Proximinality in $L^{1}(I, X)$

Sh. Al-Sharif and R. Khalil

Abstract

Let X be a Banach space and let (I, Ω, μ) be a measure space. For $1 \leq p<\infty$, let $L^{p}(I, X)$ denote the space of Bochner p-integrable functions defined on I with values in X. The object of this paper is to give sufficient conditions for the proximinality of $L^{1}(I, H)+L^{1}(I, G)$ in $L^{1}(I, X)$, where H and G are two proximinal subspaces of X which include as a special case the proximality of $L^{1}(I) \hat{\otimes} G+H \hat{\otimes} L^{1}(I)$ in $L^{1}(I \times I)$.

Key Words: Proximinal, Banach spaces.

0. Introduction

Let (I, Ω, μ) be a measure space and let $L^{p}(I, X)$ denotes the space of Bochner p integrable functions (equivalent classes) defined on (I, Ω, μ) with values in a Banach space X. It is known [2] that $L^{p}(I, X)$ is a Banach space under the norm

$$
\|f\|_{p}=\left(\int\|f(t)\|^{p} d \mu(t)\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty
$$

A subspace E of a Banach space X is said to be proximinal if for each $x \in X$ there exists at least one $y \in E$ such that

$$
\|x-y\|=d(x, E)=\inf \{\|x-z\|: z \in E\}
$$

The element y is called a best approximation of x in E.
If X and Y are Banach spaces, then $X \stackrel{\wedge}{\otimes} Y$ and $X \stackrel{\vee}{\otimes} Y$ denote the completions of the injective and projective tensor product of X with Y, [9] . Light and Cheney, (Theorem 2.26, [9]),

[^0]
AL-SHARIF, KHALIL

proved that if G and H are finite dimensional subspaces of $L^{1}(S)$ and $L^{1}(I)$ respectively, then each element of $L^{1}(I \times S)=L^{1}(I) \stackrel{\vee}{\otimes} L^{1}(S)$ has a best approximation in the subspace $L^{1}(I) \hat{\otimes} G+H \hat{\otimes} L^{1}(S)$. Deeb and Khalil, (Theorem 3.3 [1]), proved that if G and H are 1-summand subspaces of $L^{1}(I)$, then $L^{1}(I) \hat{\otimes} G+H \hat{\otimes} L^{1}(S)$ is proximinal in $L^{1}(I \times I)$.

The object of this paper is to discuss the proximinality of $L^{1}(I, H)+L^{1}(I, G)$ in $L^{1}(I, X)$, where H and G are two proximinal subspaces of X. Further we conclude from our results the proximinality of $L^{1}(I) \hat{\otimes} G+H \hat{\otimes} L^{1}(I)$ in $L^{1}(I \times I)$.

1. Distance Formula

For a Banach space X and two closed subspaces G and H of X, the distance formula from a point $f \in L^{p}(\mu, X)$ to the set $L^{p}(\mu, G)+L^{p}(\mu, G)$ is computed by the following theorem.

Theorem 1.1. Let (I, Ω, μ) be a measure space, X a Banach space and H, G be two closed subspaces of X. Then for each $f \in L^{p}(I, X)$

$$
\begin{aligned}
\operatorname{dist}\left(f, L^{p}(I, H)+L^{p}(I, G)\right) & =\left(\int_{I}(\operatorname{dist}(f(s), H+G))^{p} d s\right)^{\frac{1}{p}} \\
& =\|\operatorname{dist}(f(.), H+G)\|_{p}
\end{aligned}
$$

Proof. Let $f \in L^{p}(I, X)$ and $u \in L^{p}(I, H)+L^{p}(I, G)$. Then $u=u_{1}+u_{2}$ where $u_{1} \in L^{p}(I, H)$ and $u_{2} \in L^{p}(I, G)$ and

$$
\begin{aligned}
\left\|f-\left(u_{1}+u_{2}\right)\right\|_{p}^{p} & =\int_{I}\left\|f(s)-\left(u_{1}(s)+u_{2}(s)\right)\right\|^{p} d s \\
& \geq \int_{I}(\operatorname{dist}(f(s), H+G))^{p} d s
\end{aligned}
$$

