CR-Submanifolds of an S-manifold

A. Alghanemi

Abstract

The study of CR-submanifolds of a Kaehler manifold was initiated by Bejancu [1]. Since then many papers have appeared on CR-submanifolds. The purpose of this paper is to studied the CR-submanifolds of an S-manifold. In particular, we studied the integrability of the distributions D and D^{\perp} of a CR-submanifold of an S-manifold.

Key words and phrases: CR-submanifolds, S-manifold, CR-submanifold of an S-manifold.

0. Introduction

Many authors have studied the geometry of submanifolds of Kaehler, Sasakian and trans Sasakian manifolds. The main ones can be found in [8]. For manifolds with an f-structure f, D. E. Blair has introduced the S-manifold as the analogue of the Kaehler structure in the almost complex case and of the quasi-Sasakian structure in the almost contact case [3].

The purpose of this paper is to study the integrability of the distributions of a CR-submanifold of an S-manifold. In sections 1 and 2 we review basic formulas and definitions for submanifolds in Riemannian manifolds and in S-manifold respectively, which we shall use later. In section 3 we study CR-submanifold of an S-manifold and discuss the integrability of the distributions D and D^{\perp}.

[^0]
ALGHANEMI

1. Preliminaries

Let N be a Riemannian manifold of dimension n and M an m-dimensional submanifold of N. Let g be the metric tensor field on N as well as the induced metric on M. We denote by $\bar{\nabla}$ the covariant differentiation in N and by ∇ the covariant differentiation in M determined by the induced metric. Let $T N$ (resp. TM) be the Lie algebra of vector fields in N (resp. in M) and $T^{\perp} M$ the set of all vector fields normal to M. The Gauss and Weingarten formulas are respectively given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1.1}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{1.2}
\end{align*}
$$

for $X, Y \in T M$ and $N \in T^{\perp} M$, where ∇^{\perp} is the connection in the normal bundle, h is the second fundamental form of M and A_{N} the Weingarten endomorphism associated with N. Then A_{N} and h are related by the relation

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{1.3}
\end{equation*}
$$

2. CR-submanifold of S-manifold

Let (N, g) be a Riemannian manifold with $\operatorname{dim}(N)=2 m+s$. It is said to be an S-manifold if there exist on N a f-structure $f([4])$ of rank $2 n$ and s global vector fields $\xi_{1}, \xi_{2}, \cdots, \xi_{s}$ (structure vector fields) such that ([7])

- (i) If $\eta_{1}, \eta_{2}, \cdots, \eta_{s}$ are the dual 1-forms of $\xi_{1}, \xi_{2}, \cdots, \xi_{s}$, then

$$
\begin{align*}
f \xi_{\alpha} & =0 \tag{2.4}\\
\eta_{\alpha} \circ f & =0 \tag{2.5}\\
f^{2} & =-I+\sum \eta_{\alpha} \otimes \xi_{\alpha}, \tag{2.6}\\
g(X, Y) & =g(f X, f Y)+\Phi(X, Y), \tag{2.7}
\end{align*}
$$

from any $X, Y \in T N, \alpha=1,2, \cdots, s$, where

$$
\Phi(X, Y)=\sum \eta_{\alpha}(X) \eta_{\alpha}(Y)
$$

ALGHANEMI

- (ii) The f-structure f is normal, that is

$$
\begin{equation*}
[f, f]+2 \sum d \eta_{\alpha} \otimes \xi_{\alpha}=0 \tag{2.8}
\end{equation*}
$$

where $[f, f]$ is the Nijenhuis torsion of f.

- (iii)

$$
\begin{equation*}
\eta_{1} \wedge \eta_{2} \wedge \cdots \eta_{s} \wedge\left(d \eta_{\alpha}\right)^{n} \neq 0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
d \eta_{1}=d \eta_{2}=\cdots=d \eta_{s}=F, \tag{2.10}
\end{equation*}
$$

for any α, where F is the fundamental 2 -form defined by

$$
F(X, Y)=g(X, f Y), \quad X, Y \in T N
$$

In the case $s=1$, an S -manifold is a Sasakian manifold.
For the Riemannian connection $\bar{\nabla}$ of g on an S-manifold N, we have

$$
\begin{gather*}
\bar{\nabla}_{X} \xi_{\alpha}=-f X, \quad X \in T N, \alpha=1,2, \cdots, s . \tag{2.11}\\
\left(\bar{\nabla}_{X} f\right) Y=\sum\left\{g(f X, f Y) \xi_{\alpha}+\eta_{\alpha}(Y) f^{2} X\right\}, \quad X, Y \in T N . \tag{2.12}
\end{gather*}
$$

