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Posner’s Second Theorem and an Annihilator

Condition with Generalized Derivations

Vincenzo De Filippis

Abstract

Let R be a prime ring of characteristic different from 2, with extended centroid
C, U its two-sided Utumi quotient ring, δ �= 0 a non-zero generalized derivation

of R, f(x1, .., xn) a non-central multilinear polynomial over C in n non-commuting

variables, a ∈ R such that a[δ(f(r1, .., rn)), f(r1, .., rn)] = 0, for any r1, .., rn ∈ R.

Then one of the following holds:

1. a = 0;

2. there exists λ ∈ C such that δ(x) = λx, for all x ∈ R;

3. there exist q ∈ U and λ ∈ C such that δ(x) = (q +λ)x+xq, for all x ∈ R, and

f(x1, .., xn)
2 is central valued on R.

Key Words: Prime rings, derivations, left Utumi quotient rings, two-sided Mar-
tindale quotient ring, differential identities.

1. Introduction

The well known theorem of Posner in [18] asserts that if R is a prime ring and d

a non-zero derivation of R such that [d(x), x] ∈ Z(R), the center of R, for all x ∈ R,
then R must be commutative. Starting from this result, several authors studied the
relationship between the structure of a prime ring R and the behaviour of an additive
mapping f which satisfies the Engel-type condition [f(x), x]k = 0 which, for k > 1, is
defined by [f(x), x]k = [[f(x), x]k−1, x]. In [10] Lanski shows that if d is a derivation
of R such that [d(x), x]k = 0, for all x in a Lie ideal L of R, then either L is central
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in R or char(R) = 2 and R satisfies the standard identity s4(x1, .., x4) of degree 4. On
the other hand, in a prime ring R of characteristic different from 2, any non-central Lie
ideal contains the set {[x1, x2] : x1, x2 ∈ I} of all evaluations of the polynomial [x1, x2]
in a two-sided ideal I of R. For this reason, many researchers in this area analysed in
detail the case when the Lie ideal is replaced by the set of all evaluations of a polynomial
f(x1 , .., xn) and [d(f(x1, .., xn)), f(x1, .., xn)]k is a differential identity for some ideal of
R. In particular we refer the reader to the results obtained by P. H. Lee and T. K.
Lee in [12] and [13]. In case f(x1, .., xn) is a multilinear polynomial, they prove that it
must be central-valued in R unless char(R) = 2 and R satisfies s4(x1, .., x4). In a recent
paper, we consider another related generalization; more precisely in [4] we describe what
happens if the derivation d is replaced by an additive mapping δ defined as follows: for
all x, y ∈ R, δ(xy) = δ(x)y+xg(y), for some derivation g of R. Such a mapping δ is called
a generalized derivation. Obviously any derivation is a generalized derivation. We like
to remark that one of the leading roles in the development of the theory of generalized
derivations is played by the maps defined as δ(x) = bx+ xc for b, c ∈ R; in this case δ is
called inner generalized derivation.

In the light of these definitions, in [4] we prove that if I is a right ideal of R, U
the two-sided Utumi quotient ring of R, C = Z(U) the extended centroid of R and
[δ(f(r1, .., rn)), f(r1, .., rn)] = 0, for any r1, .., rn ∈ I, then either δ(x) = ax, with
(a−γ)I = 0 and suitable a ∈ U , γ ∈ C or there exists an idempotent element e ∈ soc(RC)
such that IC = eRC and one of the following holds: (i) f(x1, .., xn) is central valued in

eRCe; (ii) δ(x) = cx+xb, where (c+ b+α)e = 0, for b, c ∈ U , α ∈ C, and f(x1 , .., xn)2 is
central valued in eRCe; (iii) char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

In particular the following result holds:

Theorem A Let R be a prime ring with extended centroid C, U its two-sided Utumi quo-

tient ring, δ �= 0 a non-zero generalized derivation ofR, f(x1 , .., xn) a non-central multilin-

ear polynomial overC in n non-commuting variables, such that [δ(f(r1, .., rn)), f(r1, .., rn)]
= 0, for all r1, .., rn ∈ R. Then one of the following holds:

