Basic Properties and Multipliers Space on $L^{1}(G) \cap L(p, q)(G)$ Spaces

Ilker Erylmaz, Cenap Duyar

Abstract

Let G be locally compact Abelian group with Haar measure. First is discussed some properties of $L^{1}(G) \cap L(p, q)(G)$ spaces. Then is mentioned the multipliers space on $L^{1}(G) \cap L(p, q)(G)$ spaces.

1. Introduction and Preliminaries

Let G be a locally compact abelian group with Haar measure μ. The spaces $B^{p}(G)=$ $L^{1}(G) \cap L^{p}(G), 1 \leq p<\infty$ have been studied in [11], [13] and the others. The space $B^{p}(G)$ is a Banach algebra with respect to the norm $\|\cdot\|_{B^{p}}$ defined by $\|f\|_{B^{p}}=\|f\|_{1}+\|f\|_{p}$ and the usual convolution product. The purpose of this paper is to extend some of the results on $B^{p}(G)$ to spaces

$$
B(p, q)(G)=L^{1}(G) \cap L(p, q)(G)
$$

and to discuss the properties of multipliers spaces of $B(p, q)(G)$, where $L(p, q)(G)$ is the usual Lorentz spaces. Many authors are discussed the space of multipliers of Segal algebras, multipliers from $L^{1}(G)$ into Segal algebras and multipliers from $L^{1}(G)$ into Banach spaces of functions in literature. Some of them are multipliers from $L^{1}(G)$ into Lorentz spaces in [3], multipliers of Banach spaces of functions in [5] and multipliers on $L^{p}(G, A)$ in [8]. The techniques mentioned in this papers will be used frequently. For convenience of the reader, we now review briefly what we need from the theory of $L(p, q)(G)$ spaces.

[^0]
ERYILMAZ, DUYAR

Let (G, Σ, μ) be a measure space and let f be a measurable function on G. For each $y>0$ let

$$
\lambda_{f}(y)=\mu\{x \in G:|f(x)|>y\}
$$

The function λ_{f} is called the distribution function of f. The rearrangement of f is defined by

$$
f^{*}(t)=\inf \left\{y>0: \lambda_{f}(y) \leq t\right\}=\sup \left\{y>0: \lambda_{f}(y)>t\right\}, t>0
$$

where $\inf \phi=\infty$. Also, the average function of f is defined by

$$
f^{* *}(t)=\frac{1}{t} \int_{0}^{t} f^{*}(s) d s, t>0
$$

Note that $\lambda_{f}(\cdot), f^{*}(\cdot)$ and $f^{* *}(\cdot)$ are non-increasing and right continuous on $(0, \infty)$ ([2]). For $p, q \in(0, \infty)$ we define

$$
\begin{aligned}
& \|f\|_{p, q}^{*}=\|f\|_{p, q, \mu}^{*}=\left(\frac{q}{p} \int_{0}^{\infty}\left[f^{*}(t)\right]^{q} t^{\frac{q}{p}-1} d t\right)^{\frac{1}{q}} \\
& \|f\|_{p, q}=\|f\|_{p, q, \mu}=\left(\frac{q}{p} \int_{0}^{\infty}\left[f^{* *}(t)\right]^{q} t^{\frac{q}{p}-1} d t\right)^{\frac{1}{q}} .
\end{aligned}
$$

Also, if $0<p, q=\infty$ we define

$$
\|f\|_{p, \infty}^{*}=\sup _{t>0} t^{\frac{1}{p}} f^{*}(t) \quad \text { and } \quad\|f\|_{p, \infty}=\sup _{t>0} t^{\frac{1}{p}} f^{* *}(t)
$$