AL-SHARIF, KHALIL

This implies that:

$$
\begin{align*}
\left\|f-\left(u_{1}+u_{2}\right)\right\|_{p} & \geq\left(\int_{I}(\operatorname{dist}(f(s), H+G))^{p} d s\right)^{\frac{1}{p}} \\
& =\|\operatorname{dist}(f(.), H+G)\|_{p} \tag{1}
\end{align*}
$$

Now, since simple functions are dense in $L^{p}(I, X)$, then given $\epsilon>0$, there exists a simple function φ in $L^{p}(I, X)$ such that $\|f-\varphi\|_{p}<\epsilon$. Write $\varphi=\sum_{i=1}^{n} \varkappa_{A_{i}} y_{i}$, where $\varkappa_{A_{i}}$ is the characteristic function of the set A_{i} in Ω and $y_{i} \in X$. We may assume that $\sum_{i=1}^{n} \varkappa_{A_{i}}=1$ and $\mu\left(A_{i}\right)>0$. Since $\varphi \in L^{p}(I, X)$ we have $\left\|y_{i}\right\| \mu\left(A_{i}\right)<\infty$ for $1 \leq i \leq n$. For each $i=1,2, \ldots, n$, if $\mu\left(A_{i}\right)<\infty$, select $h_{i} \in H$ and $g_{i} \in G$ such that:

$$
\left\|y_{i}-\left(h_{i}+g_{i}\right)\right\|<\operatorname{dist}\left(y_{i}, H+G\right)+\frac{\epsilon}{\left(n \mu\left(A_{i}\right)\right)^{\frac{1}{p}}} .
$$

This could be done since $\operatorname{dist}(u, H+G)=\inf _{g \in H+G}\|u-g\|$ for all $u \in X$. If $\mu\left(A_{i}\right)=\infty$, put $h_{i}=g_{i}=0$. Let

$$
w=\sum_{i=1}^{n} \varkappa_{A_{i}}\left(h_{i}+g_{i}\right)=\sum_{i=1}^{n} \varkappa_{A_{i}} h_{i}+\sum_{i=1}^{n} \varkappa_{A_{i}} g_{i}=w_{1}+w_{2}
$$

Clearly $w \in L^{p}(I, H)+L^{p}(I, G)$. Set $J=\operatorname{dist}\left(f, L^{p}(I, H)+L^{p}(I, G)\right)$. Then

$$
\begin{aligned}
J & \leq\|f-\varphi\|_{p}+\operatorname{dist}\left(\varphi, L^{p}(I, H)+L^{p}(I, G)\right) \\
& \leq \epsilon+\|\varphi-w\|_{p} \\
& =\epsilon+\left\|\varphi-\left(w_{1}+w_{2}\right)\right\|_{p} \\
& =\epsilon+\left(\int_{I}\left\|\varphi(s)-\left(w_{1}(s)+w_{2}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& =\epsilon+\left(\sum_{i=1}^{n} \int_{A_{i}}\left\|y_{i}-\left(g_{i}+h_{i}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq \epsilon+\left(\sum_{i=1}^{n} \int_{A_{i}}\left(\operatorname{dist}\left(y_{i}, H+G\right)+\frac{\epsilon}{\left(n \mu\left(A_{i}\right)\right)^{\frac{1}{p}}}\right)^{p} d s\right)^{\frac{1}{p}} \\
& \leq \epsilon+\left(\sum_{i=1}^{n} \int_{A_{i}}\left(\operatorname{dist}\left(y_{i}, H+G\right)\right)^{p} d s\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n} \int_{A_{i}}\left(\frac{\epsilon}{\left(n \mu\left(A_{i}\right)\right)^{\frac{1}{p}}}\right)^{p} d s\right)^{\frac{1}{p}} \\
& =\epsilon+\left(\sum_{i=1}^{n} \int_{A_{i}}\left(\operatorname{dist}\left(y_{i}, H+G\right)\right)^{p} d s\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n} \int_{A_{i}} \frac{\epsilon^{p}}{n \mu\left(A_{i}\right)} d s\right)^{\frac{1}{p}} \\
& =\epsilon+\left(\sum_{i=1}^{n} \int_{A_{i}}\left(\operatorname{dist}\left(y_{i}, H+G\right)\right)^{p} d s\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n} \frac{\epsilon^{p}}{n \mu\left(A_{i}\right)} \mu\left(A_{i}\right)\right)^{\frac{1}{p}} \\
& =2 \epsilon+\left(\sum_{i=1}^{n} \int_{A_{i}}\left(\operatorname{dist}\left(y_{i}, H+G\right)\right)^{p} d s\right)^{\frac{1}{p}} \\
& =2 \epsilon+\left(\int_{I}(\operatorname{dist}(\varphi, H+G))^{p} d s\right)^{\frac{1}{p}}
\end{aligned}
$$