Now, let M be an m-dimensional submanifold immersed in $N . M$ is said to be an invariant submanifold if $\xi_{\alpha} \in T M$ for any α and $f X \in T M$ for any $X \in T M$. On the other hand, it is said to be an anti-invariant submanifold if $f X \in T^{\perp} M$ for any $X \in T M$.

Now assume that the structure vector fields $\xi_{1}, \xi_{2}, \cdots \xi_{s}$ are tangent to M (and so, $\operatorname{dim}(M) \geq s)$. Then M is called a CR-submanifold of N if there exist two differentiable distributions D and D^{\perp} on M satisfying:

- (i) $T M=D \oplus D^{\perp}$ (direct sum);
- (ii) The distribution D is invariant under f, that is $f D_{x}=D_{x}$ for any $x \in M$;
- (iii) The distribution D^{\perp} is anti-invariant under f, that is, $f D_{x}^{\perp} \subseteq T_{x}^{\perp} M$ for any $x \in M$.

ALGHANEMI

We denote by $2 p+s$ and q the real dimensions of D_{x} and D_{x}^{\perp} respectively, for any $x \in M$. Then if $p=0$ we have an anti-invariant submanifold tangent to $\xi_{1}, \xi_{2}, \cdots, \xi_{s}$, and if $q=0$, we have an invariant submanifold. A CR-submanifold is said to be D-totallygeodesic if $h(X, Y)=0$ for any $X, Y \in D$ and it is said to be D^{\perp}-totallygeodesic if $h(Z, W)=0$ for any $Z, W \in D^{\perp}$. Now denote by P and Q the projection morphisms of $T M$ on D and D^{\perp}, respectively, we call D (resp. D^{\perp}) the horizontal (resp.vertical) distribution. Then for any $X \in T M$, we have

$$
X=P X+Q X
$$

where $P X$ and $Q X$ belong to the distribution D and D^{\perp}, respectively. Also for a vector field N normal to M, we put

$$
f N=t N+n N
$$

where $t N$ (resp. $n N$) denotes the vertical (resp. normal) component of $f N$. The pair (D, D^{\perp}) is called ξ_{α}-horizontal (resp. ξ_{α}-vertical) if $\xi_{\alpha} x \in D_{x}$ (resp. $\xi_{\alpha} x \in D_{x}^{\perp}$) for each $x \in M$.

3. The distributions D and D^{\perp}

Lemma 1 Let M be a CR-submanifold of an S-manifold N, then we have

$$
\begin{align*}
& P \nabla_{X} f P Y-P A_{f Q Y} X-f P \nabla_{X} Y=\sum\left[g(X, Y) P \xi_{\alpha}-\eta_{\alpha}(Y) P X\right] \tag{3.13}\\
& Q \nabla_{X} f P Y-Q A_{f Q Y} X-t h(X, Y)=\sum\left[g(X, Y) Q \xi_{\alpha}-\eta_{\alpha}(Y) Q X\right] \tag{3.14}\\
& \quad h(X, f P Y)-f Q \nabla_{X} Y+\nabla_{X}^{\perp} f Q Y=n h(X, Y), \quad \forall X, Y \in T M \tag{3.15}
\end{align*}
$$

Proof. Let N be an S-manifold and M be a CR-submanifold of N then from (2.9) for $X, Y \in T M$, we have

$$
\begin{aligned}
& \left(\bar{\nabla}_{X} f\right) Y=\sum\left[g(f X, f Y) \xi_{\alpha}+\eta_{\alpha}(Y) f^{2} X\right] \\
\bar{\nabla}_{X} f Y-f \bar{\nabla}_{X} Y= & \sum\left[g(f X, f Y) \xi_{\alpha}+\eta_{\alpha}(Y) f^{2} X\right] \\
= & \sum\left\{g(X, Y) \xi_{\alpha}-\eta_{\alpha}(X) \eta_{\alpha}(Y) \xi_{\alpha}-\eta_{\alpha}(Y) X+\eta_{\alpha}(Y) \eta_{\alpha}(X) \xi_{\alpha}\right\} \\
= & \sum\left\{g(X, Y) \xi_{\alpha}-\eta_{\alpha}(Y) X\right\}
\end{aligned}
$$