For $0<p<\infty$ and $0<q \leq \infty$, the Lorentz spaces are denoted by $L(p, q)(G, \mu)$ (or in short, $L(p, q)(G))$ is defined to be the vector space of all (equivalence classes of) measurable functions f on G such that $\|f\|_{p, q}^{*}<\infty$. We know that $\|f\|_{p, p}^{*}=\|f\|_{p}$ and so $L^{p}(\mu)=L(p, p)(G)$ where $L^{p}(\mu)$ is the usual Lebesgue space. Also, $L\left(p, q_{1}\right)(G) \subset$ $L\left(p, q_{2}\right)(G)$ for $q_{1} \leq q_{2}$. In particular,

$$
L\left(p, q_{1}\right)(G) \subset L(p, p)(G)=L^{p}(G) \subset L\left(p, q_{2}\right)(G) \subset L(p, \infty)(G)
$$

for $0<q_{1} \leq p \leq q_{2} \leq \infty([2,6])$. It is also known that if $1<p<\infty$ and $1 \leq q \leq \infty$, then

$$
\|f\|_{p, q}^{*} \leq\|f\|_{p, q} \leq \frac{p}{p-1}\|f\|_{p, q}^{*}
$$

for each $f \in L(p, q)(G)$ and $\left(L(p, q)(G),\|\cdot\|_{p, q}\right)$ is a Banach space $([6,7])$.
In [14], it was found that $B(p, q)(G)$ is a normed space with the norm $\|\cdot\|_{B}$ defined by $\|\cdot\|_{B}=\|\cdot\|_{1}+\|\cdot\|_{p, q}$ and is a Segal Algebra; namely, it satisfies the properties:

1. $\left(B(p, q),\|\cdot\|_{B}\right)$ is a Homogeneous Banach space
2. $B(p, q)(G)$ is a Banach algebra with its norm $\|\cdot\|_{B} \geq\|\cdot\|_{1}$
3. $B(p, q)(G)$ is a dense subspace of $L^{1}(G)$ according to $\|\cdot\|_{1}$ norm.

Before beginning the next part of the paper, let's give some basic propositions about $B(p, q)(G)$ which are easy to prove using the properties of $L(p, q)(G)$ mentioned in $[1],[2],[3],[6],[7]$ and $[14]$. On the other hand, we will say a few words about proofs of some propositions.

Proposition $1\left(B(p, q),\|\cdot\|_{B}\right)$ is strongly character invariant and the map $f \rightarrow M_{t} f$ and the function $t \rightarrow M_{t} f$ are continuous where $M_{t} f(x)=\langle x, t\rangle f(x)$ for all $f \in$ $B(p, q), x \in G$ and $t \in \widehat{G}([3],[12])$.
Proof. $\quad L^{1}(G)$ and $L(p, q)(G)$ are strongly character invariant and the functions $t \rightarrow M_{t} f$ and $f \rightarrow M_{t} f$ are continuous in both spaces.

Proposition 2 For $0<q_{1} \leq p \leq q_{2} \leq \infty$, we have the following inclusions as similar to Lorentz spaces [2],[6] and [12]

$$
B\left(p, q_{1}\right)(G) \subset B(p, p)(G)=B^{p}(G) \subset B\left(p, q_{2}\right)(G) \subset B(p, \infty)(G)
$$

Proposition $3\left(B(p, q),\|\cdot\|_{B}\right)$ has a minimal approximate identity in $L^{1}(G)$ for $1<$ $p<\infty$ and $1 \leq q<\infty$ ([3]).

Proposition $4\left(B(p, q),\|\cdot\|_{B}\right)$ is an essential Banach $L^{1}(G)$-module.

Proof. Let $f \in L^{1}(G)$ and $g \in B(p, q)$. Since $L(p, q)$ is an essential Banach $L^{1}(G)$ module for $1<p<\infty, 0 \leq q<\infty$, ([1]) we have

$$
\|f * g\|_{B}=\|f * g\|_{1}+\|f * g\|_{p q} \leq\|f\|_{1}\|g\|_{B}
$$

Also, by using the approximate identity of $L^{1}(G)$, say $\left(e_{\alpha}\right)$; we have $\left\|e_{\alpha} * g-g\right\|_{B} \rightarrow$ 0 . Therefore we get that $\left(B(p, q),\|\cdot\|_{B}\right)$ is an essential Banach $L^{1}(G)$-module.