Since $\operatorname{dist}(\varphi(s), H+G) \leq \operatorname{dist}(f(s), H+G)+\|\varphi(s)-f(s)\|$, then:

AL-SHARIF, KHALIL

$$
\begin{aligned}
J & \leq 2 \epsilon+\left(\int_{I}(\operatorname{dist}(f(s), H+G)+\|\varphi(s)-f(s)\|)^{p} d s\right)^{\frac{1}{p}} \\
& \leq 2 \epsilon+\left(\int_{I}(\operatorname{dist}(f(s), H+G))^{p} d s\right)^{\frac{1}{p}}+\left(\int_{I}\|\varphi(s)-f(s)\|^{p} d s\right)^{\frac{1}{p}} \\
& =2 \epsilon+\left(\int_{I}(\operatorname{dist}(f(s), H+G))^{p} d s\right)^{\frac{1}{p}}+\|\varphi-f\|_{p} \\
& \leq 3 \epsilon+\left(\int_{I}(\operatorname{dist}(f(s), H+G))^{p} d s\right)^{\frac{1}{p}}
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\operatorname{dist}\left(f, L^{p}(I, H)+L^{p}(I, G)\right) \leq\left(\int_{I}(\operatorname{dist}(f(s), H+G))^{p} d s\right)^{\frac{1}{p}} \tag{2}
\end{equation*}
$$

From (1) and (2) the result holds.

The following Corollary is an application of Theorem 1.1.
Corollary 1.2. Let H and G be subspaces of a Banach space X and (I, Ω, μ) be a measure space such that $\mu(I)<\infty$. Then $g \in L^{p}(I, H)+L^{p}(I, G)$ is a best approximation for $f \in L^{p}(I, X)$ if and only if for almost all $t \in I, g(t)$ is a best approximation in $H+G$ for $f(t)$.

Proof. Let $g=g_{1}+g_{2}$ be a best approximation in $L^{p}(I, H)+L^{p}(I, G)$ for $f \in L^{p}(I, X)$. Then $\|f-g\|_{p}=\operatorname{dist}\left(f, L^{p}(I, H)+L^{p}(I, G)\right)$. By Theorem 1.1 we have:

$$
\left(\int_{I}\left\|f(t)-\left(g_{1}(t)+g_{2}(t)\right)\right\|^{p} d t\right)^{\frac{1}{p}}=\left(\int_{I}(\operatorname{dist}(f(t), H+G))^{p} d t\right)^{\frac{1}{p}} .
$$

AL-SHARIF, KHALIL

Since $\operatorname{dist}(f(t), H+G) \leq\|f(t)-(y+z)\|$ for any $y \in H$ and $z \in G$, it follows that

$$
\operatorname{dist}(f(t), H+G) \leq\left\|f(t)-\left(g_{1}(t)+g_{2}(t)\right)\right\| .
$$

