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Abstract

The study of CR-submanifolds of a Kaehler manifold was initiated by Bejancu

[1]. Since then many papers have appeared on CR-submanifolds. The purpose of

this paper is to studied the CR-submanifolds of an S-manifold. In particular, we

studied the integrability of the distributions D and D⊥ of a CR-submanifold of an

S-manifold.
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0. Introduction

Many authors have studied the geometry of submanifolds of Kaehler, Sasakian and
trans Sasakian manifolds. The main ones can be found in [8]. For manifolds with an
f-structure f , D. E. Blair has introduced the S-manifold as the analogue of the Kaehler
structure in the almost complex case and of the quasi-Sasakian structure in the almost
contact case [3].

The purpose of this paper is to study the integrability of the distributions of a
CR-submanifold of an S-manifold. In sections 1 and 2 we review basic formulas and
definitions for submanifolds in Riemannian manifolds and in S-manifold respectively,
which we shall use later. In section 3 we study CR-submanifold of an S-manifold and
discuss the integrability of the distributions D and D⊥.
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1. Preliminaries

Let N be a Riemannian manifold of dimension n and M an m-dimensional submanifold
of N. Let g be the metric tensor field on N as well as the induced metric on M. We
denote by ∇ the covariant differentiation in N and by ∇ the covariant differentiation in
M determined by the induced metric. Let TN (resp. TM) be the Lie algebra of vector
fields in N (resp. in M) and T⊥M the set of all vector fields normal to M. The Gauss
and Weingarten formulas are respectively given by

∇XY = ∇XY + h(X, Y ), (1.1)

∇XN = −ANX + ∇⊥
XN (1.2)

for X, Y ∈ TM and N ∈ T⊥M , where ∇⊥ is the connection in the normal bundle, h

is the second fundamental form of M and AN the Weingarten endomorphism associated
with N. Then AN and h are related by the relation

g(ANX, Y ) = g(h(X, Y ), N). (1.3)

2. CR-submanifold of S-manifold

Let (N, g) be a Riemannian manifold with dim(N) = 2m + s. It is said to be an
S-manifold if there exist on N a f-structure f ([4]) of rank 2n and s global vector fields
ξ1, ξ2, · · · , ξs (structure vector fields) such that ([7])

• (i) If η1, η2, · · · , ηs are the dual 1-forms of ξ1, ξ2, · · · , ξs, then

fξα = 0, (2.4)

ηα ◦ f = 0, (2.5)

f2 = −I +
∑

ηα ⊗ ξα, (2.6)

g(X, Y ) = g(fX, fY ) + Φ(X, Y ), (2.7)

from any X, Y ∈ TN, α = 1, 2, · · · , s, where

Φ(X, Y ) =
∑

ηα(X)ηα(Y ).

142



ALGHANEMI

• (ii) The f-structure f is normal, that is

[f, f ] + 2
∑

dηα ⊗ ξα = 0, (2.8)

where [f, f ] is the Nijenhuis torsion of f .

• (iii)

η1 ∧ η2 ∧ · · · ηs ∧ (dηα)n 	= 0, (2.9)

and

dη1 = dη2 = · · · = dηs = F, (2.10)

for any α, where F is the fundamental 2-form defined by

F (X, Y ) = g(X, fY ), X, Y ∈ TN.

In the case s = 1, an S-manifold is a Sasakian manifold.

For the Riemannian connection ∇ of g on an S-manifold N, we have

∇Xξα = −fX, X ∈ TN, α = 1, 2, · · · , s. (2.11)

(∇Xf)Y =
∑

{g(fX, fY )ξα + ηα(Y )f2X}, X, Y ∈ TN. (2.12)

Now, let M be an m-dimensional submanifold immersed in N. M is said to be an invariant
submanifold if ξα ∈ TM for any α and fX ∈ TM for any X ∈ TM. On the other hand,
it is said to be an anti-invariant submanifold if fX ∈ T⊥M for any X ∈ TM.

Now assume that the structure vector fields ξ1, ξ2, · · ·ξs are tangent to M (and so,
dim(M) ≥ s). Then M is called a CR-submanifold of N if there exist two differentiable
distributions D and D⊥ on M satisfying:

• (i) TM = D ⊕ D⊥ (direct sum);

• (ii) The distribution D is invariant under f , that is fDx = Dx for any x ∈ M ;

• (iii) The distribution D⊥ is anti-invariant under f , that is, fD⊥
x ⊆ T⊥

x M for any
x ∈ M.
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We denote by 2p+s and q the real dimensions of Dx and D⊥
x respectively, for any x ∈ M.