2. Multipliers space on $B(p, q)(G)$

Let us denote the space of all bounded linear operators on $B(p, q)$ as $M_{p q}$, which is a Banach algebra under the usual operator norm. Besides this, let $\operatorname{Hom}_{L^{1}(G)}(B(p, q)(G)$, $B(p, q)(G))$ be the space of all module homomorphisms of $L^{1}(G)$-module $B(p, q)(G)$, that is, an operator $T \in M_{p q}$ satisfies $T(f * g)=f * T(g)$ for all $f \in L^{1}(G)$ and $g \in B(p, q)(G)$. The module homomorphisms space, called the multipliers space

$$
\operatorname{Hom}_{L^{1}(G)}(B(p, q)(G), B(p, q)(G))=\operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))
$$

is a Banach $L^{1}(G)$-module by $(f \circ T)(g)=f * T(g)=T(f * g)$ for all $g \in B(p, q)(G)$.
Now, let us fix $f \in L^{1}(G)$ and define $W_{f}: B(p, q) \rightarrow B(p, q)$ as $W_{f}(g)=f * g$ for all $f \in L^{1}(G)$ and $g \in B(p, q)$. It is easy to see that W_{f} is linear and bounded.

Proposition 5 The set

$$
\Lambda=\overline{\operatorname{span}\left\{W_{f} \mid f \in L^{1}(G)\right\}}=\overline{\left\{W_{f} \mid f \in L^{1}(G)\right\}}
$$

is a complete subalgebra of $M_{p q}$ and it possesses a minimal approximate identity.
Proof. By the definition of Λ, it is easy to see that Λ is a complete subalgebra of $M_{p q}$ under the operator norm with usual composition. For each $f \in L^{1}(G)$ and $h \in B(p, q)$, if we define $W_{f}(h)=f * h$, then we have

$$
\begin{equation*}
\left\|W_{f}\right\|=\sup _{\|h\|_{B} \leq 1}\left\|W_{f}(h)\right\|_{B}=\sup _{\|h\|_{B} \leq 1}\|f * h\|_{B} \leq\|f\|_{1} \tag{1}
\end{equation*}
$$

and for all $f, g \in L^{1}(G), h \in B(p, q)$, one can write

$$
\begin{align*}
\left(W_{f}-W_{g}\right)(h) & =f * h-g * h=(f-g) * h=W_{f-g}(h) \tag{2}\\
\left(W_{f} \circ W_{g}\right)(h) & =W_{f}(g * h)=f * g * h=W_{f * g}(h) .
\end{align*}
$$

Let $f \in L^{1}(G)$. Using $(1),(2)$ and the minimal approximate identity of $L^{1}(G)$ say $\left(e_{\alpha}\right)$, we get

$$
\begin{aligned}
\varlimsup_{\alpha}\left\|W_{e_{\alpha}} \circ W_{f}-W_{f}\right\| & =\varlimsup_{\alpha}\left\|W_{e_{\alpha} * f}-W_{f}\right\| \\
& =\overline{\lim _{\alpha}}\left\|W_{e_{\alpha} * f-f}\right\| \\
& \leq \varlimsup_{\alpha}\left\|e_{\alpha} * f-f\right\|_{1}=0
\end{aligned}
$$

Consequently, we have $\varlimsup_{\alpha}\left\|W_{e_{\alpha}} \circ T-T\right\|=0$ for all $T \in \Lambda$.

Proposition 6 The space Λ is a complete subalgebra of $\operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$.
Proof. Let $f \in L^{1}(G)$, then $W_{f} \in M_{p q}$. Since $B(p, q)$ is an essential Banach $L^{1}(G)$ module, we have

$$
W_{f}(g * h)=f * g * h=g * W_{f}(h)
$$

for all $g \in L^{1}(G)$ and $h \in B(p, q)$. Thus W_{f} belongs to $\operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$. Since $\operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$ is a Banach space under the usual operator norm, Λ is a complete subalgebra of $\operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$.

Proposition 7 The space Λ is an essential Banach $L^{1}(G)$-module.
Proof. Let $g \in L^{1}(G)$ and $W_{f} \in \Lambda$. Define $g \circ W_{f}: B(p, q) \rightarrow B(p, q)$ by letting $\left(g \circ W_{f}\right)(h)=W_{f}(h * g)=W_{f}(g * h)$ for each $h \in B(p, q)$. In this case, we find

$$
\begin{aligned}
\left\|g \circ W_{f}\right\| & =\sup _{\|h\|_{B} \leq 1}\left\|\left(g \circ W_{f}\right)(h)\right\|_{B}=\sup _{\|h\|_{B} \leq 1}\left\|W_{f}(g * h)\right\|_{B} \\
& \leq\left\|W_{f}\right\| \sup _{\|h\|_{B} \leq 1}\|g * h\|_{B} \leq\left\|W_{f}\right\|\|g\|_{1} .
\end{aligned}
$$