Since x^{p} is an increasing function for $p \geq 1$, we have:

$$
(\operatorname{dist}(f(t), H+G))^{p} \leq\left\|f(t)-\left(g_{1}(t)+g_{2}(t)\right)\right\|^{p} .
$$

Thus $\left\|f(t)-\left(g_{1}(t)+g_{2}(t)\right)\right\|^{p}=(\operatorname{dist}(f(t), H+G))^{p}$ for almost all $t \in I$ and so

$$
\left\|f(t)-\left(g_{1}(t)+g_{2}(t)\right)\right\|=\operatorname{dist}(f(t), H+G) \text { for almost all } t \in I
$$

Hence $g_{1}(t)+g_{2}(t)$ is a best approximation for $f(t) \in X$ for almost all $t \in I$.

2. Proximinality in $L^{1}(I, X)$.

Let X be a Banach space and (I, Ω, μ) be a finite measure space. The Main result of this section is to give sufficient conditions for the proximinality of $L^{1}(I, H)+L^{1}(I, G)$ in $L^{1}(I, X)$, where H and G are two proximinal subspaces of X which include as a special case the proximality of $L^{1}(I) \hat{\otimes} G+H \hat{\otimes} L^{1}(I)$ in $L^{1}(I \times I)$. We start with the following definition.

Definition 2.1 Two subspaces H and G of a Banach space X are said to be p-orthogonal if $\|h+g\|^{p}=\|h\|^{p}+\|g\|^{p}$ for every $h \in H$ and $g \in G$.

It is easy to see that if H and G are p-orthogonal, then a function f is in $L^{p}(I, H+G)$ whenever f is in $L^{p}(I, H)+L^{p}(I, G)$.

Now we prove the following Main result
Theorem 2.2. Let G and H be closed subspaces in X such that H and G are p orthogonal. Then the following are equivalent:
(1) $L^{1}(I, H)+L^{1}(I, G)$ is proximinal in $L^{1}(I, X)$,
(2) $L^{p}(I, H)+L^{p}(I, G)$ is proximinal in $L^{P}(I, X), 1 \leq p<\infty$.

Proof. (1) $\rightarrow(2)$. Let $f \in L^{p}(I, X)$. Since (I, Ω, μ) is a finite measure space, then $f \in L^{1}(I, X)$. By assumption there exists $g=g_{1}+g_{2} \in L^{1}(I, H)+L^{1}(I, G)$ such that: $\left\|f-\left(g_{1}+g_{2}\right)\right\| \leq\|f-U\|$ for every $U \in L^{1}(I, H)+L^{1}(I, G)$. So

AL-SHARIF, KHALIL

$\left\|f(t)-\left(g_{1}(t)+g_{2}(t)\right)\right\| \leq\|f(t)-y\|$, for every $y=y_{1}+y_{2} \in H+G$ and for almost all $t \in I$. Thus

$$
\left\|f(t)-\left(g_{1}(t)+g_{2}(t)\right)\right\| \leq\|f(t)-w(t)\|
$$

for all $w \in L^{p}(I, H+G)$. Since $0 \in H+G$ it follows that: $\left\|\left(g_{1}(t)+g_{2}(t)\right)\right\| \leq 2\|f(t)\|$. Hence $g_{1}+g_{2} \in L^{p}(I, H+G)$. Since H and G are p-orthogonal it follows that $g_{1}+g_{2} \in$ $L^{p}(I, H)+L^{p}(I, G)$.
$(2) \rightarrow(1)$. Consider the map, $J: L^{1}(I, X) \rightarrow L^{p}(I, X)$, where, $J(f)(t)=\|f(t)\|^{\frac{1}{p}-1} f(t)$. As in the proof of Theorem 1.1, [1], J is one-one, onto and $J\left(L^{1}(I, G)\right)=L^{p}(I, G)$, $J\left(L^{1}(I, H)\right)=L^{p}(I, H)$.