ALGHANEMI

therefore

$$
\begin{aligned}
& \bar{\nabla}_{X}(f P Y+f Q Y)-f \bar{\nabla}_{X} Y=\sum\left\{g(X, Y) \xi_{\alpha}-\eta_{\alpha}(Y) X\right\} \\
& \bar{\nabla}_{X} f P Y+\bar{\nabla}_{X} f Q Y-f \bar{\nabla}_{X} Y=\sum\left\{g(X, Y) \xi_{\alpha}-\eta_{\alpha}(Y) X\right\}
\end{aligned}
$$

Now using Gauss and Weingarten formulas, we have

$$
\begin{aligned}
h(X, f P Y) & +\nabla_{X} f P Y-A_{f Q Y} X+\nabla_{X}^{\frac{1}{X}} f Q Y-f \nabla_{X} Y-f h(X, Y) \\
& =\sum\left\{g(X, Y) \xi_{\alpha}-\eta_{\alpha}(Y) X\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
h(X, f P Y) & +P \nabla_{X} f P Y+Q \nabla_{X} f P Y-P A_{f Q Y} X-Q A_{f Q Y} X+\nabla_{X}^{\perp} f Q Y \\
& -f P \nabla_{X} Y-f Q \nabla_{X} Y-\operatorname{th}(X, Y)-n h(X, Y) \\
& =\sum\left\{g(X, Y)\left(P \xi_{\alpha}+Q \xi_{\alpha}\right)-\eta_{\alpha}(Y)(P X+Q X)\right\}
\end{aligned}
$$

Now comparing the horizontal, vertical and normal parts, we obtain (3.13), (3.14) and (3.15).

Lemma 2 If M is ξ_{α}-horizontal CR-submanifold of an S-manifold N, then

$$
\begin{gather*}
-A_{f W} Z-f P \nabla_{Z} W-t h(Z, W)=\sum g(Z, W) \xi_{\alpha} \tag{3.16}\\
\nabla_{Z}^{\perp} f W=f Q \nabla_{Z} W+n h(Z, W) \tag{3.17}
\end{gather*}
$$

for all $Z, W \in D^{\perp}$.
Proof. Let N be an S-manifold, and M be a CR-submanifold of N, then from (2.9) we have

$$
\left(\bar{\nabla}_{X} f\right) Y=\sum\left\{g(f X, f Y) \xi_{\alpha}+\eta_{\alpha}(Y) f^{2} X\right\}, \quad \forall X, Y \in T M
$$

therefore

$$
\left(\bar{\nabla}_{Z} f\right) W=\sum\left\{g(f Z, f W) \xi_{\alpha}+\eta_{\alpha}(W) f^{2} Z\right\}, \quad \forall Z, W \in D^{\perp} ;
$$

ALGHANEMI

and since $\xi_{\alpha} \in D$, we have

$$
\begin{aligned}
\left(\bar{\nabla}_{Z} f\right) W & =\sum\left\{g(f Z, f W) \xi_{\alpha}\right\} \\
& =\sum\left\{g(Z, W) \xi_{\alpha}-\eta_{\alpha}(Z) \eta_{\alpha}(W) \xi_{\alpha}\right\} \\
& =\sum g(Z, W) \xi_{\alpha} ;
\end{aligned}
$$

therefore

$$
\bar{\nabla}_{Z} f W-f \bar{\nabla}_{Z} W=\sum g(Z, W) \xi_{\alpha} .
$$

Now using Gauss and Wiengarten formulas, we have

$$
\begin{gathered}
-A_{f W} Z+\nabla \frac{1}{Z} f W-f \nabla_{Z} W-f h(Z, W)=\sum g(Z, W) \xi_{\alpha} \\
-A_{f W} Z+\nabla \frac{1}{Z} f W-f P \nabla_{Z} W-f Q \nabla_{Z} W-t h(Z, W)-n h(Z, W)=\sum g(Z, W) \xi_{\alpha} .
\end{gathered}
$$

Now comparing tangent and normal parts, we obtain

$$
\begin{aligned}
-A_{f W} Z-f P \nabla_{Z} W & =\sum g(Z, W) \xi_{\alpha}+t h(Z, W), \\
\nabla_{Z} \frac{1}{} f W-f Q \nabla_{Z} W & =n h(Z, W) \quad \forall Z, W \in D^{\perp}
\end{aligned}
$$

which completes the proof.