1. f(x1 , .., xn) is central valued in R;

2. there exists λ ∈ C such that δ(x) = λx, for all x ∈ R;

3. there exist q ∈ U and λ ∈ C such that δ(x) = (q + λ)x + xq, for all x ∈ R, and

f(x1 , .., xn)2 is central valued on R;

4. char(R) = 2 and s4(x1, x2, x3, x4) is an identity for R.
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Here we will continue the study of the set

S = {[δ(f(x1, .., xn)), f(x1, .., xn)], x1, .., xn ∈ R}

for a generalized derivation δ of R. An approach that can be used in studying S is to
examine its size and a reasonable criteria for studying the size of S is to examine its left
annihilator AnnR(S) = {x ∈ R, xs = 0, ∀s ∈ S}: if S is large we would expect that
AnnR(S) = 0. In fact we will prove this theorem:

Theorem 1 Let R be a prime ring of characteristic different from 2, with extended
centroid C, U its two-sided Utumi quotient ring, δ �= 0 a non-zero generalized derivation

of R, f(x1, .., xn) a non-central multilinear polynomial over C in n non-commuting vari-

ables, a ∈ R such that a[δ(f(r1, .., rn)), f(r1, .., rn)] = 0, for all r1, .., rn ∈ R. Then one

of the following holds:

1. a = 0;

2. there exists λ ∈ C such that δ(x) = λx, for all x ∈ R;

3. there exist q ∈ U and λ ∈ C such that δ(x) = (q + λ)x + xq, for all x ∈ R, and

f(x1 , .., xn)2 is central valued on R.

Of course we do not consider the case when R is a domain; in fact, in this case, either
AnnR(S) = 0 or [δ(f(r1, .., rn)), f(r1, .., rn)] = 0, for all r1, .., rn ∈ R. In this condition
we conclude by Theorem A.

We also would like to remark that in case δ is an usual derivation of R, the conclusion
of Theorem 1 follows directly from the following result we proved in [6]:

Theorem B Let R be a prime ring of characteristic different from 2 with extended
centroid C, U its two-sided Utumi quotient ring, d �= 0 a non-zero derivation of R,

f(x1 , .., xn) a non-central multilinear polynomial over C in n non-commuting variables,

a ∈ R such that a[d(f(r1, .., rn)), f(r1, .., rn)] = 0, for any r1, .., rn ∈ R. Then a = 0.

In [14], T. K. Lee extended the definition of a generalized derivation to the Utumi quo-
tient ring U of R as follows: by a generalized derivation we mean an additive mapping
δ : I → U such that δ(xy) = δ(x)y+ xd(y), for all x, y ∈ I, where I is a dense right ideal
of R and d is a derivation from I into U .

In all that follows let U be the two-sided Utumi quotient ring of R and C = Z(U)
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the center of U , T = U ∗C C{X} the free product over C of the C-algebra U and the free
C-algebra C{X}, with X the countable set consisting of non-commuting indeterminates
x1, x2, .., xn, . . . . We refer the reader to [1] for the definitions and the related properties
of these objects.
Of course U is a prime ring and, by replacing R by U , we may assume, without loss of
generality, R = U , C = Z(R) and R is a C-algebra centrally closed. Moreover we will
use the following notation:

f(x1, .., xn) = x1x2..xn +
∑

σ∈Sn,σ �=id

ασxσ(1)xσ(2)...xσ(n)

for some ασ ∈ C. We also assume char(R) �= 2 and f(x1, ..., xn) non-central valued.

