# A Note on a Problem of J. Galambos 

Lu-ming SHEN, Yue-hua LIU and Yu-yuan ZHOU


#### Abstract

For any $x \in(0,1]$, let $$
x=\frac{1}{d_{1}}+\frac{a_{1}}{b_{1}} \frac{1}{d_{2}}+\cdots+\frac{a_{1} a_{2} \cdots a_{n}}{b_{1} b_{2} \cdots b_{n}} \frac{1}{d_{n+1}}+\cdots
$$ be the Oppenheim series expansion of $x$. In this paper, we investigate the Hausdorff dimension of the set $B_{m}=\left\{x: 1<d_{j} / h_{j-1}\left(d_{j-1}\right) \leq m, j \geq 1\right\}$ which J. Galambos posed as an open question in 1976(see[6]). In [11], it has been considered with the condition $h_{j}(d) \rightarrow \infty$ as $d \rightarrow \infty$. In this note, we give a bound estimation of more general case without the former assumption.


Key Words: Oppenheim series expansion; Restricted Oppenheim series expansion; Lüroth series; Hausdorff dimension.

## 1. Introduction

Let $a_{n}$ and $b_{n}, n \geq 1$, be two sequences of positive integer-valued functions defined on $\mathbf{N}$. The algorithm $0<x \leq 1, x=x_{1}$, and, for any $n \geq 1$, with positive integers $d_{n}(x)$,

$$
\begin{equation*}
\frac{1}{d_{n}(x)}<x_{n} \leq \frac{1}{d_{n}(x)-1}, \quad x_{n}=\frac{1}{d_{n}(x)}+\frac{a_{n}\left(d_{n}(x)\right)}{b_{n}\left(d_{n}(x)\right)} \cdot x_{n+1} \tag{1}
\end{equation*}
$$

leads to the series expansion

$$
\begin{equation*}
x=\frac{1}{d_{1}(x)}+\sum_{n=1}^{\infty} \frac{a_{1}\left(d_{1}(x)\right) \cdots a_{n}\left(d_{n}(x)\right)}{b_{1}\left(d_{1}(x)\right) \cdots b_{n}\left(d_{n}(x)\right)} \frac{1}{d_{n+1}(x)} \tag{2}
\end{equation*}
$$

[^0]which is called the Oppenheim series expansion of $x$. Set
\[

$$
\begin{equation*}
h_{n}(j)=\frac{a_{n}(j)}{b_{n}(j)} j(j-1), j \geq 2 \tag{3}
\end{equation*}
$$

\]

If $h_{n}(j)$ is integer-valued ( $n \geq 1, j \geq 2$ ), the formula (2) is termed the restricted Oppenheim series expansion of $x$. Here and in what follows, we always assume $h_{n}$ is integer-valued, for all $n \geq 1$.

The algorithm (1) implies

$$
\begin{equation*}
d_{1}(x) \geq 2, d_{n+1}(x) \geq h_{n}\left(d_{n}(x)\right)+1 \text { for any } n \geq 1 \tag{4}
\end{equation*}
$$

On the other hand, any $\left\{d_{n}, n \geq 1\right\}$ of integer sequence satisfying (4) is an Oppenheim admissible sequence, that is, there exists a unique $x \in(0,1]$ such that $d_{n}(x)=d_{n}$ for any $n \geq 1$. The representation (2) under (1) is unique.

The representation (2) under (1) was first studied by A. Oppenheim [8] who established the arithmetical properties, including the question of rationality of the expansion. The foundations of the metric theory were laid down by J. Galambos [3], [4], [5], [7], see also the monographs of J. Galambos [6], F. Schweiger [9] and W. Vervaat [10]. The exceptional sets are considered by J. Wu [12]. From [6], Chapter 6, it can be seen that the integer approximation $T_{n}(x)$ to the ratios $d_{n}(x) / h_{n-1}\left(d_{n-1}\right)$ defined by

$$
\begin{equation*}
T_{n}(x)<\frac{d_{n}(x)}{h_{n-1}\left(d_{n-1}(x)\right)} \leq T_{n}(x)+1, n \geq 1 \tag{5}
\end{equation*}
$$