Lemma 3 If M is ξ_{α}-vertical CR-submanifold of an S-manifold N, then

$$
\begin{equation*}
\nabla_{X} f Y-f P \nabla_{X} Y=\sum g(X, Y) \xi_{\alpha}+\operatorname{th}(X, Y), \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
h(X, f Y)=f Q \nabla_{X} Y+n h(X, Y), \quad \text { for all } \quad X, Y \in D . \tag{3.19}
\end{equation*}
$$

Proof. From (2.9) we have

$$
\left(\bar{\nabla}_{X} f\right) Y=\sum\left\{g(f X, f Y) \xi_{\alpha}+\eta_{\alpha}(Y) f^{2} X\right\},
$$

ALGHANEMI

since $\xi_{\alpha} \in D^{\perp}$, then for all $X, Y \in D$ we have

$$
\begin{aligned}
\left(\bar{\nabla}_{X} f\right) Y & =\sum g(f X, f Y) \xi_{\alpha} \\
& =\sum\left\{g(X, Y) \xi_{\alpha}-\eta_{\alpha}(X) \eta_{\alpha}(Y) \xi_{\alpha}\right\} \\
& =\sum g(X, Y) \xi_{\alpha}
\end{aligned}
$$

Therefore

$$
\bar{\nabla}_{X} f Y-f \bar{\nabla}_{X} Y=\sum g(X, Y) \xi_{\alpha}
$$

Now using Gauss formula, we obtain for all $X, Y \in D$

$$
\begin{gathered}
\nabla_{X} f Y+h(X, f Y)-f \nabla_{X} Y-f h(X, Y)=\sum g(X, Y) \xi_{\alpha} \\
\nabla_{X} f Y+h(X, f Y)-f P \nabla_{X} Y-f Q \nabla_{X} Y-t h(X, Y)-n h(X, Y) \\
=\sum g(X, Y) \xi_{\alpha}
\end{gathered}
$$

Now comparing tangent and normal parts, we get

$$
\begin{gathered}
\nabla_{X} f Y-f P \nabla_{X} Y=\sum g(X, Y) \xi_{\alpha}+t h(X, Y), \\
h(X, f Y)=f Q \nabla_{X} Y+n h(X, Y)
\end{gathered}
$$

which completes the proof.

Remark 4 Let M be a $C R$-submanifold of an S-manifold N. Then we have

$$
\begin{array}{rr}
\nabla_{X} \xi_{\alpha}=-f P X, & \forall X \in T M \\
h\left(X, \xi_{\alpha}\right)=-f Q X & \forall X \in T M \\
\nabla_{X} \xi_{\alpha}=0 & \forall X \in D^{\perp} \\
h\left(X, \xi_{\alpha}\right)=0 & \forall X \in D \\
& h\left(\xi_{\alpha}, \xi_{\alpha}\right)=0 \\
A_{V} \xi_{\alpha} \in D^{\perp} & \forall V \in T^{\perp} M . \tag{3.25}\\
\eta_{\alpha}\left(A_{V} X\right)=0, & \forall X \in D .
\end{array}
$$

ALGHANEMI

Proof. By Gauss formula in equation (2.8), we easily obtain

$$
\bar{\nabla}_{X} \xi_{\alpha}=-f X \Rightarrow \nabla_{X} \xi_{\alpha}+h\left(X, \xi_{\alpha}\right)=-f X,
$$

which gives

$$
\nabla_{X} \xi_{\alpha}+h\left(X, \xi_{\alpha}\right)=-f P X-f Q X
$$

Now comparing tangent and normal parts, we get

$$
\nabla_{X} \xi_{\alpha}=-f P X \quad \text { and } \quad h\left(X, \xi_{\alpha}\right)=-f Q X
$$