2. The case of inner generalized derivations

In this section we consider the case when δ is an inner generalized derivation induced
by the elements b, c ∈ R, that is δ(x) = bx+ xc, for all x ∈ R. In this sense, our aim will
be to prove the following:

Proposition 1 Let R be a prime ring of characteristic different from 2, f(x1, .., xn) a
non-central multilinear polynomial over C in n non-commuting variables, a, b, c ∈ R.
If a[bf(r1, .., rn) + f(r1, .., rn)c, f(r1, .., rn)] = 0, for all r1, .., rn ∈ R, then one of the
following holds:

1. a = 0;

2. b, c ∈ C;

3. there exists λ ∈ C such that c− b = λ and f(x1, .., xn)2 is central valued on R.

2.1. The matrix case

By first we will study the case when R =Mm(F ) is the algebra of m×m matrices over
a field F of characteristic different from 2. Notice that the set f(R) = {f(r1, .., rn) :
r1, .., rn ∈ R} is invariant under the action of all inner automorphisms of R. Hence if
denote we r = (r1, .., rn) ∈ R× R× R× ...× R = Rn, then for any inner automorphism
ϕ of Mm(F ), we have that r = (ϕ(r1), .., ϕ(rn)) ∈ Rn and ϕ(f(r)) = f(r) ∈ f(R). Let
us denote as usual by eij the matrix unit with 1 in (i, j)-entry and zero elsewhere.
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Since f(x1, .., xn) is not central then, by [16], there exist u1, .., un ∈ Mt(F ) and
α ∈ F − {0}, such that f(u1, .., un) = αekl, with k �= l. Moreover, since the set
{f(v1 , .., vn) : v1, .., vn ∈ Mt(F )} is invariant under the action of all F-automorphisms of
Mt(F ), then for any i �= j there exist r1, .., rn ∈ Mt(F ) such that f(r1, .., rn) = αeij.

We start by studying the case of 2× 2 matrices:

Lemma 1 Let R =M2(F ) be the algebra of 2× 2 matrices over the field F of character-
istic different from 2. If there exist a, b, c ∈ R such that a[bu+uc, u] = 0 for any u ∈ f(R)
then either a = 0 or c− b is a diagonal matrix.

Proof. Suppose a �= 0. Let u = αeij ∈ f(R), for any i �= j and α �= 0:

0 = a[bαeij + αeijc, αeij] = −α2aeij(c− b)eij.

In other words, either the i-th column of the matrix a is zero or, for all j different from
i, the (j, i)-entry γji of (c− b) is zero. Suppose that (c− b) is not a diagonal matrix, say
γ12 �= 0. In this case, as we said above, the 2-nd column of a is zero. Of course we may
assume γ21 = 0, otherwise the first column of a is zero too, and we are done. In other
words we are in the situation:

c− b =
[
γ11 γ12

0 γ22

]
γ12 �= 0, a =

[
a11 0
a21 0

]
.

Let ϕ be an element of Aut(M2(F )), defined as ϕ(x) = (1 − e12)x(1 + e12). Now

choose v = (1− e12)u(1 + e12) =
[ −α −α

α α

]
∈ f(R). Hence

0 = a[bv + vc, v] = −α2

[
a11(γ11 − γ12 − γ22) a11(γ11 − γ12 − γ22)
a21(γ11 − γ12 − γ22) a21(γ11 − γ12 − γ22)

]
,

which implies
γ11 − γ12 − γ22 = 0 (1).

Let now χ be another element of Aut(M2(F )), defined as χ(x) = (1 + e12)x(1− e12)

and choose w = (1 + e12)u(1− e12) =
[
α −α
α −α

]
∈ f(R). Hence we have

0 = a[bw+ wc, w] = α2

[
a11(γ11 + γ12 − γ22) a11(−γ11 − γ12 + γ22)
a21(γ11 + γ12 − γ22) a21(−γ11 − γ12 + γ22)

]
,
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that is
γ11 + γ12 − γ22 = 0 (2).