where $h_{0}(x)=1$, play an important role in the metric theory of the Oppenheim expansions. $\left\{T_{n}(x), n \geq 1\right\}$ are stochastically independent and they are distributed as the denominators in the Lüroth expansion. J. Galambos (see [6] Page 132), posed the question to calculate the Hausdorff dimension of the set

$$
B_{m}=\left\{x \in(0,1): 1 \leq T_{n}(x) \leq m, n \geq 1\right\}
$$

and compare this to Lűroth case. In [11], they solved this problem under the assumption $h_{j}(d) \geq d-1$, for all $j \geq 1$. In this paper, we consider the general case.

We use $|\cdot|$ to denote the diameter of a subset of $(0,1], \operatorname{dim}_{H}$ to denote the Hausdorff dimension and 'cl' the closure of a subset of $(0,1]$, respectively. Hausdorff dimension of $B_{m}$ In this section, we give the main result of this paper.

We start with a result which proved in [11].

Lemma 1.1 Suppose $h_{n}(j) \geq j-1$ for all $n \geq 1$ and $j \geq 2$, then for any $m \geq 3$, the set

$$
C_{m}=\left\{x \in(0,1]: 1<\frac{d_{j}(x)}{h_{j-1}\left(d_{j-1}(x)\right)} \leq m \text { for any } j \geq 2\right\}
$$

is of Hausdorff dimension 1.
In fact, [11] shows, under the assumption that $h_{j}(d) \rightarrow \infty$ as $d \rightarrow \infty, B_{m}$ is of hausdorff dimension 1 , as a continuity of [11]. Here, we consider the case that $h_{j}$ is bounded.

Now we state our main result.
Let

$$
\begin{equation*}
B_{m}=\left\{x \in(0,1): 1<\frac{d_{n}(x)}{h_{n-1}\left(d_{n-1}(x)\right)} \leq m, n \geq 1\right\}, \quad \text { for } m \geq 2 \tag{6}
\end{equation*}
$$

then, we have the following theorem.
Theorem 1.2 Assume that $l \leq h_{j} \leq L<+\infty$ holds ultimately, then

$$
\begin{equation*}
\inf _{l \leq a \leq L} S(a) \leq \operatorname{dim}_{H} B_{m} \leq \sup _{l \leq a \leq L} S(a) \tag{7}
\end{equation*}
$$

where $S(a)$, for any integer $a \geq 1$, is defined as

$$
\begin{equation*}
S(a): \sum_{a<b \leq m a}\left(\frac{a}{b(b-1)}\right)^{S(a)}=1 \tag{8}
\end{equation*}
$$

Proof. Assume that $l \leq h_{j} \leq L$ for all $k \geq t_{0}$. We will make use of a kind of symbolic space defined as follows: for any $k \geq 1$, let

$$
D_{k}=\left\{\sigma=\left(\sigma_{1}, \cdots, \sigma_{k}\right) \in \mathbf{N}^{k}, 1<\frac{\sigma_{j}}{h_{j-1}\left(\sigma_{j-1}\right)} \leq m \text { for } 1 \leq j \leq k\right\}
$$

and define

$$
D^{*}=\bigcup_{k=0}^{\infty} D_{k}\left(D_{0}:=\emptyset \text { as usual }\right)
$$

For any $k \geq 1$ and $\sigma=\left(\sigma_{1}, \cdots, \sigma_{k}\right) \in D_{k}$, let $I_{\sigma}$ and $J_{\sigma}$ denote the following closed subintervals of $(0,1]$, respectively,

$$
I_{\sigma}=\operatorname{cl}\left\{x \in(0,1], d_{1}(x)=\sigma_{1}, \cdots, d_{k}(x)=\sigma_{k}\right\}, \quad J_{\sigma}=\bigcup_{h_{k}\left(d_{k}\right)<d \leq m h_{k}\left(d_{k}\right)} I_{\sigma * d} .
$$

## SHEN, LIU, ZHOU

For each $\sigma \in D_{k}, J_{\sigma}$ is called an $k$-th order interval. It is obvious that

$$
\begin{equation*}
B_{m}=\bigcap_{k=1}^{+\infty} \bigcup_{\sigma \in D_{k}} J_{\sigma} \tag{9}
\end{equation*}
$$