Hence

$$
h\left(X, \xi_{\alpha}\right)=0 \quad \text { for all } \quad X \in D,
$$

and

$$
\begin{gathered}
h\left(\xi_{\alpha}, \xi_{\alpha}\right)=0 \quad\left(f \xi_{\alpha}=0\right) \\
\nabla_{X} \xi_{\alpha}=-f P X \Rightarrow \nabla_{X} \xi_{\alpha}=0 \quad \forall X \in D^{\perp}
\end{gathered}
$$

Let $X \in D$, then we have

$$
g\left(A_{V} \xi_{\alpha}, X\right)=g\left(h\left(X, \xi_{\alpha}\right), V\right)=g(0, V)=0
$$

Using (3.23) in the above equation, we get

$$
g\left(A_{V} \xi_{\alpha}, X\right)=0, \quad \forall X \in D \quad \text { which leads to } \quad A_{V} \xi_{\alpha} \in D^{\perp}
$$

Also,

$$
g\left(A_{V} \xi_{\alpha}, X\right)=0, \quad \forall X \in D, \Rightarrow g\left(A_{V} X, \xi_{\alpha}\right)=0, \Rightarrow \eta_{\alpha}\left(A_{V} X\right)=0
$$

Remark 5 Let M be a CR-submanifold of an S-manifold N, if M is ξ_{α}-horizontal, then the distribution D is integrable \Leftrightarrow

$$
\begin{equation*}
h(X, f Y)=h(Y, f X) \quad \forall X, Y \in D \tag{3.26}
\end{equation*}
$$

ALGHANEMI

Proof. From Equation (3.3) we have

$$
\begin{equation*}
h(X, f Y)-f Q \nabla_{X} Y=n h(X, Y) \quad \forall X, Y \in D \tag{3.27}
\end{equation*}
$$

Now interchanging X and Y, we have

$$
\begin{equation*}
h(Y, f X)-f Q \nabla_{Y} X=n h(Y, X) \quad \forall X, Y \in D \tag{3.28}
\end{equation*}
$$

Subtracting (3.27) and (3.28), we obtain

$$
h(X, f Y)-h(Y, f X)=f Q[X, Y] .
$$

Hence $Q[X, Y]=0$, iff

$$
h(X, f Y)=h(Y, f X) \quad \forall X, Y \in D
$$

Remark 6 Let M be a CR-submanifold of an S-manifold N, then M is a foliate if D is involutive.

Remark 7 Let M be a CR-submanifold of an S-manifold N, if M is a foliate ξ_{α} horizontal, then

$$
\begin{equation*}
h(f X, f Y)=-h(X, Y), \quad \forall X, Y \in D \tag{3.29}
\end{equation*}
$$

Proof. Since every involutive is integrable, then by (3.26) we have

$$
h(X, f Y)=h(f X, Y)
$$

then

$$
\begin{aligned}
h(f X, f Y) & =h\left(f^{2} X, Y\right)=h\left(-X+\sum \eta_{\alpha}(X) \xi_{\alpha}, Y\right) \\
& =h(-X, Y)+h\left(\sum \eta_{\alpha}(X) \xi_{\alpha}, Y\right) \\
& =-h(X, Y) \quad \text { (by equation 3.24). }
\end{aligned}
$$

ALGHANEMI

Remark 8 Let M be a CR-submanifold of an S-manifold N, then M is mixed totally geodesic if and only if one of the following satisfied:

$$
\begin{gather*}
A_{V} X \in D \quad\left(\forall X \in D, V \in T^{\perp} M\right), \tag{3.30}\\
A_{V} X \in D^{\perp} \quad\left(\forall X \in D^{\perp}, \quad V \in T^{\perp} M\right) . \tag{3.31}
\end{gather*}
$$

Proof. Consider $A_{V} X$, let $X \in D, V \in T^{\perp} M$ and $Y \in D^{\perp}$, then

$$
\begin{aligned}
g\left(A_{V} X, Y\right) & =g(h(X, Y), V) \\
& =0 \Leftrightarrow A_{V} X \in D
\end{aligned}
$$

Hence

$$
\begin{aligned}
g(h(X, Y), V) & =0 \quad \Leftrightarrow \quad h(X, Y)=0 \\
& \Leftrightarrow \quad A_{V} X \in D \quad \forall X \in D, V \in T^{\perp} M
\end{aligned}
$$

In a similar way is deduced relation. (3.31).