By equations (1) and (2) and since char(R) �= 2, it follows γ12 = 0, a contradiction.
Therefore, if a �= 0, (c− b) is a diagonal matrix. ✷

Lemma 2 Let R =Mt(F ) be the algebra of t×t matrices over the field F of characteristic
different from 2 and t ≥ 3. If there exist a, b, c ∈ R such that a[bu+ uc, u] = 0 for any
u ∈ f(R) then either a = 0 or c− b is a diagonal matrix.

Proof. As above, for any i �= j there exist r1, .., rn ∈ Mt(F ) such that f(r1, .., rn) =
αeij , with α �= 0. Hence, for all i �= j,

0 = a[bf(r1, .., rn) + f(r1, .., rn)c, f(r1, .., rn)] = 0 = −α2aeij(c− b)eij .

In other words, since char(R) �= 2 and α �= 0, either the i-th column of the matrix a is
zero or, for all j different from i, the (j, i)-entry qji of (c− b) is zero.

Suppose by contradiction that (c− b) is not a diagonal matrix, then there exists some
non-zero entry qji of (c − b), for i �= j. As we said above, the i-th column of a is zero.
Let m �= i, j and ϕmi(x) = (1 + emi)x(1 − emi). Consider the following valutations of
f(x1 , .., xn):

f(r) = γeij , f(s) = ϕmi(f(r)) = γeij + γemj , γ �= 0.

Since f(s)2 = 0 we have 0 = a[bf(s) + f(s)c, f(s)] = γ2a(eij + emj )(c − b)(eij + emj).

Moreover, since the i-th column of a is zero, we obtain γ2a(qji + qjm)emj = 0. Notice
that if qji + qjm = 0, then qjm = −qji �= 0, so the m-th column of a is zero. On the other
hand, if qji + qjm �= 0, it follows again that the m-th column of a is zero. Hence we can
say that a has at most one non-zero column, the j-th one.

Let now ψ any F-automorphism of Mt(F ), then

0 = ψ(a)[ψ(b)ψ(f(r1 , .., rn)) + ψ(f(r1 , .., rn))ψ(c), ψ(f(r1 , .., rn))] =

ψ(a)[ψ(b)f(s1 , .., sn) + f(s1 , .., sn)ψ(c), f(s1 , .., sn)]

for all s1, .., sn ∈ Mt(F ). Therefore, as above, we can conclude that, if the (j, i)-entry of
ψ(c− b) is non-zero, for some j �= i, then ψ(a) has at most one non-zero column, the j-th
one.
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Let now ψ(x) = (1 + ejm)x(1 − ejm)), with m �= j, i. Hence ψ(c − b) = (c − b) +

ejm(c− b)− (c − b)ejm − ejm(c − b)ejm and so its (j, i)-entry is qji + qmi.

If qji + qmi = 0 then qji = −qmi �= 0, that is the (m, i)-entry of (c − b) is non-zero.
In this case a has at most one non-zero column, the m-th one; but m �= j and so any
column of a is zero.

If qji + qmi �= 0 then the (j, i)-entry of ψ(c − b) is non-zero, hence ψ(a) has at most
one non-zero column, the j-th one.

Since ψ(a) = (
∑

h ahjehj + amjejj) − (
∑

h ahjehm + amjejm), then, for any h �= j

must be ahj = 0 and also ajj + amj = 0. But in this situation we get a = 0. Therefore,
if a �= 0, then qji = 0, for all j �= i. ✷

Lemma 3 Let R =Mt(F ) be the algebra of t×t matrices over the field F of characteristic
different from 2 and t ≥ 2. If there exist a, b, c ∈ R such that a[bu+ uc, u] = 0 for any
u ∈ f(R) then one of the following holds:

1. a = 0;

2. b, c ∈ Z(R);

3. c− b ∈ Z(R) and u2 ∈ Z(R), for all u ∈ f(R).