As a result, Λ is a Banach $L^{1}(G)$-module. On the other hand, since $L^{1}(G)$ has a bounded approximate identity $\left(e_{\alpha}\right),\left(e_{\alpha} \geq 0\right)$ which is in $C_{c}(G)$, the set of all continuous functions with a compact support, such that it is also an approximate identity in $B(p, q)$

ERYILMAZ, DUYAR

by proposition 3 . Then, for any $W_{f} \in \Lambda$, we have

$$
\begin{aligned}
\left\|e_{\alpha} \circ W_{f}-W_{f}\right\| & =\sup _{\|u\|_{B} \leq 1}\left\|\left(e_{\alpha} \circ W_{f}-W_{f}\right)(u)\right\|_{B} \\
& =\sup _{\|u\|_{B} \leq 1}\left\|f * u * e_{\alpha}-f * u\right\|_{B} \\
& \leq \sup _{\|u\|_{B} \leq 1}\left\|f * e_{\alpha}-f\right\|_{1}\|u\|_{B} \\
& =\left\|f * e_{\alpha}-f\right\|_{1} \rightarrow 0
\end{aligned}
$$

by proposition 4. Therefore Λ is an essential Banach $L^{1}(G)$-module. Also for any $f \in L^{1}(G)$ and $W_{e_{\alpha}} \in \Lambda$, we have

$$
\begin{aligned}
\lim _{\alpha}\left\|f-f \circ W_{e_{\alpha}}\right\| & =\lim _{\alpha}\left(\sup _{\|u\|_{B} \leq 1}\left\|\left(f-f \circ W_{e_{\alpha}}\right)(u)\right\|_{B}\right) \\
& =\lim _{\alpha}\left(\sup _{\|u\|_{B} \leq 1}\left\|f * u-e_{\alpha} *(f * u)\right\|_{B}\right) \\
& \leq \lim _{\alpha}\left(\sup _{\|u\|_{B} \leq 1}\left\|f-e_{\alpha} * f\right\|_{1}\|u\|_{B}\right) \\
& \leq \lim _{\alpha}\left\|f-e_{\alpha} * f\right\|_{1}=0
\end{aligned}
$$

So $f \in \overline{L^{1}(G) \circ \Lambda}$, namely $f \in \Lambda$. That is to say $L^{1}(G) \subset \Lambda$.

Proposition 8 Let $T \in \operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$. Therefore $T \circ W \in \Lambda$ for each $W \in \Lambda$. Proof. Since $B(p, q)(G)$ is a Segal algebra, it is easy to see that

$$
\Lambda=\overline{\operatorname{span}\left\{W_{f} \mid f \in L^{1}(G)\right\}}=\overline{\operatorname{span}\left\{W_{g} \mid g \in B(p, q)(G)\right\}}
$$

Let us take any $W_{g} \in \Lambda$. Then for all $h \in B(p, q)(G)$, we get

$$
\left(T \circ W_{g}\right)(h)=T(g * h)=T(g) * h=W_{T(g)}(h)
$$

and $T \circ W_{g} \in \Lambda$, since $T(g) \in B(p, q)(G)$. Now take any $W \in \Lambda$. By the definition of Λ, for all $\varepsilon>0$ we can find $g \in B(p, q)(G)$ such that $\left\|W-W_{g}\right\|<\frac{\varepsilon}{\|T\|}$. Since $T \circ W_{g} \in \Lambda$
and T is bounded on $B(p, q)(G)$, we have

$$
\begin{aligned}
\left\|T \circ W-T \circ W_{g}\right\| & =\sup _{\|h\|_{B} \leq 1}\left\|(T \circ W)(h)-\left(T \circ W_{g}\right)(h)\right\|_{B} \\
& =\sup _{\|h\|_{B} \leq 1}\|T(W(h))-T(g * h)\|_{B} \\
& \leq\|T\| \sup _{\|h\|_{B} \leq 1}\|W(h)-g * h\|_{B} \\
& =\|T\| \sup _{\|h\|_{B} \leq 1}\left\|W(h)-W_{g}(h)\right\|_{B} \\
& =\|T\|\left\|W-W_{g}\right\|<\varepsilon .
\end{aligned}
$$

Therefore we say that $T \circ W \in \overline{\operatorname{span}\left\{W_{g} \mid g \in B(p, q)(G)\right\}}=\Lambda$.