Remark 9 The horizontal (resp. vertical) distribution on D (resp. D^{\perp}) is said to be parallel [1] with respect to the connection ∇ on M if $\nabla_{X} Y \in D\left(r e s p . \nabla_{Z} W \in D^{\perp}\right)$ for any $X, Y \in D$ (resp. $Z, W \in D^{\perp}$).

Remark 10 Let M be a ξ_{α}-horizontal CR-submanifold of an S-manifold N, then the horizontal distribution D is parallel if and only if

$$
\begin{equation*}
h(X, f Y)=h(f Y, X)=f h(X, Y) \tag{3.32}
\end{equation*}
$$

Proof. Since every parallel is involutive then the first equality follows immediately. Now since D is parallel, we have

$$
\nabla_{X} f Y \in D, \quad \forall X, Y \in D
$$

Then from (3.14) we have

$$
\begin{equation*}
\operatorname{th}(X, Y)=0 \quad \forall X, Y \in D \text { if } \xi_{\alpha} \in D \tag{3.33}
\end{equation*}
$$

ALGHANEMI

and from (3.3) if $\xi_{\alpha} \in D$ then D is parallel

$$
\Leftrightarrow \quad h(X, f Y)=n h(X, Y) .
$$

But, we have

$$
f h(X, Y)=\operatorname{th}(X, Y)+n h(X, Y),
$$

and from (3.21) we have $f h(X, Y)=n h(X, Y)$, which completes the proof.

Remark 11 Let M be a CR-submanifold of an S-manifold N, if M is ξ_{α}-vertical, then the distribution D^{\perp} is integrable \Leftrightarrow

$$
\begin{equation*}
A_{f X} Y-A_{f Y} X=\sum\left[\eta_{\alpha}(X) Y-\eta_{\alpha}(Y) X\right], \quad \forall X, Y \in D^{\perp} \tag{3.34}
\end{equation*}
$$

Proof. If $X, Y \in D^{\perp}$, then (3.1) and (3.2) become

$$
\begin{gather*}
-P A_{f Y} X-f P \nabla_{X} Y=0 \tag{3.35}\\
-Q A_{f Y} X-\operatorname{th}(X, Y)=\sum\left[g(X, Y) \xi_{\alpha}-\eta_{\alpha}(Y) X\right] . \tag{3.36}
\end{gather*}
$$

Now adding (3.23) and (3.24), we have

$$
\begin{equation*}
-A_{f Y} X-f P \nabla_{X} Y-t h(X, Y)=\sum\left[g(X, Y) \xi_{\alpha}-\eta_{\alpha}(Y) X\right] \tag{3.37}
\end{equation*}
$$

Now interchanging X and Y, we have

$$
\begin{equation*}
-A_{f X} Y-f P \nabla_{Y} X-\operatorname{th}(Y, X)=\sum\left[g(X, Y) \xi_{\alpha}-\eta_{\alpha}(X) Y\right] \tag{3.38}
\end{equation*}
$$

Subtracting the equations(3.25) and (3.26), we obtain

$$
-A_{f Y} X+A_{f X} Y-f P[X, Y]=\sum\left[-\eta_{\alpha}(Y) X+\eta_{\alpha}(X) Y\right]
$$

Hence $P[X, Y]=0, \Leftrightarrow$

$$
A_{f X} Y-A_{f Y} X=\sum\left[\eta_{\alpha}(X) Y-\eta_{\alpha}(Y) X\right]
$$

Therefore D^{\perp} is integrable \Leftrightarrow (3.22) holds.

ALGHANEMI

Corollary 12 If M is a ξ_{α}-horizontal CR-submanifold of an S-manifold N then D^{\perp} is integrable if and only if

$$
\begin{equation*}
A_{f Y} X=A_{f X} Y \quad \forall X, Y \in D^{\perp} \tag{3.39}
\end{equation*}
$$

Proof. The proof can be obtained directily from Lemma (3).

