Turk J Math 32 (2008) , 187 – 195. © TÜBİTAK

Proximinality in $L^1(I, X)$

Sh. Al-Sharif and R. Khalil

Abstract

Let X be a Banach space and let (I, Ω, μ) be a measure space. For $1 \leq p < \infty$, let $L^p(I, X)$ denote the space of Bochner *p*-integrable functions defined on *I* with values in X. The object of this paper is to give sufficient conditions for the proximinality of $L^1(I, H) + L^1(I, G)$ in $L^1(I, X)$, where *H* and *G* are two proximinal subspaces of X which include as a special case the proximality of $L^1(I) \overset{\wedge}{\otimes} G + H \overset{\wedge}{\otimes} L^1(I)$ in $L^1(I \times I)$.

Key Words: Proximinal, Banach spaces.

0. Introduction

Let (I, Ω, μ) be a measure space and let $L^p(I, X)$ denotes the space of Bochner *p*integrable functions (equivalent classes) defined on (I, Ω, μ) with values in a Banach space X. It is known [2] that $L^p(I, X)$ is a Banach space under the norm

$$||f||_{p} = \left(\int ||f(t)||^{p} d\mu(t)\right)^{\frac{1}{p}}, \qquad 1 \le p < \infty.$$

A subspace E of a Banach space X is said to be proximinal if for each $x \in X$ there exists at least one $y \in E$ such that

$$||x - y|| = d(x, E) = \inf \{||x - z|| : z \in E\}.$$

The element y is called a best approximation of x in E.

If X and Y are Banach spaces, then $X \overset{\wedge}{\otimes} Y$ and $X \overset{\vee}{\otimes} Y$ denote the completions of the injective and projective tensor product of X with Y, [9]. Light and Cheney, (Theorem 2.26, [9]),

AMS Mathematics Subject Classification: 41A65, 41A50

proved that if G and H are finite dimensional subspaces of $L^1(S)$ and $L^1(I)$ respectively, then each element of $L^1(I \times S) = L^1(I) \bigotimes^{\lor} L^1(S)$ has a best approximation in the subspace $L^1(I) \bigotimes^{\land} G + H \bigotimes^{\land} L^1(S)$. Deeb and Khalil, (Theorem 3.3 [1]), proved that if Gand H are 1-summand subspaces of $L^1(I)$, then $L^1(I) \bigotimes^{\land} G + H \bigotimes^{\land} L^1(S)$ is proximinal in $L^1(I \times I)$.

The object of this paper is to discuss the proximinality of $L^1(I, H) + L^1(I, G)$ in $L^1(I, X)$, where H and G are two proximinal subspaces of X. Further we conclude from our results the proximinality of $L^1(I) \bigotimes^{\wedge} G + H \bigotimes^{\wedge} L^1(I)$ in $L^1(I \times I)$.

1. Distance Formula

For a Banach space X and two closed subspaces G and H of X, the distance formula from a point $f \in L^p(\mu, X)$ to the set $L^p(\mu, G) + L^p(\mu, G)$ is computed by the following theorem.

Theorem 1.1. Let (I, Ω, μ) be a measure space, X a Banach space and H, G be two closed subspaces of X. Then for each $f \in L^p(I, X)$

$$\operatorname{dist}(f, L^{p}(I, H) + L^{p}(I, G)) = \left(\int_{I} \left(\operatorname{dist}(f(s), H + G) \right)^{p} ds \right)^{\frac{1}{p}}$$
$$= \|\operatorname{dist}(f(.), H + G)\|_{p}$$

Proof. Let $f \in L^p(I, X)$ and $u \in L^p(I, H) + L^p(I, G)$. Then $u = u_1 + u_2$ where $u_1 \in L^p(I, H)$ and $u_2 \in L^p(I, G)$ and

$$\|f - (u_1 + u_2)\|_p^p = \int_I \|f(s) - (u_1 (s) + u_2 (s))\|^p ds$$

$$\geq \int_I (\operatorname{dist}(f(s), H + G))^p ds.$$

This implies that:

$$\|f - (u_1 + u_2)\|_p \geq \left(\int_I \left(\operatorname{dist}(f(s), H + G) \right)^p ds \right)^{\frac{1}{p}} \\ = \|\operatorname{dist}(f(.), H + G)\|_p.$$
(1)