Theorem 9 Let G be a locally compact abelian group. Then $M(\Lambda)$, the space of multipliers on Banach algebra Λ, is isometrically isomorphic to the space $\operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$.
Proof. Define a mapping $\Psi: \operatorname{Hom}_{L^{1}(G)}(B(p, q)(G)) \rightarrow M(\Lambda)$ by letting $\Psi(T)=\rho_{T}$ for each $T \in \operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$, where $\rho_{T}(S)=T \circ S$ for all $S \in \Lambda$. Note that Ψ is well-defined by Proposition 8; and moreover, if $\rho_{T}(S \circ K)=T \circ S \circ K=\rho_{T}(S) \circ K$ for all $S, K \in \Lambda$, then we see that $\Psi(T)=\rho_{T} \in M(\Lambda)$. It is obvious that the mapping Ψ is linear and injective. Also, for $T \in \operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$ and any $S \in \Lambda$, we have

$$
\begin{aligned}
\|T \circ S\| & =\sup _{\|g\|_{B} \leq 1}\|(T \circ S)(g)\|_{B}=\sup _{\|g\|_{B} \leq 1}\|T(S(g))\|_{B} \\
& \leq\|T\| \sup _{\|g\|_{B} \leq 1}\|S(g)\|_{B}=\|T\|\|S\|,
\end{aligned}
$$

and so we can obtain the relation

$$
\left\|\rho_{T}\right\|=\sup _{S \in \Lambda} \frac{\left\|\rho_{T}(S)\right\|}{\|S\|}=\sup _{S \in \Lambda} \frac{\|T \circ S\|}{\|S\|} \leq\|T\|
$$

On the other hand, since $\left\{W_{e_{\alpha}}\right\}$ is a minimal approximate identity for the space Λ, we get

$$
\left\|\rho_{T}\right\|=\sup _{S \in \Lambda} \frac{\|T \circ S\|}{\|S\|} \geq \sup _{\alpha} \frac{\left\|T \circ W_{e_{\alpha}}\right\|}{\left\|W_{e_{\alpha}}\right\|} \geq \sup _{\alpha}\left\|T \circ W_{e_{\alpha}}\right\| \geq\|T\|
$$

and $\left\|\rho_{T}\right\|=\|T\|$.
Finally we show that the mapping $\Psi: \operatorname{Hom}_{L^{1}(G)}(B(p, q)(G)) \rightarrow M(\Lambda)$ is onto. Let ρ be an element of $M(\Lambda)$ and $\left(e_{\alpha}\right)$ an approximate identity for $L_{1}(G)$. Since $\Lambda \subset \operatorname{Hom}_{L^{1}(G)}(B(p, q)(G))$ and $\rho e_{\alpha} \in \Lambda$, for any $f \in L^{1}(G)$ and $g \in B(p, q)$, we have

$$
\begin{equation*}
\rho e_{\alpha}(f * g)=\left(f \circ\left(\rho e_{\alpha}\right)\right)(g) . \tag{3}
\end{equation*}
$$

Also $M(\Lambda) \subset \operatorname{Hom}_{L^{1}(G)}(\Lambda)$ implies that

$$
\begin{equation*}
\rho\left(f * e_{\alpha}\right)(g)=\left(f \circ\left(\rho e_{\alpha}\right)\right)(g) . \tag{4}
\end{equation*}
$$

Therefore by (3) and (4), we get

$$
\rho e_{\alpha}(f * g)=\left(f \circ\left(\rho e_{\alpha}\right)\right)(g)=\rho\left(f * e_{\alpha}\right)(g) .
$$

So for each $f \in L^{1}(G)$ and $g \in B(p, q)$, we obtain

$$
\begin{aligned}
\lim _{\alpha}\left\|\rho\left(f * e_{\alpha}\right)(g)-\rho f(g)\right\|_{B} & =\lim _{\alpha}\left\|\left(\rho\left(f * e_{\alpha}\right)-\rho f\right)(g)\right\|_{B} \\
& =\lim _{\alpha}\left\|\rho\left(f * e_{\alpha}-f\right)(g)\right\|_{B} \\
& \leq \lim _{\alpha}\left\|\rho\left(f * e_{\alpha}-f\right)\right\|\|g\|_{B} \\
& \leq\|\rho\| \lim _{\alpha}\left\|f * e_{\alpha}-f\right\|_{1}\|g\|_{B}=0
\end{aligned}
$$

