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Abstract

In this study, we prove Lyapunov-type inequalities for certain nonlinear systems

on an arbitrary time scale �by using elementary time scale calculus. These in-

equalities enable us to obtain a criterion of disconjugacy for such systems. Special

cases of our results contain the classical Lyapunov inequality for both differential

and difference equations.

Key Words: Nonlinear systems; Hamiltonian systems; Lyapunov - type inequality;

Discongugacy; Generalized zero; Time Scale.

1. Introduction

In this study, we present Lyapunov-type inequalities for the nonlinear system

xΔ(t) = α1(t)x(σ(t)) + β1(t) |u(t)|γ−2
u(t)

uΔ(t) = −β2(t) |x(σ(t))|α−2
x(σ(t)) − α1(t)u(t) (1)

on a time scale T (an arbitrary nonempty closed subset of real numbers R) where α1, β1

and β2 are real rd–continuous functions on T with 1−μ(t)α1(t) �= 0 and β1(t) > 0, α > 1
constant and α is the conjugate number of γ, i.e., 1

α + 1
γ = 1.

Notice that the second order half–linear dynamic equation

[r(t)
∣∣xΔ(t)

∣∣α−2
xΔ(t)]Δ + q(t) |x(σ(t))|α−2

x(σ(t)) = 0, (2)
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where r and q are real rd–continuous functions with r(t) > 0 for all t ∈ T and α > 1, can
be written as an equivalent nonlinear system (1) on T. Indeed, let x(t) be a solution of

(2) and set u(t) = r(t)
∣∣xΔ(t)

∣∣α−2
xΔ(t). Then we have

xΔ(t) = r1−γ(t) |u(t)|γ−2
u(t), uΔ(t) = −q(t) |x(σ(t))|α−2

x(σ(t)). (3)

Hence (2) is equivalent to (1) with

α1(t) ≡ 0, β1(t) = r1−γ(t), β2(t) = q(t).

We also remark that the nonlinear system (1) with α = γ = 2 cover not only the recent
paper [18] by Jiang and Zhou

xΔ(t) = α1(t)x(σ(t)) + β1(t)u(t)
uΔ(t) = −β2(t)x(σ(t)) − α1(t)u(t)

but also the linear Hamiltonian system (when T = R, see [14] and [23])

x′(t) = α1(t)x(t) + β1(t)u(t)
u′(t) = −β2(t)x(t) − α1(t)u(t)

and the discrete Hamiltonian system (when T = Z, see [3] and [14])

Δx(t) = α1(t)x(t + 1) + β1(t)u(t)
Δu(t) = −β2(t)x(t + 1) − α1(t)u(t)

.

For completeness, we now recall the classical Lyapunov inequality [22] which states
that if the nontrivial solution x(t) of

x′′(t) + q(t)x(t) = 0

has two zeros at a and b, a < b, then

∫ b

a

|q(s)| ds >
4

b − a
. (4)

This result and many of its generalizations have proved to be useful tools in oscillation the-
ory, disconjugacy, eigenvalue problems, and numerous other applications for the theories
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of differential and difference equations. A thorough literature of Lyapunov inequalities
and their applications can be found in the survey paper [7] by Cheng and the references
quoted therein. For authors who contributed the above results, we refer to Reid [27],
[28], Hartman [15], Hochstadt [17], Eliason [11], Singh [29], Kwong [19] and Cheng [6].
We should also mention here that inequality (4) has been generalized to second order
nonlinear differential equations by Eliason [12] and Pachpatte [25], to delay differential
equations of the second order by Eliason [13], by Dahiya and Singh [8], and to certain
higher order differential equations by Pachpatte [24]. Lyapunov - type inequalities for
the Emden - Fowler type equations can be found in Pachpatte’s paper [25]. Lyapunov -
type inequalities for the half - linear equation were obtained for the first time by Elbert
[10], but the proof of its extension can be found in Došlý and R̆ehák’s recent book ([9],
p. 190). Lyapunov - type inequalities for the half–linear equation have been rediscovered
by Lee et al. [20] and Pinasco [26].

The paper is organized as follows. In section 2, we recall some basic definitions,
concepts and theorems of an arbitrary time scale T. Much of the material in this section
is contained in an introductory book by Bohner and Peterson [4]. In section 3, being
motivated by the recent papers of Tiryaki et al. [30], Ünal et al. [31], Guseinov and
Kaymakçalan [14], and Jiang and Zhou [18], we set up and prove our main theorems
for the nonlinear system (1) on an arbitrary time scale T. In section 4, we obtain a
disconjugacy criterion to show that the inequalities proposed in section 3 can be used as
a handy tool in the study of the qualitative nature of solutions.