Now, since simple functions are dense in $L^p(I, X)$, then given $\epsilon > 0$, there exists a simple function φ in $L^p(I, X)$ such that $\|f - \varphi\|_p < \epsilon$. Write $\varphi = \sum_{i=1}^n \varkappa_{A_i} y_i$, where \varkappa_{A_i} is the characteristic function of the set A_i in Ω and $y_i \in X$. We may assume that $\sum_{i=1}^n \varkappa_{A_i} = 1$ and $\mu(A_i) > 0$. Since $\varphi \in L^p(I, X)$ we have $\|y_i\| \ \mu(A_i) < \infty$ for $1 \le i \le n$. For each i = 1, 2, ..., n, if $\mu(A_i) < \infty$, select $h_i \in H$ and $g_i \in G$ such that:

$$||y_i - (h_i + g_i)|| < \operatorname{dist}(y_i, H + G) + \frac{\epsilon}{(n\mu(A_i))^{\frac{1}{p}}}.$$

This could be done since $dist(u, H + G) = \inf_{g \in H + G} ||u - g||$ for all $u \in X$. If $\mu(A_i) = \infty$, put $h_i = g_i = 0$. Let

$$w = \sum_{i=1}^{n} \varkappa_{A_{i}} (h_{i} + g_{i}) = \sum_{i=1}^{n} \varkappa_{A_{i}} h_{i} + \sum_{i=1}^{n} \varkappa_{A_{i}} g_{i} = w_{1} + w_{2}.$$

Clearly $w \in L^p(I, H) + L^p(I, G)$. Set $J = dist(f, L^p(I, H) + L^p(I, G))$. Then

$$J \leq \|f - \varphi\|_{p} + \operatorname{dist}(\varphi, L^{p}(I, H) + L^{p}(I, G))$$

$$\leq \epsilon + \|\varphi - w\|_{p}$$

$$= \epsilon + \|\varphi - (w_{1} + w_{2})\|_{p}$$

$$= \epsilon + \left(\int_{I} \|\varphi(s) - (w_{1}(s) + w_{2}(s))\|^{p} ds\right)^{\frac{1}{p}}$$

$$= \epsilon + \left(\sum_{i=1}^{n} \int_{A_{i}} \|y_{i} - (g_{i} + h_{i})\|^{p} ds\right)^{\frac{1}{p}}$$

$$\leq \epsilon + \left(\sum_{i=1}^{n} \int_{A_{i}} \left(\operatorname{dist}(y_{i}, H + G) + \frac{\epsilon}{(n\mu(A_{i}))^{\frac{1}{p}}}\right)^{p} ds\right)^{\frac{1}{p}}$$

$$\leq \epsilon + \left(\sum_{i=1}^{n} \int_{A_{i}} \left(\operatorname{dist}(y_{i}, H + G)\right)^{p} ds\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} \int_{A_{i}} \left(\frac{\epsilon}{(n\mu(A_{i}))^{\frac{1}{p}}}\right)^{p} ds\right)^{\frac{1}{p}}$$

$$= \epsilon + \left(\sum_{i=1}^{n} \int_{A_{i}} \left(\operatorname{dist}(y_{i}, H + G)\right)^{p} ds\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} \int_{A_{i}} \frac{\epsilon^{p}}{n\mu(A_{i})} ds\right)^{\frac{1}{p}}$$

$$= \epsilon + \left(\sum_{i=1}^{n} \int_{A_{i}} \left(\operatorname{dist}(y_{i}, H + G)\right)^{p} ds\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} \frac{\epsilon^{p}}{n\mu(A_{i})} \mu(A_{i})\right)^{\frac{1}{p}}$$

$$= 2\epsilon + \left(\sum_{i=1}^{n} \int_{A_{i}} \left(\operatorname{dist}(y_{i}, H + G)\right)^{p} ds\right)^{\frac{1}{p}}$$