Proof. Suppose a �= 0. By previous two lemmas, c − b is a diagonal matrix, say
c−b =

∑
qkkekk. Moreover if ϕ is an automorphism ofMt(F ), the same conclusion holds

for ϕ(c − b), since as above

0 = ϕ(a)[ϕ(b)ϕ(f(r1, .., rn)) + ϕ(f(r1, .., rn))ϕ(c)] =

ϕ(a)[ϕ(b)f(s1 , .., sn) + f(s1 , .., sn)ϕ(c), (f(s1 , .., sn))]

and ϕ(a) �= 0. Therefore, for any i �= j, ϕ(c − b) = (1 + eij)(c − b)(1 − eij) must be a

diagonal matrix. Thus (qjj − qii)eij = 0, that is qjj = qii and c− b is a central element,

that is there exists an element λ ∈ Z(R), such that b = c+ λ. Thus we have that, for all
r1, .., rn ∈ R,

0 = a[cf(r1, .., rn) + f(r1, .., rn)c, f(r1, .., rn)] = a[c, f(x1, .., xn)2].

Let A be the additive subgroup generated by the polynomial f(x1, .., xn)2. By [3], since

char(R) �= 2, either f(x1 , .., xn)2 is central valued on R, or there exists a non-central Lie
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ideal L of R such that L ⊆ A. In this last case we get a[c, u] = 0 for all u ∈ L. Since
R is simple, L is not central and char(R) �= 2, it is well known that 0 �= [R,R] ⊆ L

(see pp 4-5 in [8], Lemma 2 and Proposition 1 in [7], Theorem 4 in [11]). It follows that
a[c, [x1, x2]] = 0 for all x1, x2 ∈ R. As a consequence of Theorem 1 in [5], we get c ∈ Z(R).

Therefore either f(x1 , .., xn)2 is central on R, or b, c ∈ Z(R). ✷

2.2. The proof of Proposition 1

In order to continue our investigation, we need to fix some well known facts.

Remark 1 Recall that if B is a basis of U over C, then any element of T = U ∗C

C{x1, .., xn} can be written in the form g =
∑

i αimi, where αi ∈ C and mi are B-

monomials, that is mi = q0y1 · · · ·ynqn, with qi ∈ B and yi ∈ {x1, .., xn}. In [2] it is
showed that a generalized polynomial g =

∑
i αimi is the zero element of T if and only

if any αi is zero. As a consequence, if a1, a2 ∈ U are linearly independent over C and
a1g1(x1, .., xn)+ a2g2(x1, .., xn) = 0 ∈ T , for some g1, g2 ∈ T , then both g1(x1, .., xn) and
g2(x1, .., xn) are the zero element of T

Lemma 4 If R does not satisfy any non-trivial generalized polynomial identity, then
either a = 0 or b and c are elements of C.

Proof. Suppose that either b /∈ C or c /∈ C, if not we are done. Since R does not
satisfy any non-trivial generalized polynomial identity, we have that

a[bf(x1, .., xn) + f(x1, .., xn)c, f(x1, .., xn)]

is the zero element in the free product T = U ∗C C{x1, .., xn}, that is

a
(
bf(x1, .., xn)2 − f(x1, .., xn)2c+ f(x1, .., xn)(c − b)f(x1 , .., xn)

)
= 0 ∈ T.

Suppose a and ab are linearly independent over C. We have

abf(x1 , .., xn)2 − a(f(x1 , .., xn)2c+ f(x1 , .., xn)(c− b)f(x1, .., xn)) = 0 ∈ T.

By Remark 1, abf(x1, .., xn)2 = 0 ∈ T . Since R does not satisfy any non-trivial
generalized polynomial identity, this forces ab = 0, which is a contradiction.

Thus we assume a and ab are linearly C-dependent, that is ab = βa, with β ∈ C. In
this case we have:
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• if β �= 0:

βaf(x1 , .., xn)2 − af(x1, .., xn)2c + af(x1, .., xn)(c− b)f(x1, .., xn) = 0 ∈ T ;

• if β = 0:

−af(x1, .., xn)2c + af(x1, .., xn)(c− b)f(x1, .., xn) = 0 ∈ T.

