

1
dn+1(x)

, (2)
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which is called the Oppenheim series expansion of x. Set

hn(j) =
an(j)
bn(j)

j(j − 1), j ≥ 2. (3)

If hn(j) is integer-valued (n ≥ 1, j ≥ 2), the formula (2) is termed the restricted
Oppenheim series expansion of x. Here and in what follows, we always assume hn is
integer-valued, for all n ≥ 1.

The algorithm (1) implies

d1(x) ≥ 2, dn+1(x) ≥ hn(dn(x)) + 1 for any n ≥ 1. (4)

On the other hand, any {dn, n ≥ 1} of integer sequence satisfying (4) is an Oppenheim
admissible sequence, that is, there exists a unique x ∈ (0, 1] such that dn(x) = dn for any
n ≥ 1. The representation (2) under (1) is unique.

The representation (2) under (1) was first studied by A. Oppenheim [8] who estab-
lished the arithmetical properties, including the question of rationality of the expansion.
The foundations of the metric theory were laid down by J. Galambos [3], [4], [5], [7],
see also the monographs of J. Galambos [6], F. Schweiger [9] and W. Vervaat [10]. The
exceptional sets are considered by J. Wu [12]. From [6], Chapter 6, it can be seen that
the integer approximation Tn(x) to the ratios dn(x)/hn−1(dn−1) defined by

Tn(x) <
dn(x)

hn−1(dn−1(x))
≤ Tn(x) + 1, n ≥ 1, (5)

where h0(x) = 1, play an important role in the metric theory of the Oppenheim ex-
pansions. {Tn(x), n ≥ 1} are stochastically independent and they are distributed as
the denominators in the Lűroth expansion. J. Galambos (see [6] Page 132), posed the
question to calculate the Hausdorff dimension of the set

Bm = {x ∈ (0, 1) : 1 ≤ Tn(x) ≤ m, n ≥ 1}

and compare this to Lűroth case. In [11], they solved this problem under the assumption
hj(d) ≥ d− 1, for all j ≥ 1. In this paper, we consider the general case.

We use | · | to denote the diameter of a subset of (0, 1], dimH to denote the Hausdorff
dimension and ‘cl’ the closure of a subset of (0, 1], respectively. Hausdorff dimension of
Bm In this section, we give the main result of this paper.

We start with a result which proved in [11].
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Lemma 1.1 Suppose hn(j) ≥ j − 1 for all n ≥ 1 and j ≥ 2, then for any m ≥ 3, the set

Cm = {x ∈ (0, 1] : 1 <
dj(x)

hj−1(dj−1(x))
≤ m for any j ≥ 2}

is of Hausdorff dimension 1.

In fact, [11] shows, under the assumption that hj(d) → ∞ as d→ ∞, Bm is of hausdorff

dimension 1, as a continuity of [11]. Here, we consider the case that hj is bounded.
Now we state our main result.

Let

Bm = {x ∈ (0, 1) : 1 <
dn(x)

hn−1(dn−1(x))
≤ m, n ≥ 1}, for m ≥ 2 (6)

then, we have the following theorem.

Theorem 1.2 Assume that l ≤ hj ≤ L < +∞ holds ultimately, then

inf
l≤a≤L

S(a) ≤ dimH Bm ≤ sup
l≤a≤L

S(a), (7)

where S(a), for any integer a ≥ 1, is defined as

S(a) :
∑

a<b≤ma

(
a

b(b− 1)
)S(a) = 1. (8)

Proof. Assume that l ≤ hj ≤ L for all k ≥ t0. We will make use of a kind of symbolic
space defined as follows: for any k ≥ 1, let

Dk = {σ = (σ1, · · · , σk) ∈ Nk, 1 <
σj

hj−1(σj−1)
≤ m for 1 ≤ j ≤ k},

and define

D∗ =
∞⋃

k=0

Dk (D0 := ∅ as usual).

For any k ≥ 1 and σ = (σ1, · · · , σk) ∈ Dk, let Iσ and Jσ denote the following closed
subintervals of (0, 1], respectively,

Iσ = cl{x ∈ (0, 1], d1(x) = σ1, · · · , dk(x) = σk}, Jσ =
⋃

hk(dk)<d≤mhk(dk)

Iσ∗d.
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For each σ ∈ Dk, Jσ is called an k-th order interval. It is obvious that

Bm =
+∞⋂

k=1

⋃

σ∈Dk

Jσ. (9)

From the proof of Theorem 6.1 in [6], we have, for any k ≥ 1, for any σ ∈ Dk, Iσ is
an interval with the endpoints

Aσ =
a1(σ1)
b1(σ1)

· a2(σ2)
b2(σ2)

· · · ak−1(σk−1)
bk−1(σk−1)

1
σk
,

Bσ =
a1(σ1)
b1(σ1)

· a2(σ2)
b2(σ2)

· · · ak−1(σk−1)
bk−1(σk−1)

1
σk − 1

. (10)

As a result

|Iσ| = a1(σ1)
b1(σ1)

· a2(σ2)
b2(σ2)

· · · ak−1(σk−1)
bk−1(σk−1)

1
σk(σk − 1)

, (11)

|Jσ| =
∑

hk(σk)<d≤mhk(σk)

a1(σ1)
b1(σ1)

· a2(σ2)
b2(σ2)

· · · ak(σk)
bk(σk)

1
d(d− 1)