Since $\operatorname{dist}(\varphi(s),H+G)\leq\operatorname{dist}(f(s),H+G)+\|\varphi(s)-f(s)\|$, then:

$$J \leq 2\epsilon + \left(\int_{I} \left(\operatorname{dist}(f(s), H + G) + \|\varphi(s) - f(s)\|\right)^{p} ds\right)^{\frac{1}{p}}$$

$$\leq 2\epsilon + \left(\int_{I} \left(\operatorname{dist}(f(s), H + G)\right)^{p} ds\right)^{\frac{1}{p}} + \left(\int_{I} \|\varphi(s) - f(s)\|^{p} ds\right)^{\frac{1}{p}}$$

$$= 2\epsilon + \left(\int_{I} \left(\operatorname{dist}(f(s), H + G)\right)^{p} ds\right)^{\frac{1}{p}} + \|\varphi - f\|_{p}$$

$$\leq 3\epsilon + \left(\int_{I} \left(\operatorname{dist}(f(s), H + G)\right)^{p} ds\right)^{\frac{1}{p}}.$$

This implies that

$$\operatorname{dist}\left(f, L^{p}(I, H) + L^{p}(I, G)\right) \leq \left(\int_{I} \left(\operatorname{dist}(f(s), H + G)\right)^{p} ds\right)^{\frac{1}{p}}$$
(2)

From (1) and (2) the result holds.

The following Corollary is an application of Theorem 1.1.

Corollary 1.2. Let H and G be subspaces of a Banach space X and (I, Ω, μ) be a measure space such that $\mu(I) < \infty$. Then $g \in L^p(I, H) + L^p(I, G)$ is a best approximation for $f \in L^p(I, X)$ if and only if for almost all $t \in I$, g(t) is a best approximation in H + G for f(t).

Proof. Let $g = g_1 + g_2$ be a best approximation in $L^p(I, H) + L^p(I, G)$ for $f \in L^p(I, X)$. Then $||f - g||_p = \text{dist}(f, L^p(I, H) + L^p(I, G))$. By Theorem 1.1 we have:

$$\left(\int_{I} \|f(t) - (g_1(t) + g_2(t))\|^p dt\right)^{\frac{1}{p}} = \left(\int_{I} (\operatorname{dist}(f(t), H + G))^p dt\right)^{\frac{1}{p}}.$$

Since dist $(f(t), H + G) \leq ||f(t) - (y + z)||$ for any $y \in H$ and $z \in G$, it follows that

$$dist(f(t), H + G) \le ||f(t) - (g_1(t) + g_2(t))||.$$

Since x^p is an increasing function for $p \ge 1$, we have:

$$(\operatorname{dist}(f(t), H+G))^p \le \|f(t) - (g_1(t) + g_2(t))\|^p$$
.

Thus $||f(t) - (g_1(t) + g_2(t))||^p = (\operatorname{dist}(f(t), H + G))^p$ for almost all $t \in I$ and so

$$||f(t) - (g_1(t) + g_2(t))|| = \text{dist}(f(t), H + G)$$
 for almost all $t \in I$.

Hence $g_1(t) + g_2(t)$ is a best approximation for $f(t) \in X$ for almost all $t \in I$. \Box

2. Proximinality in $L^1(I, X)$.

Let X be a Banach space and (I, Ω, μ) be a finite measure space. The Main result of this section is to give sufficient conditions for the proximinality of $L^1(I, H) + L^1(I, G)$ in $L^1(I, X)$, where H and G are two proximinal subspaces of X which include as a special case the proximality of $L^1(I) \overset{\wedge}{\otimes} G + H \overset{\wedge}{\otimes} L^1(I)$ in $L^1(I \times I)$. We start with the following definition.

Definition 2.1 Two subspaces H and G of a Banach space X are said to be p-orthogonal if $||h + g||^p = ||h||^p + ||g||^p$ for every $h \in H$ and $g \in G$.

It is easy to see that if H and G are p-orthogonal, then a function f is in $L^p(I, H+G)$ whenever f is in $L^p(I, H) + L^p(I, G)$.

Now we prove the following Main result

Theorem 2.2. Let G and H be closed subspaces in X such that H and G are p-orthogonal. Then the following are equivalent:

(1) $L^{1}(I, H) + L^{1}(I, G)$ is proximinal in $L^{1}(I, X)$,

(2) $L^p(I,H) + L^p(I,G)$ is proximinal in $L^P(I,X), 1 \le p < \infty$.