Now, let $f \in L^{1}(I, X), f(t) \neq 0$. Since $J(f) \in L^{p}(I, X)$, then by assumption there exists $f_{1}+f_{2} \in L^{p}(I, H)+L^{p}(I, G)$ such that

$$
\left\|J(f)-J\left(f_{1}+f_{2}\right)\right\|_{p} \leq\left\|J(f)-J\left(u_{1}+u_{2}\right)\right\|_{p}
$$

for all $u_{1} \in L^{p}(I, H)$ and $u_{2} \in L^{p}(I, G)$. Since $f_{1}+f_{2}, u_{1}+u_{2}$ are in $L^{p}(I, H)+$ $L^{p}(I, G)$, it follows that $f_{1}+f_{2}, u_{1}+u_{2} \in L^{p}(I, H+G)$. Hence $f_{1}+f_{2}=J\left(g_{1}+g_{2}\right)$ and $u_{1}+u_{2}=J\left(h_{1}+h_{2}\right)$, where $g_{1}+g_{2}, h_{1}+h_{2} \in L^{1}(I, H+G)$. But H and G are p-orthogonal. Hence $g_{1}+g_{2}, h_{1}+h_{2} \in L^{1}(I, H)+L^{1}(I, G)$. Thus

$$
\left\|J(f)-J\left(g_{1}+g_{2}\right)\right\|_{p} \leq\left\|J(f)-J\left(h_{1}+h_{2}\right)\right\|_{p}
$$

for all $h_{1} \in L^{1}(I, H), h_{2} \in L^{1}(I, G)$. This implies that

$$
\left\|J(f)(t)-J\left(g_{1}+g_{2}\right)(t)\right\| \leq\left\|J(f)(t)-\left(y_{1}+y_{2}\right)\right\|
$$

for every $y_{1} \in H, y_{2} \in G$ for almost all $t \in I$. Thus

$$
\left\|J(f)(t)-J\left(g_{1}+g_{2}\right)(t)\right\| \leq\|J(f)(t)-\| f(t)\left\|^{\frac{1}{p}-1}\left(y_{1}+y_{2}\right)\right\|
$$

Multiply both sides by $\|f(t)\|^{1-\frac{1}{p}}$ we get:

$$
\|f(t)-\| f(t)\left\|^{1-\frac{1}{p}}\right\| g_{1}(t)+g_{2}(t) \|^{\frac{1}{p}-1}\left(g_{1}(t)+g_{2}(t)\|\leq\| f(t)-\left(y_{1}+y_{2}\right) \|\right.
$$

for every $y_{1} \in H, y_{2} \in G$. Since $J\left(g_{1}+g_{2}\right)(t)$ is a best approximation of $J(f)(t)$ in $H+G\left(\right.$ Corollary 1.2) and $0 \in H+G$ it follows that $\left\|J\left(g_{1}+g_{2}\right)(t)\right\| \leq 2\|J(f)(t)\|$ and
hence $J\left(g_{1}+g_{2}\right) \in L^{P}(I, H+G)$. This implies that $g_{1}+g_{2} \in L^{1}(I, H+G)$. Thus $w, \quad w(t)=\|f(t)\|^{1-\frac{1}{p}}\left\|g_{1}(t)+g_{2}(t)\right\|^{\frac{1}{p}-1}\left(g_{1}(t)+g_{2}(t)\right.$ is in $L^{1}(I, H+G)$. Hence $w \in L^{1}(I, H)+L^{1}(I, G)$ and $\|f-w\|_{1} \leq\left\|f-\left(\theta_{1}+\theta_{2}\right)\right\|_{1}$ for every $\theta_{1} \in L^{1}(I, H), \theta_{2} \in$ $L^{1}(I, G)$.

Theorem 2.3. Let G and H be two reflexive subspaces of a Banach space X such that G and H are p-orthogonal. Then $L^{p}(I, H)+L^{p}(I, G)$ is proximinal in $L^{P}(I, X)$.