Remark 13 Let M be a ξ_{α}-horizontal CR-submanifold of an S-manifold N then D^{\perp} is parallel if and only if

$$
\begin{equation*}
-A_{f W} Z=\sum g(Z, W) \xi_{\alpha}+\operatorname{th}(Z, W) \quad \forall Z, W \in D^{\perp} \tag{3.40}
\end{equation*}
$$

Proof. From (3.4) we have,

$$
-A_{f W} Z-f P \nabla_{Z} W=\sum g(Z, W) \xi_{\alpha}+\operatorname{th}(Z, W) \quad \forall Z, W \in D^{\perp}
$$

hence

$$
\begin{aligned}
& \nabla_{Z} W \in D^{\perp} \\
& \Leftrightarrow P \nabla_{Z} W=0
\end{aligned}
$$

Using this we get

$$
-A_{f W} Z=\sum g(Z, W) \xi_{\alpha}+t h(Z, W) \quad \forall Z, W \in D^{\perp}
$$

Remark 14 Let M be a ξ_{α}-vertical CR-submanifold of an S-manifold N, then the distribution D^{\perp} is parallel if and only if

$$
\begin{equation*}
A_{f W} Z \in D^{\perp} \quad \forall Z, W \in D^{\perp} \tag{3.41}
\end{equation*}
$$

Proof. Using the Gauss and Weingarten formulas for $Z, W \in D^{\perp}$, we have

$$
-A_{f W} Z+\nabla \frac{1}{Z} f W-f \nabla_{Z} W-f h(Z, W)=\sum\left\{g(Z, W) \xi_{\alpha}-\eta_{\alpha}(W) Z\right\}
$$

ALGHANEMI

Now take inner product with $Y \in D$, we have

$$
\begin{aligned}
-g\left(A_{f W} Z, Y\right)+g\left(\nabla_{Z}^{1} f W, Y\right) & -g\left(f \nabla_{Z} W, Y\right)-g(f h(Z, W), Y) \\
& =\sum\left\{g(Z, W) g\left(\xi_{\alpha}, Y\right)-\eta_{\alpha}(W) g(Z, Y)\right\}
\end{aligned}
$$

Hence since $\xi_{\alpha} \in D^{\perp}$ then we have

$$
-g\left(A_{f W} Z, Y\right)=g\left(f \nabla_{Z} W, Y\right)=-g\left(\nabla_{Z} W, f Y\right),
$$

implies that

$$
g\left(A_{f W} Z, Y\right)=0 \Leftrightarrow A_{f W} Z \in D^{\perp} .
$$

Therefore

$$
\nabla_{Z} W \in D^{\perp} \Leftrightarrow A_{f W} Z \in D^{\perp} \quad \forall Z, W \in D^{\perp}
$$

Acknowledgment

I am very grateful to my supervisor Dr. Falleh R. Al-Solamy for his support and encouragement and to the referee for his valuable suggestions and modifications.

References

1] Bejancu, A.: CR-Submanifold of a Kaehler manifold I, Proc. Amer. Math. Soc. 69, 135-142 (1978)
[2] Bejancu, A.: CR-submanifold of a Kaehler manifold II, Trans. Amer. Math. Soc. 250, 333-345 (1979).

3] Blair, D. E.: Contact manifolds in Riemannian geometry. Lecture Note in Math. Vol. 509, Springer Verlag, Berlin 1976.
[4] Blair, D. E.: Geometry of manifolds with Structural group $U(n) \times O(S)$, J. Diff. Geom. 4, 155-167 (1970).
[5] Cabrerizo, J. L., Fernández, L. M. and Fernández, M.: A classification of certain submanifolds of an S-manifold, Ann Polinici Mathematici 54 (2), 117-123 (1991).
[6] Cabrerizo, J. L., Fernández, L. M. and Fernández, M.: A classification Totally f-umblical submanifolds of an S-manifold, Soochow J. Math. 18 (2), 211-221 (1992).

ALGHANEMI

[7] Fernaádez, L. M.: CR-products of S-manifold, Portugal Mat. 47 (2), 167-181 (1990).
[8] Kobayashi, M.: CR-Submanifold of a Sasakian manifold, Tensor N. S. 35, 297-307 (1981).
A. ALGHANEMI

Received 10.01.2007
Department of Mathematics, King AbdulAziz University,
P. O. Box 80015, Jeddah

21589, SAUDI ARABIA
e-mail: Azeb_Alghanemihotmail.com

[^0]: 1991 AMS Mathematics Subject Classification: 53C40