From the proof of Theorem 6.1 in [6], we have, for any $k \geq 1$, for any $\sigma \in D_{k}, I_{\sigma}$ is an interval with the endpoints

$$
\begin{align*}
& A_{\sigma}=\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{a_{2}\left(\sigma_{2}\right)}{b_{2}\left(\sigma_{2}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \frac{1}{\sigma_{k}}, \\
& B_{\sigma}=\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{a_{2}\left(\sigma_{2}\right)}{b_{2}\left(\sigma_{2}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \frac{1}{\sigma_{k}-1} . \tag{10}
\end{align*}
$$

As a result

$$
\begin{align*}
\left|I_{\sigma}\right| & =\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{a_{2}\left(\sigma_{2}\right)}{b_{2}\left(\sigma_{2}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \frac{1}{\sigma_{k}\left(\sigma_{k}-1\right)}  \tag{11}\\
& \left|J_{\sigma}\right|=\sum_{h_{k}\left(\sigma_{k}\right)<d \leq m h_{k}\left(\sigma_{k}\right)} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{a_{2}\left(\sigma_{2}\right)}{b_{2}\left(\sigma_{2}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)} \frac{1}{d(d-1)} \\
& =\left(1-\frac{1}{m}\right) \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{a_{2}\left(\sigma_{2}\right)}{b_{2}\left(\sigma_{2}\right)} \cdots \frac{a_{k-1}\left(\sigma_{k-1}\right)}{b_{k-1}\left(\sigma_{k-1}\right)} \frac{1}{\sigma_{k}\left(\sigma_{k}-1\right)} . \tag{12}
\end{align*}
$$

As for the upper bound of $\operatorname{dim} B_{m}$, notice that for any $k \geq 1, \bigcup_{\sigma \in D_{k}} I_{\sigma}$ is a natural covering system of $B_{m}$. Thus, for any $s>\sup _{l \leq a \leq L} S(a)$, by the definition of $S(a)$, we have

$$
\begin{align*}
& H^{s}\left(B_{m}\right) \leq \liminf _{n \rightarrow+\infty} \sum_{\sigma \in D_{n+1}}\left|I_{\sigma}\right|^{s} \\
& =\liminf _{n \rightarrow+\infty} \sum_{\sigma \in D_{n+1}}\left(\frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdot \frac{a_{2}\left(\sigma_{2}\right)}{b_{2}\left(\sigma_{2}\right)} \cdots \frac{a_{k}\left(\sigma_{k}\right)}{b_{k}\left(\sigma_{k}\right)} \frac{1}{\sigma_{k+1}\left(\sigma_{k+1}-1\right)}\right)^{s} \\
& =\liminf _{n \rightarrow+\infty} \sum_{\sigma \in D_{n}}\left|I_{\sigma}\right|^{s} \cdot \sum_{h_{k}\left(\sigma_{k}\right)<\sigma_{k+1} \leq m h_{k}\left(\sigma_{k}\right)}\left(\frac{h_{k}\left(\sigma_{k}\right)}{\sigma_{k+1}\left(\sigma_{k+1}-1\right)}\right)^{s} \\
& \leq \liminf _{n \rightarrow+\infty} \sum_{\sigma \in D_{n}}\left|I_{\sigma}\right|^{s} \leq \cdots \leq \sum_{\sigma \in D_{t_{0}}}\left|I_{\sigma}\right|^{s}<+\infty . \tag{13}
\end{align*}
$$

This indicates $\operatorname{dim}_{H} B_{m} \leq \sup _{l \leq a \leq L} S(a)$.
Now we investigate the lower bound.
Since $H^{s}(E)=H_{\wp}^{s}(E)$ in $R^{1}$, where $H_{\wp}^{s}(E)$ denotes in the evaluation of Hausdorff measure of $E$, any cover of $E$ is restricted to a collection of open intervals. By (9) $B_{m}$ is a closed set, then by Heine-Borel Theorem, any open covering system U, consisting of an enumerable number of open intervals, can be replaced by a finite number of open intervals; further, these intervals may be closed by the addition of their endpoints, and finally these intervals may be altered to have their endpoints in $B_{m}$, without at any stage destroying the property that Uis a covering system of $B_{m}$ and increasing $\sum_{U_{i} \in \mathrm{U}}\left|U_{i}\right|^{s}$.