2. Preliminaries on Time Scales

In 1988, Stefan Hilger [16] in his Ph.D. thesis (supervised by Bernd Auibach) added
a new wrinkle to the calculus by introducing the calculus on time scale, which is a
unification and extension of the theories of continuous and discrete analyses. A time
scale is an arbitrary nonempty closed subset of the real numbers R, and we usually
denote it by the symbol T. The two most popular examples are T = R and T = Z. Some
other interesting time scales exist, and they give rise to plenty of applications such as the
study of population dynamics model (see [4], page 15, 71). We define the forward and
backward jump operators σ, ρ : T → T by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t}
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(supplemented by inf ∅ = sup T and sup ∅ = inf T). A point t ∈ T with t > inf T is called
right-scattered, right-dense, left-scattered and left-dense, if σ(t) > t, σ(t) = t, ρ(t) < t

and ρ(t) = t holds, respectively. Points are left-dense and right-dense at the same time are
called dense. The set T

κ is derived from T as follows: If T has a left-scattered maximum
m, then T

κ = T − {m}. Otherwise, T
κ = T. The graininess function μ : T → [0,∞) is

defined by
μ(t) := σ(t) − t.

Hence the graininess function is 0 if T = R while it is 1 if T = Z. Let f be a function
defined on T, then we define the delta derivative of f at t ∈ T

κ, denoted by fΔ(t), to be
the number (provided it exists) with the property such that for every ε > 0, there exists
a neighborhood U of t with

∣∣f(σ(t)) − f(s) − fΔ(t) [σ(t) − s]
∣∣ ≤ ε |σ(t) − s| for all s ∈ U.

Some elementary facts concerning the delta derivative are contained in the following
lemma.

Lemma 1 Let f, g : T → R be two function and t ∈ T
κ. Then we have the following:

i) If f is differentiable at t, then f is continuous at t.

ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

fΔ(t) =
f(σ(t)) − f(t)

μ(t)
.

iii) If f is differentiable and t is right-dense, then

fΔ(t) = lim
s→t

f(t) − f(s)
t − s

.

iv) If f is differentiable at t, then

fσ(t) = f(σ(t)) = f(t) + μ(t)fΔ(t).

v) If f and g are differentiable at t, then fg is differentiable at t with

(fg)Δ(t) = fσ(t)gΔ(t) + fΔ(t)g(t) = f(t)gΔ(t) + fΔ(t)gσ(t).
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vi ) If f and g are differentiable at t and g(t)g(σ(t)) �= 0, then f
g is differentiable at t

with (
f

g

)Δ

(t) =
fΔ(t)g(t) − f(t)gΔ(t)

g(t)g(σ(t))
.

We say f : T → R is right-dense continuous provided f is continuous at right-
dense points in T and its left-sided limit exists (finite) at left-dense points in T. One
of the important property of rd-continuous fuctions is that every rd-continuous function
possesses an antiderivative. A function F : T

κ → R is called an antiderivative of
f : T → R provided F Δ(t) = f(t) holds for all t ∈ T

κ. In this case we define the
integral of f by

t∫
a

f(s)Δs = F (t) − F (a)

for all t ∈ T.

Other useful formulas are as follows

σ(t)∫
t

f(s)Δs = μ(t)f(t), (5)

b∫
a

f(t)Δt =

c∫
a

f(t)Δt +

b∫
c

f(t)Δt, (6)

b∫
a

f(t)gΔ(t)Δt = f(b)g(b) − f(a)g(a) −
b∫

a

fΔ(t)gσ(t)Δt. (7)

Let f, g : T → R be rd-continuous and a, b ∈ T. If |f(t)| ≤ g(t) on [a, b), then

∣∣∣∣∣∣
b∫

a

f(t)Δt

∣∣∣∣∣∣ ≤
b∫

a

g(t)Δt. (8)

We will also need the following version of Hölder’s inequality on time scales in the
proof of our main theorems and its proof can be found in [1] and [2].
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Lemma 2 Let a, b ∈ T. For rd-continuous f, g : [a, b] → R we have

b∫
a

|f(t)g(t)|Δt ≤

⎛
⎝

b∫
a

|f(t)|γ Δt

⎞
⎠

1/γ ⎛
⎝

b∫
a

|g(t)|α Δt

⎞
⎠

1/α

where 1
γ + 1

α = 1.