Proof. (1) \rightarrow (2). Let $f \in L^p(I, X)$. Since (I, Ω, μ) is a finite measure space, then $f \in L^1(I, X)$. By assumption there exists $g = g_1 + g_2 \in L^1(I, H) + L^1(I, G)$ such that: $||f - (g_1 + g_2)|| \le ||f - U||$ for every $U \in L^1(I, H) + L^1(I, G)$. So

 $||f(t) - (g_1(t) + g_2(t))|| \le ||f(t) - y||$, for every $y = y_1 + y_2 \in H + G$ and for almost all $t \in I$. Thus

$$||f(t) - (g_1(t) + g_2(t))|| \le ||f(t) - w(t)||,$$

for all $w \in L^p(I, H+G)$. Since $0 \in H+G$ it follows that: $||(g_1(t)+g_2(t))|| \le 2 ||f(t)||$. Hence $g_1 + g_2 \in L^p(I, H+G)$. Since H and G are p-orthogonal it follows that $g_1 + g_2 \in L^p(I, H) + L^p(I, G)$.

 $(2) \to (1)$. Consider the map, $J : L^1(I, X) \to L^p(I, X)$, where, $J(f)(t) = ||f(t)||^{\frac{1}{p}-1} f(t)$. As in the proof of Theorem 1.1, [1], J is one-one, onto and $J(L^1(I, G)) = L^p(I, G)$, $J(L^1(I, H)) = L^p(I, H)$.

Now, let $f \in L^1(I, X)$, $f(t) \neq 0$. Since $J(f) \in L^p(I, X)$, then by assumption there exists $f_1 + f_2 \in L^p(I, H) + L^p(I, G)$ such that

$$\|J(f) - J(f_1 + f_2)\|_p \le \|J(f) - J(u_1 + u_2)\|_p$$

for all $u_1 \in L^p(I, H)$ and $u_2 \in L^p(I, G)$. Since $f_1 + f_2$, $u_1 + u_2$ are in $L^p(I, H) + L^p(I, G)$, it follows that $f_1 + f_2$, $u_1 + u_2 \in L^p(I, H + G)$. Hence $f_1 + f_2 = J(g_1 + g_2)$ and $u_1 + u_2 = J(h_1 + h_2)$, where $g_1 + g_2$, $h_1 + h_2 \in L^1(I, H + G)$. But H and G are p-orthogonal. Hence $g_1 + g_2$, $h_1 + h_2 \in L^1(I, H) + L^1(I, G)$. Thus

$$||J(f) - J(g_1 + g_2)||_p \le ||J(f) - J(h_1 + h_2)||_p$$

for all $h_1 \in L^1(I, H)$, $h_2 \in L^1(I, G)$. This implies that

$$||J(f)(t) - J(g_1 + g_2)(t)|| \le ||J(f)(t) - (y_1 + y_2)||,$$

for every $y_1 \in H$, $y_2 \in G$ for almost all $t \in I$. Thus

$$\|J(f)(t) - J(g_1 + g_2)(t)\| \le \|J(f)(t) - \|f(t)\|^{\frac{1}{p}-1} (y_1 + y_2)\|.$$

Multiply both sides by $||f(t)||^{1-\frac{1}{p}}$ we get:

$$\left\| f(t) - \|f(t)\|^{1-\frac{1}{p}} \|g_1(t) + g_2(t)\|^{\frac{1}{p}-1} (g_1(t) + g_2(t)) \right\| \le \|f(t) - (y_1 + y_2)\|$$

for every $y_1 \in H$, $y_2 \in G$. Since $J(g_1 + g_2)(t)$ is a best approximation of J(f)(t) in H + G (Corollary 1.2) and $0 \in H + G$ it follows that $\|J(g_1 + g_2)(t)\| \le 2 \|J(f)(t)\|$ and

hence $J(g_1 + g_2) \in L^P(I, H + G)$. This implies that $g_1 + g_2 \in L^1(I, H + G)$. Thus $w, \quad w(t) = \|f(t)\|^{1-\frac{1}{p}} \|g_1(t) + g_2(t)\|^{\frac{1}{p}-1} (g_1(t) + g_2(t))$ is in $L^1(I, H + G)$. Hence $w \in L^1(I, H) + L^1(I, G)$ and $\|f - w\|_1 \leq \|f - (\theta_1 + \theta_2)\|_1$ for every $\theta_1 \in L^1(I, H), \ \theta_2 \in L^1(I, G)$.