= (1 − 1
m

)
a1(σ1)
b1(σ1)

· a2(σ2)
b2(σ2)

· · · ak−1(σk−1)
bk−1(σk−1)

1
σk(σk − 1)

. (12)

As for the upper bound of dimBm, notice that for any k ≥ 1,
⋃

σ∈Dk

Iσ is a natural

covering system of Bm. Thus, for any s > sup
l≤a≤L

S(a), by the definition of S(a), we have

Hs(Bm) ≤ lim inf
n→+∞

∑

σ∈Dn+1

|Iσ|s

= lim inf
n→+∞

∑

σ∈Dn+1

(
a1(σ1)
b1(σ1)

· a2(σ2)
b2(σ2)

· · · ak(σk)
bk(σk)

1
σk+1(σk+1 − 1)

)s

= lim inf
n→+∞

∑

σ∈Dn

|Iσ|s ·
∑

hk(σk)<σk+1≤mhk(σk)

(
hk(σk)

σk+1(σk+1 − 1)
)s

≤ lim inf
n→+∞

∑

σ∈Dn

|Iσ|s ≤ · · · ≤
∑

σ∈Dt0

|Iσ |s < +∞. (13)
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This indicates dimH Bm ≤ sup
l≤a≤L

S(a).

Now we investigate the lower bound.

Since Hs(E) = Hs
℘(E) in R1, where Hs

℘(E) denotes in the evaluation of Hausdorff

measure of E, any cover of E is restricted to a collection of open intervals. By (9) Bm

is a closed set, then by Heine-Borel Theorem, any open covering system U, consisting
of an enumerable number of open intervals, can be replaced by a finite number of open
intervals; further, these intervals may be closed by the addition of their endpoints, and
finally these intervals may be altered to have their endpoints in Bm, without at any stage
destroying the property that Uis a covering system of Bm and increasing

∑
Ui∈U |Ui|s.

Let G be an interval in U, of positive length. G is contained in I0 = [0, 1] and is not
contained in an Iσ , σ ∈ Dk, for k sufficient large. Therefore there exists a largest value of
k, say n, for which G belongs to some Iσ, σ ∈ Dn. We see then that there exists numbers
n; σ1, · · · , σn; k, j with k �= j, such that G is contained in Iσ1···σn , and

GIσ1···σnk �= ∅, GIσ1···σnj �= ∅.

And for the endpoints of G are in Bm, then

GJσ1···σnk �= ∅, GJσ1···σnj �= ∅.

Therefore |G| is greater than or equal to the gap between Jσ1···σnk and Jσ1···σnj , thus, by

(10), we know, assume k < l,

|G| ≥ 1
m

a1(σ1)
b1(σ1)

· · · an(σn)
bn(σn)

1
k(k − 1)

≥ 1
m3

a1(σ1)
b1(σ1)

· · · an(σn)
bn(σn)

1
h2

n(σn)

≥ 1
m3L

|Iσ1···σn |.

Let Ω be the finite set of intervals Iσ corresponding in the above way to intervals G of
U. Of course,

⋃
I∈Ω I is an covering system of Bm.

Let K1 = max{k : σ ∈ Dk, Iσ ∈ Ω}, K2 = min{k : σ ∈ Dk, Iσ ∈ Ω} and define,
WK1 = {Iσ ∈ Ω : σ ∈ DK1}.
By the definition of K1, we know, if Iσ1,··· ,σ(K1−1)∗j ∈WK1 , then, for all hK1−1(σK1−1) <

j ≤ mhK1−1(σK1−1), Iσ1,··· ,σK1−1∗j ∈WK1 .

107



SHEN, LIU, ZHOU

For any s ≤ inf
l≤a≤L

S(a),

∑

hK1−1(σK1−1)<j≤mhK1−1(σK1−1)

|Iσ1,··· ,σK1−1∗j |s

= |Iσ1,··· ,σK1−1 |s
∑

hK1−1(σK1−1)<j≤mhK1−1(σK1−1)

(
hK1−1(σK1−1)
j(j − 1)

)s

≥ |Iσ1,··· ,σK1−1 |s.

The argument above shows that we can decrease the basic interval covering to a new one
with lower degree (here, the degree of Iσ is defined as the length of σ as a word), and
without increasing the sum. As a result, we can replace the covering Ω by a new covering
Ω∗ in which all basic interval are of the same order satisfying

∑

Iσ∈Ω

|Iσ|s ≥
∑

σ∈Dk2

|Iσ|s.

At same time, since

∑

σ∈Dk+1

|Iσ|s =
∑

σ∈Dk

∑

hk(σk)<j≤mhk(σk)

|Iσ∗j|s

≥
∑

σ∈Dk

|Iσ|s ≥ · · · ≥
∑

σ∈Dt0

|Iσ|s.

Thus

∑

G∈U

|G|s ≥ 1
m3L

∑

σ∈Ω

|Iσ|s ≥ 1
m3L

∑

σ∈Dk2

|Iσ|s ≥ 1
m3L

∑

σ∈Dt0

|Iσ |s. (14)

Since s is arbitrary, we have dimH Bm ≥ inf
l≤a≤L

S(a). This finishes the proof. ✷

Applying Theorem 2.2 to the Lüroth series that hj = 1, we have

Corollary 1.3 For the Lüroth series expansion, we have

dimBm = S(1).

Lüroth series expansion also stands as a special case to indicate that as a general
assertion, this theorem can not be improved.
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