Then if p = 0 we have an anti-invariant submanifold tangent to ξ1, ξ2, · · · , ξs, and if q = 0,

we have an invariant submanifold. A CR-submanifold is said to be D-totallygeodesic if
h(X, Y ) = 0 for any X, Y ∈ D and it is said to be D⊥-totallygeodesic if h(Z, W ) = 0 for
any Z, W ∈ D⊥. Now denote by P and Q the projection morphisms of TM on D and
D⊥, respectively, we call D(resp.D⊥) the horizontal (resp.vertical) distribution. Then
for any X ∈ TM, we have

X = PX + QX,

where PX and QX belong to the distribution D and D⊥, respectively. Also for a vector
field N normal to M, we put

fN = tN + nN,

where tN (resp. nN) denotes the vertical (resp. normal) component of fN . The pair
(D, D⊥) is called ξα-horizontal (resp. ξα-vertical) if ξαx ∈ Dx (resp. ξαx ∈ D⊥

x ) for each
x ∈ M.

3. The distributions D and D⊥

Lemma 1 Let M be a CR-submanifold of an S-manifold N , then we have

P∇XfPY − PAfQY X − fP∇XY =
∑

[g(X, Y )Pξα − ηα(Y )PX], (3.13)

Q∇XfPY − QAfQY X − th(X, Y ) =
∑

[g(X, Y )Qξα − ηα(Y )QX], (3.14)

h(X, fPY ) − fQ∇XY + ∇⊥
XfQY = nh(X, Y ), ∀ X, Y ∈ TM. (3.15)

Proof. Let N be an S-manifold and M be a CR-submanifold of N then from (2.9) for
X, Y ∈ TM , we have

(∇Xf)Y =
∑

[g(fX, fY )ξα + ηα(Y )f2X],

∇XfY − f∇XY =
∑

[g(fX, fY )ξα + ηα(Y )f2X]

=
∑

{g(X, Y )ξα − ηα(X)ηα(Y )ξα − ηα(Y )X + ηα(Y )ηα(X)ξα}

=
∑

{g(X, Y )ξα − ηα(Y )X},
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therefore

∇X(fPY + fQY ) − f∇XY =
∑

{g(X, Y )ξα − ηα(Y )X},

∇XfPY + ∇XfQY − f∇XY =
∑

{g(X, Y )ξα − ηα(Y )X}.

Now using Gauss and Weingarten formulas, we have

h(X, fPY ) + ∇XfPY − AfQY X + ∇⊥
XfQY − f∇XY − fh(X, Y )

=
∑

{g(X, Y )ξα − ηα(Y )X},

or

h(X, fPY ) + P∇XfPY + Q∇XfPY − PAfQY X − QAfQY X + ∇⊥
XfQY

− fP∇XY − fQ∇XY − th(X, Y ) − nh(X, Y )

=
∑

{g(X, Y )(Pξα + Qξα) − ηα(Y )(PX + QX)}.

Now comparing the horizontal, vertical and normal parts, we obtain (3.13), (3.14) and
(3.15). ✷

Lemma 2 If M is ξα-horizontal CR-submanifold of an S-manifold N , then

−AfW Z − fP∇ZW − th(Z, W ) =
∑

g(Z, W )ξα, (3.16)

∇⊥
ZfW = fQ∇ZW + nh(Z, W ) (3.17)

for all Z, W ∈ D⊥.

Proof. Let N be an S-manifold, and M be a CR-submanifold of N , then from (2.9)
we have

(∇Xf)Y =
∑

{g(fX, fY )ξα + ηα(Y )f2X}, ∀X, Y ∈ TM ;

therefore

(∇Zf)W =
∑

{g(fZ, fW )ξα + ηα(W )f2Z}, ∀Z, W ∈ D⊥;
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and since ξα ∈ D, we have

(∇Zf)W =
∑

{g(fZ, fW )ξα}

=
∑

{g(Z, W )ξα − ηα(Z)ηα(W )ξα}

=
∑

g(Z, W )ξα;

therefore

∇ZfW − f∇ZW =
∑

g(Z, W )ξα.

Now using Gauss and Wiengarten formulas, we have

−AfW Z + ∇⊥
ZfW − f∇ZW − fh(Z, W ) =

∑
g(Z, W )ξα

−AfW Z + ∇⊥
ZfW − fP∇ZW − fQ∇ZW − th(Z, W ) − nh(Z, W ) =

∑
g(Z, W )ξα.

Now comparing tangent and normal parts, we obtain

−AfW Z − fP∇ZW =
∑

g(Z, W )ξα + th(Z, W ),

∇⊥
ZfW − fQ∇ZW = nh(Z, W ) ∀Z, W ∈ D⊥

which completes the proof. ✷

Lemma 3 If M is ξα-vertical CR-submanifold of an S-manifold N , then

∇XfY − fP∇XY =
∑

g(X, Y )ξα + th(X, Y ), (3.18)

h(X, fY ) = fQ∇XY + nh(X, Y ), for all X, Y ∈ D. (3.19)

Proof. From (2.9) we have

(∇Xf)Y =
∑

{g(fX, fY )ξα + ηα(Y )f2X},
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since ξα ∈ D⊥, then for all X, Y ∈ D we have

(∇Xf)Y =
∑

g(fX, fY )ξα

=
∑

{g(X, Y )ξα − ηα(X)ηα(Y )ξα}

=
∑

g(X, Y )ξα.