In any case, if a and (c− b) are linearly independent over C, by Remark 1 we obtain that
in particular af(x1, .., xn)(c − b)f(x1, .., xn) is the zero element in T . Since (c − b) �= 0,
we get the required conclusion a = 0.
Finally, let a and (c − b) be linearly dependent over C. If (c− b) = 0, it follows that

βaf(x1 , .., xn)2 − af(x1, .., xn)2c = 0 ∈ T,

in particular af(x1, .., xn)2c is the zero element in T . If a �= 0, then c = 0, that is also
b = 0, a contradiction.
In case (c − b) �= 0 then, for some 0 �= γ ∈ C, we have

βγ(c − b)f(x1, .., xn)2 − γ(c − b)(f(x1 , .., xn)2c

−γ(c − b)f(x1, .., xn)(c − b)f(x1, .., xn) = 0 ∈ T

in particular γ(c − b)(f(x1, .., xn)2c = 0 ∈ T , which implies c = 0. By our assumption it
follows that b /∈ C, which implies the contradiction that

−βγbf(x1 , .., xn)2 − γbf(x1, .., xn)bf(x1, .., xn)

is a non-trivial generalized polynomial identity for R. ✷

In order to prove the next Lemma, here we premit the following:

Fact 1 Let R be a dense ring of linear transformations over an infinite dimensional
right vector space V over a division ring D. Then for any linearly D-independent subset
{v1, . . . , vk} of V , and for any subset {w1, . . . , wk} of V , there exist r1, . . . rn ∈ R such
that f(r1 , . . . , rn)vi = wi, for all i = 1, . . . , k.

Proof. Let U1 = {v1, . . . , vk} ⊆ V be a subset of linearly D-independent vectors.
Since dimDV = ∞, there exists a set

U2 = {vij; i = 1, . . . , k; j = 1, . . . , n− 1}
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of linearly D-independent vectors such that U1 ∪ U2 is also a linearly D-independent
subset of V . In other words, if denote vi = vin, for all i = 1, . . . , k, we have that

{vij; i = 1, . . . , k; j = 1, . . . , n}

is a subset of independent vectors in V . By the density of R, there exist r1, . . . , rn ∈ R
such that

r1vi1 = wi, rivji = vj,i−1, i = 2, . . . , n; j = 1, . . . k

rivjl = 0, for l �= i.

Easy calculations show that f(r1, . . . , rn)vi = wi, for all i = 1, . . . , k. ✷

Lemma 5 Let R be a dense ring of linear transformations over an infinite dimensional
right vector space V over a division ring D. Then either a = 0 or b and c are central
elements.
Proof. Suppose that a is non-zero.

Our first aim is to show that for any v ∈ V , if av �= 0 then v, cv are linearly D-
dependent.

By contradiction let v, cv be D-independent. There exist w,w1, .., wn−1, v1, .., vn−1 ∈
V such that v, cv = u, w, w1.., wn−1, v1, .., vn−1 are linearly independent. By Fact 1, there
exist r1, .., rn ∈ R such that

f(r1, .., rn)v = 0, f(r1, .., rn)u = w, f(r1, .., rn)w = v.

Hence, if av is non-zero, then we get the contradiction

0 = a[bf(r1, .., rn) + f(r1, .., rn)c, f(r1, .., rn)]v =

−af(r1 , .., rn)2u = −av �= 0.

Now suppose av = 0.
Since a �= 0, there exists w ∈ V such that aw �= 0. Hence a(w − v) = aw �= 0. By the

previous argument we have that w, cw are linearly D-dependent and (w− v), c(w− v) is
as well.

Thus there exist α, β ∈ D such that cw = wα and c(w − v) = (w − v)β. Moreover
v, w are linearly independent.