Thus we get

$$
\lim _{\alpha}\left(\rho e_{\alpha}\right)(f * g)=\lim _{\alpha}\left(f \circ\left(\rho e_{\alpha}\right)\right)(g)=\lim _{\alpha} \rho\left(f * e_{\alpha}\right)(g)=\rho f(g)
$$

Since the space $B(p, q)$ is an essential Banach $L^{1}(G)$-module by proposition 4, the limit of $\left(\rho e_{\alpha}\right)(f * g)=\left(f \circ\left(\rho e_{\alpha}\right)\right)(g)$ exists and equal to $f * T(g) \in B(p, q)$ while T is an operator in $\operatorname{Hom}_{L^{1}(G)}(B(p, q))$. Therefore, since the limits $\lim _{\alpha}\left(\rho e_{\alpha}\right)(f * g)=$ $\lim _{\alpha}\left(f \circ\left(\rho e_{\alpha}\right)\right)(g)=\rho f(g)$ exist, we can write $f \circ T=\rho f$ for all $f \in L^{1}(G)$. Then $e_{\alpha} \circ T \circ W=\left(\rho e_{\alpha}\right) \circ W=\rho\left(e_{\alpha} \circ W\right)$ can be written for all $W \in \Lambda$. By proposition 7, for all $W \in \Lambda$, we get $T \circ W=\rho(W)$ or $\rho_{T}(W)=\rho(W)$. Therefore $\rho_{T}=\rho$.

ERYILMAZ, DUYAR

References

[1] Blozinski, A.P.: On a convolution theorem for $L(p, q)$ spaces, Trans. Amer. Math. Soc. 164, 255-264, (1972).
[2] Blozinski, A.P.: Convolution of $L(p, q)$ functions, Proc. of the Amer. Math. Soc. 32-1, 237-240, (1972).
[3] Chen, Y.K. and Lai, H.C.: Multipliers of Lorentz spaces, Hokkaido Math. J.4, 247-260, (1975).
[4] Duyar, C. and Gürkanlı, A.T.: Multipliers and Relative completion in weighted Lorentz spaces,Acta Math. Sci.23, 467-476, (2003).
[5] Feichtinger, H.: Multipliers of Banach spaces of functions on groups, Math. Z. 157, 47-58, (1976).
[6] Hunt, R.A.: On $L(p, q)$ spaces, L'enseignement Mathematique,TXII-4, 249-276, (1966).
[7] O'Neil, R.: Convolution operators and $L(p, q)$ spaces, DMJ 30, 129-142, (1963).
[8] Öztop, S.: A note on multipliers of $L^{p}(G, A)$, J. Aust. Math. Soc., 74, 25-34, (2003).
[9] Saeki, S. and Thome, E.L.: Lorentz spaces as L^{1}-modules and multipliers, Hokkaido Math. J. 23, 55-92, (1994).
[10] Wang, A.C.: Homogeneous Banach Algebras, M.Dekker INC.Newyork 1980.
[11] Warner, C.R.: Closed ideals in the group algebra $L^{1}(G) \cap L^{2}(G)$, Trans. Amer. Math. Soc.,121,408-423, (1966).
[12] Yap, L.Y.H.: Some remarks on convolution operators and L(p,q) spaces, DMJ, 36, 647-658, (1969).
[13] Yap, L.Y.H.: Ideals in subalgebras of the group algebras, Studia Math. 35, 165-175, (1972).
[14] Yap, L.Y.H.: On Two classes of subalgebras of $L^{1}(G)$, Proc. Japan Acad., 48, 315-319, (1972).

İlker ERYILMAZ, Cenap DUYAR

Received 13.04.2007
Ondokuz Mayıs University,
Faculty of Science and Arts,
Department of Mathematics,
55139 Kurupelit, Samsun, TURKEY
e-mail: rylmz@omu.edu.tr • cenapd@omu.edu.tr

[^0]: The first author is supported by TÜBİTAK-BİDEB