Therefore
∇XfY − f∇XY =

∑
g(X, Y )ξα.

Now using Gauss formula, we obtain for all X, Y ∈ D

∇XfY + h(X, fY ) − f∇XY − fh(X, Y ) =
∑

g(X, Y )ξα

∇XfY + h(X, fY ) − fP∇XY − fQ∇XY − th(X, Y ) − nh(X, Y )

=
∑

g(X, Y )ξα.

Now comparing tangent and normal parts, we get

∇XfY − fP∇XY =
∑

g(X, Y )ξα + th(X, Y ),

h(X, fY ) = fQ∇XY + nh(X, Y ).

which completes the proof. ✷

Remark 4 Let M be a CR-submanifold of an S-manifold N . Then we have

∇Xξα = −fPX, ∀X ∈ TM (3.20)

h(X, ξα) = −fQX ∀X ∈ TM (3.21)

∇Xξα = 0 ∀X ∈ D⊥ (3.22)

h(X, ξα) = 0 ∀X ∈ D (3.23)

h(ξα, ξα) = 0 (3.24)

AV ξα ∈ D⊥ ∀V ∈ T⊥M. (3.25)

ηα(AV X) = 0, ∀X ∈ D.
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Proof. By Gauss formula in equation (2.8), we easily obtain

∇Xξα = −fX ⇒ ∇Xξα + h(X, ξα) = −fX,

which gives

∇Xξα + h(X, ξα) = −fPX − fQX.

Now comparing tangent and normal parts, we get

∇Xξα = −fPX and h(X, ξα) = −fQX.

Hence

h(X, ξα) = 0 for all X ∈ D,

and

h(ξα, ξα) = 0 (fξα = 0)

∇Xξα = −fPX ⇒ ∇Xξα = 0 ∀ X ∈ D⊥.

Let X ∈ D, then we have

g(AV ξα, X) = g(h(X, ξα), V ) = g(0, V ) = 0.

Using (3.23) in the above equation, we get

g(AV ξα, X) = 0, ∀X ∈ D which leads to AV ξα ∈ D⊥.

Also,

g(AV ξα, X) = 0, ∀X ∈ D, ⇒ g(AV X, ξα) = 0, ⇒ ηα(AV X) = 0.

✷

Remark 5 Let M be a CR-submanifold of an S-manifold N , if M is ξα-horizontal, then
the distribution D is integrable ⇔

h(X, fY ) = h(Y, fX) ∀ X, Y ∈ D. (3.26)
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Proof. From Equation (3.3) we have

h(X, fY ) − fQ∇XY = nh(X, Y ) ∀X, Y ∈ D. (3.27)

Now interchanging X and Y , we have

h(Y, fX) − fQ∇Y X = nh(Y, X) ∀ X, Y ∈ D. (3.28)

Subtracting (3.27) and (3.28), we obtain

h(X, fY ) − h(Y, fX) = fQ[X, Y ].

Hence Q[X, Y ] = 0, iff

h(X, fY ) = h(Y, fX) ∀ X, Y ∈ D.

✷

Remark 6 Let M be a CR-submanifold of an S-manifold N , then M is a foliate if D is
involutive.

Remark 7 Let M be a CR-submanifold of an S-manifold N, if M is a foliate ξα-
horizontal, then

h(fX, fY ) = −h(X, Y ), ∀ X, Y ∈ D. (3.29)

Proof. Since every involutive is integrable, then by (3.26) we have

h(X, fY ) = h(fX, Y ),

then

h(fX, fY ) = h(f2X, Y ) = h(−X +
∑

ηα(X)ξα, Y )

= h(−X, Y ) + h(
∑

ηα(X)ξα, Y )

= −h(X, Y ) (by equation 3.24).

✷

149



ALGHANEMI

Remark 8 Let M be a CR-submanifold of an S-manifold N, then M is mixed totally
geodesic if and only if one of the following satisfied:

AV X ∈ D (∀X ∈ D, V ∈ T⊥M), (3.30)

AV X ∈ D⊥ (∀ X ∈ D⊥, V ∈ T⊥M). (3.31)

Proof. Consider AV X, let X ∈ D, V ∈ T⊥M and Y ∈ D⊥, then

g(AV X, Y ) = g(h(X, Y ), V )

= 0 ⇔ AV X ∈ D.