Suppose first that there exist λ, µ ∈ D such that b(w−v) = wλ+vµ. Since dimDV =
∞, there exist w3, .., wn−1 ∈ V such that v, w, w3, .., wn−1 are linearly independent and
by Fact 1 there exist s1, .., sn ∈ R such that

f(s1 , .., sn)v = 0, f(s1 , .., sn)w = w − v, f(s1 , .., sn)2w = w − v
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and
0 = a(bf(s1 , .., sn)2 − f(s1 , .., sn)2c + f(s1 , .., sn)(c − b)f(s1 , .., sn))w =

a(wλ+ vµ + (w − v)(β − α)− (w − v)λ) = aw(β − α).

Suppose now that {b(w − v), w, v} are linerly D-independent. Hence there exist
w3, ..., wn−1, u1, ...., un−1 ∈ V such that b(w−v), v, w, w3, .., wn−1, u1, .., un−1 are linearly
independent and t1, .., tn ∈ R such that

f(t1, .., tn)v = 0, f(t1, .., tn)w = w − v, f(t1 , .., tn)2w = w − v

and in this case we also have

f(t1, .., tn)b(w − v) = b(w − v)

which implies that

0 = a(bf(t1 , .., tn)2 − f(t1, .., tn)2c + f(t1 , .., tn)(c − b)f(t1 , .., tn))w =

a(b(w − v) + (w − v)(β − α)− b(w − v)) = aw(β − α).

In any case, we have that aw(β−α) = 0. Because aw �= 0 then α = β and cv = vα. This
means that for any choice of v ∈ V , v, cv are linearly D-dependent. Standard arguments
prove that there exists β ∈ D such that cv = vβ, for all v ∈ V and also, by using this
fact, that c ∈ Z(R). Therefore for all r1, .., rn ∈ R

abf(r1, .., rn)2 − af(r1, .., rn)bf(r1, .., rn) = 0.

Our final aim is to prove that b ∈ Z(R). To do this we repeat the same above argument:
we want to show that for any v ∈ V then v, bv are linearly D-dependent.

Suppose by contradiction that v, bv are D-independent. There exist w,w1, .., wn−1,
v1, .., vn−1 ∈ V such that v, bv = u, w, w1.., wn−1, v1, .., vn−1 are linearly independent. By
Fact 1, there exist r1, .., rn ∈ R such that

f(r1 , .., rn)v = 0, f(r1, .., rn)u = v, f(r1, .., rn)w = v.

Hence, for av �= 0, we get the contradiction

0 = a[bf(r1, .., rn), f(r1, .., rn)]w =

abf(r1, .., rn)2w − af(r1, .., rn)bf(r1, .., rn)w = −av �= 0.
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Let now av = 0. As above there exists w ∈ V such that aw �= 0. Hence a(w − v) =
aw �= 0. Again it follows that w, bw are linearly D-dependent and is also the case for
(w − v), b(w − v).

Thus there exist α′, β′ ∈ D such that bw = wα′ and b(w−v) = (w−v)β′ . Moreover v, w
are linearly independent. Moreover there exist w3, .., wn−1 ∈ V such that v, w, w3, .., wn−1

are linearly independent and again by Fact 1 there exist s1, .., sn ∈ R such that

f(s1 , .., sn)v = 0, f(s1 , .., sn)w = w − v, f(s1 , .., sn)2w = w − v

and

0 = a(bf(s1 , .., sn)2 − f(s1 , .., sn)bf(s1 , .., sn))w = a(wλ + vµ + (w − v)(β − α).

Since aw �= 0, one has α = β and qv = vα.
Therefore in any case v, bv are linearly D-dependent, and b ∈ Z(R). ✷

2.3. Proof of Proposition 1

As we said above, we assume C = Z(R) and R is a C-algebra centrally closed, that is
R = RC. If R does not satisfy any non-trivial generalized polynomial identity then, by
lemma 4, we are done. Thus we may suppose that R satisfies a non-trivial generalized
polynomial identity. By Martindale’s theorem in [17], R is a primitive ring which is
isomorphic to a dense ring of linear transformations of a vector space V over a division
ring D. If dimDV = ∞, then, by lemma 5, we get the required conclusion.