Let $G$ be an interval in U , of positive length. $G$ is contained in $I_{0}=[0,1]$ and is not contained in an $I_{\sigma}, \sigma \in D_{k}$, for $k$ sufficient large. Therefore there exists a largest value of $k$, say n, for which $G$ belongs to some $I_{\sigma}, \sigma \in D_{n}$. We see then that there exists numbers $n ; \sigma_{1}, \cdots, \sigma_{n} ; k, j$ with $k \neq j$, such that $G$ is contained in $I_{\sigma_{1} \cdots \sigma_{n}}$, and

$$
G I_{\sigma_{1} \cdots \sigma_{n} k} \neq \emptyset, G I_{\sigma_{1} \cdots \sigma_{n} j} \neq \emptyset
$$

And for the endpoints of $G$ are in $B_{m}$, then

$$
G J_{\sigma_{1} \cdots \sigma_{n} k} \neq \emptyset, G J_{\sigma_{1} \cdots \sigma_{n} j} \neq \emptyset
$$

Therefore $|G|$ is greater than or equal to the gap between $J_{\sigma_{1} \cdots \sigma_{n} k}$ and $J_{\sigma_{1} \cdots \sigma_{n} j}$, thus, by (10), we know, assume $k<l$,

$$
\begin{aligned}
|G| & \geq \frac{1}{m} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{n}\left(\sigma_{n}\right)}{b_{n}\left(\sigma_{n}\right)} \frac{1}{k(k-1)} \geq \frac{1}{m^{3}} \frac{a_{1}\left(\sigma_{1}\right)}{b_{1}\left(\sigma_{1}\right)} \cdots \frac{a_{n}\left(\sigma_{n}\right)}{b_{n}\left(\sigma_{n}\right)} \frac{1}{h_{n}^{2}\left(\sigma_{n}\right)} \\
& \geq \frac{1}{m^{3} L}\left|I_{\sigma_{1} \cdots \sigma_{n}}\right|
\end{aligned}
$$

Let $\Omega$ be the finite set of intervals $I_{\sigma}$ corresponding in the above way to intervals $G$ of U. Of course, $\bigcup_{I \in \Omega} I$ is an covering system of $B_{m}$.

Let $K_{1}=\max \left\{k: \sigma \in D_{k}, I_{\sigma} \in \Omega\right\}, K_{2}=\min \left\{k: \sigma \in D_{k}, I_{\sigma} \in \Omega\right\}$ and define, $W_{K_{1}}=\left\{I_{\sigma} \in \Omega: \sigma \in D_{K_{1}}\right\}$.
By the definition of $K_{1}$, we know, if $I_{\sigma_{1}, \cdots, \sigma_{\left(K_{1}-1\right)} * j} \in W_{K_{1}}$, then, for all $h_{K_{1}-1}\left(\sigma_{K_{1}-1}\right)<$ $j \leq m h_{K_{1}-1}\left(\sigma_{K_{1}-1}\right), I_{\sigma_{1}, \cdots, \sigma_{K_{1}-1} * j} \in W_{K_{1}}$.

For any $s \leq \inf _{l \leq a \leq L} S(a)$,

$$
\begin{aligned}
& \sum_{h_{K_{1}-1}\left(\sigma_{K_{1}-1}\right)<j \leq m h_{K_{1}-1}\left(\sigma_{K_{1}-1}\right)}\left|I_{\sigma_{1}, \cdots, \sigma_{K_{1}-1} * j}\right|^{s} \\
& =\left|I_{\sigma_{1}, \cdots, \sigma_{K_{1}-1}}\right|^{s} \sum_{h_{K_{1}-1}\left(\sigma_{K_{1}-1}\right)<j \leq m h_{K_{1}-1}\left(\sigma_{K_{1}-1}\right)}\left(\frac{h_{K_{1}-1}\left(\sigma_{K_{1}-1}\right)}{j(j-1)}\right)^{s} \\
& \geq\left|I_{\sigma_{1}, \cdots, \sigma_{K_{1}-1}}\right|^{s} .
\end{aligned}
$$