Proof. \quad Since H and G are reflexive then, by Theorem 2.13, [9], the subspaces $L^{1}(I, G)$ and $L^{1}(I, H)$ are proximinal in $L^{1}(I, X)$. By Theorem 1.1, [8], $L^{p}(I, G)$ and $L^{p}(I, H)$ are proximinal in $L^{p}(I, X)$. Since H and G are reflexive then, $L^{p}(I, G)$ and $L^{p}(I, H)$ are reflexive for $1<p<\infty([2], \mathrm{p}, 82,98)$ and hence their intersection is reflexive ([5], p, 126). By Theorem 16.12, [5], $L^{p}(I, H) /\left(L^{p}(I, G) \cap L^{p}(I, H)\right)$ is reflexive. But $\left(L^{p}(I, G)+L^{p}(I, H)\right) / L^{p}(I, G)$ is isomorphic to $L^{p}(I, H) /\left(L^{p}(I, G) \cap L^{p}(I, H)\right)$, ([5], p. 123). Consequently $\left(L^{p}(I, G)+L^{p}(I, H)\right) / L^{p}(I, G)$ is reflexive ([3], p. 9). Hence by Corollary 2.1, [10],$\left(L^{p}(I, G)+L^{p}(I, H)\right) / L^{p}(I, G)$ is proximinal and so by Theorem 2.1, [1], $L^{p}(I, G)+L^{p}(I, H)$ is proximinal in $L^{p}(I, X)$.

Corollary 2.5 Let H and G be two reflexive subspaces of $L^{1}(I)$ such that H and G are p-orthogonal. Then $L^{1}(I) \hat{\otimes} G+H \hat{\otimes} L^{1}(I)$ is proximinal in $L^{1}(I \times I)$.
Proof. Since H and G are two reflexive p-orthogonal subspaces of $L^{1}(I)$, by Theorem 2.3 and $2.1 L^{1}(I, G)+L^{1}(I, H)$ is proximinal in $L^{1}(I \times I)$. By Theorem 1.15, [9], $L^{1}(I) \hat{\otimes} G+H \hat{\otimes} L^{1}(I)$ is proximinal in $L^{1}(I \times I)$.

References

[1] Deeb, W. and Khalil, R.: The Sum of Proximinal Subspaces. Soochow Journal of Mathematics. 18, No. 2 (1992), 163-167.
[2] Diestel, J. and Uhl, J.: Vector Measures. Amer. Math. Soc. 1977.
[3] Dulst, D.: Reflexive and Super Reflexive Banach Spaces. Mathematical Centre Tracts. Amesterdam. 102 (1978).

AL-SHARIF, KHALIL

[4] Holmos, R.: A course on Optimization and Best Approximation. Springer-Verlag, Berlin, New York, 1972.
[5] Holmos, R.: Geometric Functional Analysis and its Applications. GTM, 24, SpringerVerlag, 1975.
[6] Holland, S., Light, W. and Sulley, L.: On Proximinality in $L^{1}(T \times S)$. Proc. of the Amer. Math. Soc. 86, No. 2 (1982), 279-282.
[7] Khalil, R.: Best Approximation in $L^{P}(I, X)$. Math. Proc. Cambridge Philos. Soc. 94 (1983), 277-279.
[8] Khalil R. and Deeb, W.: Best Approximation in $L^{P}(\mu, X)$ II. J. Approx. Theory. 59(1989), 296-299.
[9] Light, W. and Cheney, E.: Approximation Theory in Tensor Product Spaces. Lecture Notes in Mathematics. 1169. Springer-Verlag, Berlin, New York, 1985.
[10] Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer-Verlag, Berlin, New York, 1970.

Sh. AL-SHARIF, R. KHALIL
Received 29.01.2007
Mathematics Department,
Yarmouk University,
Jordan University, Irbed-JORDAN
e mail: Sharifa@yu.edu.jo
e mail: Roshdi@ju.edu.jo

[^0]: AMS Mathematics Subject Classification: 41A65, 41A50