Therefore we consider the case dimD(V ) = k, with k finite positive integer. Of course
k ≥ 2, because R is not a domain. In this condition R is a simple ring which satisfies a
non-trivial generalized polynomial identity. By lemma 2 in [10] (see also theorem 2.3.29
in [19]), R ⊆ Mt(F ), for a suitable field F and t ≥ 2, moreover Mt(F ) satisfies the
same generalized identity of R, hence a[bf(r1, .., rn) + f(r1, .., rn)c, f(r1, .., rn)] = 0, for
all r1, .., rn ∈ Mt(F ) and moreover f(x1, .., xn) is a non-central polynomial forMt(F ). In
this case we are done by lemma 3. ✷

3. The proof of the Theorem

In [14] Lee proved that every generalized derivation can be uniquely extended to a
generalized derivation of U and thus all generalized derivations of R will be implicitly
assumed to be defined on the whole U and obtained the following result: (Theorem 3 in
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[14]) Every generalized derivation δ on a dense right ideal of R can be uniquely extended
to U and assumes the form δ(x) = bx+ d(x), for some b ∈ U and a derivation d on U .

In this section we denote by fd(x1, .., xn) the polynomial obtained from f(x1, .., xn) by

replacing each coefficient ασ with d(ασ). Thus we write d(f(r1, .., rn)) = fd(r1, .., rn) +∑
i f(r1, .., d(ri), .., rn), for all r1, r2, .., rn in R.
In light of this, we finally prove the main result:

Theorem 1 Let R be a prime ring of characteristic different from 2, C its extended
centroid, U its two-sided Utumi quotient ring, δ �= 0 a non-zero generalized derivation of
R, f(x1, .., xn) a non-central multilinear polynomial over C in n non-commuting variables,
a ∈ R such that

a[δ(f(r1, .., rn)), f(r1, .., rn)] = 0

for any r1, .., rn ∈ R. Then one of the following holds:

1. a = 0;

2. there exists λ ∈ C such that δ(x) = λx, for all x ∈ R;

3. there exist q ∈ U and λ ∈ C such that δ(x) = (q + λ)x + xq, for all x ∈ R, and

f(x1 , .., xn)2 is central valued on R.

Proof. Suppose by contradiction that a �= 0. Since R satisfies the generalized
differential identity

a[δ(f(x1, .., xn)), f(x1 , .., xn)],

the above cited Lee’s result says that R satisfies

a[bf(x1, .., xn) + d(f(x1, .., xn)), f(x1, .., xn)] (3)

If d is an inner derivation induced by an element c ∈ U , then R satisfies the generalized
polynomial identity

a ([bf(x1, .., xn) + cf(x1 , .., xn)− f(x1, ..xn)c, f(x1, .., xn)])

which is
a ([(b+ c)f(x1 , .., xn)− f(x1, ..xn)c, f(x1, .., xn)]) .

In this case we are done by proposition 1.
Hence let d be an outer derivation of R. In this case R satisfies the differential identity

a[δ(f(x1, .., xn)), f(x1, .., xn)] =
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a

(
[bf(x1, .., xn) + fd(x1, .., xn) +

∑
i

f(x1, .., d(xi), .., xn), f(x1, .., xn)]

)
.

By Kharchenko’s theorem (see [9] and [15]), R satisfies the generalized polynomial identity

a[bf(x1, .., xn) + fd(x1, .., xn) +
∑

i

f(x1 , .., yi, .., xn), f(x1, .., xn)],

and in particular R satisfies the blended component

a[bf(x1, .., xn), f(x1, .., xn)].

Applying Proposition 1, since a �= 0 and f(x1, .., xn) is not central, one has that b ∈ C.
Therefore, by (3), R satisfies the differential identity

a[d(f(x1, .., xn)), f(x1, .., xn)].

In this situation, by Theorem B, we conclude that d = 0 and δ(x) = bx, with b ∈ C, for
all x ∈ R. ✷
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