The argument above shows that we can decrease the basic interval covering to a new one with lower degree (here, the degree of $I_{\sigma}$ is defined as the length of $\sigma$ as a word), and without increasing the sum. As a result, we can replace the covering $\Omega$ by a new covering $\Omega^{*}$ in which all basic interval are of the same order satisfying

$$
\sum_{I_{\sigma} \in \Omega}\left|I_{\sigma}\right|^{s} \geq \sum_{\sigma \in D_{k_{2}}}\left|I_{\sigma}\right|^{s}
$$

At same time, since

$$
\begin{aligned}
& \sum_{\sigma \in D_{k+1}}\left|I_{\sigma}\right|^{s}=\sum_{\sigma \in D_{k}} \sum_{h_{k}\left(\sigma_{k}\right)<j \leq m h_{k}\left(\sigma_{k}\right)}\left|I_{\sigma * j}\right|^{s} \\
\geq & \sum_{\sigma \in D_{k}}\left|I_{\sigma}\right|^{s} \geq \cdots \geq \sum_{\sigma \in D_{t_{0}}}\left|I_{\sigma}\right|^{s} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{G \in \mathrm{U}}|G|^{s} \geq \frac{1}{m^{3} L} \sum_{\sigma \in \Omega}\left|I_{\sigma}\right|^{s} \geq \frac{1}{m^{3} L} \sum_{\sigma \in D_{k_{2}}}\left|I_{\sigma}\right|^{s} \geq \frac{1}{m^{3} L} \sum_{\sigma \in D_{t_{0}}}\left|I_{\sigma}\right|^{s} \tag{14}
\end{equation*}
$$

Since $s$ is arbitrary, we have $\operatorname{dim}_{H} B_{m} \geq \inf _{l \leq a \leq L} S(a)$. This finishes the proof.
Applying Theorem 2.2 to the Lüroth series that $h_{j}=1$, we have

Corollary 1.3 For the Lüroth series expansion, we have

$$
\operatorname{dim} B_{m}=S(1)
$$

Lüroth series expansion also stands as a special case to indicate that as a general assertion, this theorem can not be improved.

## References

[1] Falconer, K. J.: Fractal Geometry, Mathematical Foundations and Application, Wiley, 1990.
[2] Falconer, K. J.: Techniques in Fractal Geometry, Wiley, 1997.
[3] Galambos, J.: The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals, Quart. J. Math. Oxford Sec. Series 21, 177-191 (1970).
[4] Galambos, J.: Further ergodic results on the Oppenheim series, Quart. J. Math. Oxford Sec. Series 25, 135-141 (1974).
[5] Galambos, J.: On the speed of the convergence of the Oppenheim series, Acta Arith. 19, 335-342(1971).
[6] Galambos, J.: Reprentations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, 1976.
[7] Galambos, J.: Further metric results on series expansions, Publ. Math. Debrecen 52, no. 3-4, 377-384(1998).
[8] Oppenheim, A.: The representation of real numbers by infinite series of rationals, Acta Arith., 21, 391-398 (1972).
[9] Schweiger, F.: Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford, Clarendon Press, 1995.
[10] Vervaat, W.: Success Epochs in Bernoulli Trials, Mathematical Center Tracts 42, Amsterdam, Mathematisch Centrum, 1972.
[11] Wang, B. W., Wu, J.: The Oppenheim series expansions and a problem of Galambos, Publ. Math. Debrecen, to appear.
[12] Wu, J.: The Oppenheim series expansions and Hausdorff dimensions, Acta Arith., 107(2003), 345-355.

Lu-ming SHEN, Yue-hua LIU and Yu-yuan ZHOU
Received 17.11.2006
Science college of Hunan
Agriculture University Changsha,
Hunan, 410086, P.R. CHINA


[^0]:    2000 AMS Mathematics Subject Classification: Primary 11K55; Secondly 28A78, 28A80.