Hence
g(h(X, Y ), V ) = 0 ⇔ h(X, Y ) = 0

⇔ AV X ∈ D ∀X ∈ D, V ∈ T⊥M.

In a similar way is deduced relation. (3.31). ✷

Remark 9 The horizontal (resp. vertical) distribution on D (resp. D⊥) is said to be
parallel [1] with respect to the connection ∇ on M if ∇XY ∈ D (resp. ∇ZW ∈ D⊥) for
any X, Y ∈ D (resp. Z, W ∈ D⊥).

Remark 10 Let M be a ξα-horizontal CR-submanifold of an S-manifold N , then the
horizontal distribution D is parallel if and only if

h(X, fY ) = h(fY, X) = fh(X, Y ). (3.32)

Proof. Since every parallel is involutive then the first equality follows immediately.
Now since D is parallel, we have

∇XfY ∈ D, ∀X, Y ∈ D,

Then from (3.14) we have

th(X, Y ) = 0 ∀X, Y ∈ D if ξα ∈ D, (3.33)
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and from (3.3) if ξα ∈ D then D is parallel

⇔ h(X, fY ) = nh(X, Y ).

But, we have
fh(X, Y ) = th(X, Y ) + nh(X, Y ),

and from (3.21) we have fh(X, Y ) = nh(X, Y ), which completes the proof. ✷

Remark 11 Let M be a CR-submanifold of an S-manifold N, if M is ξα-vertical, then
the distribution D⊥ is integrable ⇔

AfXY − AfY X =
∑

[ηα(X)Y − ηα(Y )X], ∀X, Y ∈ D⊥ (3.34)

Proof. If X, Y ∈ D⊥, then (3.1) and (3.2) become

−PAfY X − fP∇XY = 0, (3.35)

−QAfY X − th(X, Y ) =
∑

[g(X, Y )ξα − ηα(Y )X]. (3.36)

Now adding (3.23) and (3.24), we have

−AfY X − fP∇XY − th(X, Y ) =
∑

[g(X, Y )ξα − ηα(Y )X]. (3.37)

Now interchanging X and Y , we have

−AfXY − fP∇Y X − th(Y, X) =
∑

[g(X, Y )ξα − ηα(X)Y ]. (3.38)

Subtracting the equations(3.25) and (3.26), we obtain

−AfY X + AfXY − fP [X, Y ] =
∑

[−ηα(Y )X + ηα(X)Y ].

Hence P [X, Y ] = 0, ⇔

AfXY − AfY X =
∑

[ηα(X)Y − ηα(Y )X].

Therefore D⊥ is integrable ⇔ (3.22) holds. ✷
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Corollary 12 If M is a ξα-horizontal CR-submanifold of an S-manifold N then D⊥ is
integrable if and only if

AfY X = AfXY ∀ X, Y ∈ D⊥. (3.39)

Proof. The proof can be obtained directily from Lemma (3). ✷

Remark 13 Let M be a ξα-horizontal CR-submanifold of an S-manifold N then D⊥ is
parallel if and only if

−AfW Z =
∑

g(Z, W )ξα + th(Z, W ) ∀ Z, W ∈ D⊥. (3.40)

Proof. From (3.4) we have,

−AfW Z − fP∇ZW =
∑

g(Z, W )ξα + th(Z, W ) ∀Z, W ∈ D⊥,

hence

∇ZW ∈ D⊥,

⇔ P∇ZW = 0.

Using this we get

−AfW Z =
∑

g(Z, W )ξα + th(Z, W ) ∀Z, W ∈ D⊥.

✷

Remark 14 Let M be a ξα-vertical CR-submanifold of an S-manifold N, then the dis-
tribution D⊥ is parallel if and only if

AfW Z ∈ D⊥ ∀ Z, W ∈ D⊥. (3.41)

Proof. Using the Gauss and Weingarten formulas for Z, W ∈ D⊥, we have

−AfW Z + ∇⊥
ZfW − f∇ZW − fh(Z, W ) =

∑
{g(Z, W )ξα − ηα(W )Z}.
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Now take inner product with Y ∈ D, we have

−g(AfW Z, Y ) + g(∇⊥
ZfW, Y ) − g(f∇ZW, Y ) − g(fh(Z, W ), Y )

=
∑

{g(Z, W )g(ξα, Y ) − ηα(W )g(Z, Y )}.

Hence since ξα ∈ D⊥ then we have

−g(AfW Z, Y ) = g(f∇ZW, Y ) = −g(∇ZW, fY ),

implies that
g(AfW Z, Y ) = 0 ⇔ AfW Z ∈ D⊥.

Therefore
∇ZW ∈ D⊥ ⇔ AfW Z ∈ D⊥ ∀ Z, W ∈ D⊥.

✷
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