Theorem 2.3. Let G and H be two reflexive subspaces of a Banach space X such that G and H are p-orthogonal. Then $L^p(I, H) + L^p(I, G)$ is proximinal in $L^P(I, X)$.

Proof. Since *H* and *G* are reflexive then, by Theorem 2.13, [9], the subspaces $L^1(I, G)$ and $L^1(I, H)$ are proximinal in $L^1(I, X)$. By Theorem 1.1, [8], $L^p(I, G)$ and $L^p(I, H)$ are proximinal in $L^p(I, X)$. Since *H* and *G* are reflexive then, $L^p(I, G)$ and $L^p(I, H)$ are reflexive for 1 ([2], p, 82, 98) and hence their intersection is reflex $ive ([5], p, 126). By Theorem 16.12, [5], <math>L^p(I, H)/(L^p(I, G) \cap L^p(I, H))$ is reflexive. But $(L^p(I, G) + L^p(I, H))/L^p(I, G)$ is isomorphic to $L^p(I, H)/(L^p(I, G) \cap L^p(I, H))$, ([5], p. 123). Consequently $(L^p(I, G) + L^p(I, H))/L^p(I, G)$ is reflexive ([3], p. 9). Hence by Corollary 2.1, [10], $(L^p(I, G) + L^p(I, H))/L^p(I, G)$ is proximinal and so by Theorem 2.1, [1], $L^p(I, G) + L^p(I, H)$ is proximinal in $L^p(I, X)$.

Corollary 2.5 Let H and G be two reflexive subspaces of $L^1(I)$ such that H and G are p-orthogonal. Then $L^1(I) \stackrel{\wedge}{\otimes} G + H \stackrel{\wedge}{\otimes} L^1(I)$ is proximinal in $L^1(I \times I)$.

Proof. Since H and G are two reflexive p-orthogonal subspaces of $L^1(I)$, by Theorem 2.3 and 2.1 $L^1(I, G) + L^1(I, H)$ is proximinal in $L^1(I \times I)$. By Theorem 1.15, [9], $L^1(I) \bigotimes G + H \bigotimes L^1(I)$ is proximinal in $L^1(I \times I)$.

References

- Deeb, W. and Khalil, R.: The Sum of Proximinal Subspaces. Soochow Journal of Mathematics. 18, No. 2 (1992), 163-167.
- [2] Diestel, J. and Uhl, J.: Vector Measures. Amer. Math. Soc. 1977.
- [3] Dulst, D.: Reflexive and Super Reflexive Banach Spaces. Mathematical Centre Tracts. Amesterdam. 102 (1978).

- Holmos, R.: A course on Optimization and Best Approximation. Springer-Verlag, Berlin, New York, 1972.
- [5] Holmos, R.: Geometric Functional Analysis and its Applications. GTM, 24, Springer-Verlag, 1975.
- [6] Holland, S., Light, W. and Sulley, L.: On Proximinality in $L^1(T \times S)$. Proc. of the Amer. Math. Soc. 86, No. 2 (1982), 279-282.
- [7] Khalil, R.: Best Approximation in $L^{P}(I, X)$. Math. Proc. Cambridge Philos. Soc. 94 (1983), 277-279.
- [8] Khalil R. and Deeb, W.: Best Approximation in $L^{P}(\mu, X)$ II. J. Approx. Theory. 59(1989), 296-299.
- [9] Light, W. and Cheney, E.: Approximation Theory in Tensor Product Spaces. Lecture Notes in Mathematics. 1169. Springer-Verlag, Berlin, New York, 1985.
- [10] Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer-Verlag, Berlin, New York, 1970.

Sh. AL-SHARIF, R. KHALILMathematics Department,Yarmouk University,Jordan University, Irbed-JORDANe mail: Sharifa@yu.edu.joe mail: Roshdi@ju.edu.jo

Received 29.01.2007