A comprehensive treatment of calculus on time scales can be found, for instance, in
[4], [5], and [21].

3. Main Results

Since our attention is restricted to the Lyapunov-type inequalities for the nonlinear
system (1) on an arbitrary time scale T, we shall assume the existence of nontrivial real
solution (x, u) of the nonlinear system (1).

We recall that a nontrivial real solution (x, u) of system (1) has a generalized zero
at σ(t) if t ∈ T is either dense and x(t) = 0 or right–scattered, and x(t)x(σ(t)) < 0 or
x(σ(t)) = 0. We note that under the condition β1(t) > 0 for t ∈ T, the definition of
generalized zero, a special case of that given in [4], is consistent with what is used for the
generalized zero in the discrete case (see [18]).

Theorem 1 Suppose β1(t) > 0 on [a, σ(b)]. Let a, b ∈ T with σ(a) < b. Assume that (1)
has a real solution (x, u) such that x(σ(a)) = 0 = x(σ(b)) and x is not identically zero on
[σ(a), b]. Then the inequality

2 ≤
b∫

σ(a)

|α1(t)|Δt +

⎛
⎜⎝

σ(b)∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β+
2 (t)Δt

⎞
⎟⎠

1/α

(9)

holds, where β+
2 (t) = max{0, β2(t)} and 1

α
+ 1

γ
= 1.

Proof. Let (x(t), u(t)) be nontrivial real solution of system (1) such that x(σ(a)) =
0 = x(σ(b)) and x is not identically zero on [σ(a), b]. Then multiplying the first equation
of (1) by u(t) and the second one by x(σ(t)), then adding them up yields

(xu)Δ(t) = β1(t) |u(t)|γ − β2(t) |x(σ(t))|α . (10)
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Integrating (10) from σ(a) to σ(b) and taking into account that x(σ(a)) = 0 = x(σ(b)),
we have

0 =

σ(b)∫
σ(a)

β1(t) |u(t)|γ Δt −
σ(b)∫

σ(a)

β2(t) |x(σ(t))|α Δt. (11)

Since x(σ(b)) = 0, we have

σ(b)∫
σ(a)

β1(t) |u(t)|γ Δt =

σ(b)∫
σ(a)

β2(t) |x(σ(t))|α Δt

=

b∫
σ(a)

β2(t) |x(σ(t))|α Δt +

σ(b)∫
b

β2(t) |x(σ(t))|α Δt

=

b∫
σ(a)

β2(t) |x(σ(t))|α Δt + μ(b)β2(b) |x(σ(b))|α

=

b∫
σ(a)

β2(t) |x(σ(t))|α Δt. (12)

Choose τ ∈ (σ(a), σ(b)) such that |x(τ )| = max
σ(a)≤t≤σ(b)

|x(t)| . Since x is not identically

zero on [σ(a), b], we have |x(τ )| > 0. Integrating the first equation of (1) from σ(a) to τ

and using x(σ(a)) = 0, we obtain

x(τ ) =

τ∫
σ(a)

α1(t)x(σ(t))Δt +

τ∫
σ(a)

β1(t) |u(t)|γ−2
u(t)Δt, (13)

and hence

|x(τ )| ≤
τ∫

σ(a)

|α1(t)| |x(σ(t))|Δt +

τ∫
σ(a)

β1(t) |u(t)|γ−1 Δt. (14)
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Similarly, since x(σ(b)) = 0, we have

−x(τ ) =

σ(b)∫
τ

α1(t)x(σ(t))Δt +

σ(b)∫
τ

β1(t) |u(t)|γ−2
u(t)Δt

=

b∫
τ

α1(t)x(σ(t))Δt +

σ(b)∫
b

α1(t)x(σ(t))Δt +

σ(b)∫
τ

β1(t) |u(t)|γ−2
u(t)Δt

=

b∫
τ

α1(t)x(σ(t))Δt + μ(b)α1(b)x(σ(b)) +

σ(b)∫
τ

β1(t) |u(t)|γ−2
u(t)Δt

=

b∫
τ

α1(t)x(σ(t))Δt +

σ(b)∫
τ

β1(t) |u(t)|γ−2
u(t)Δt, (15)

and hence

|−x(τ )| = |x(τ )| ≤
b∫

τ

|α1(t)| |x(σ(t))|Δt +

σ(b)∫
τ

β1(t) |u(t)|γ−1 Δt. (16)

Summing up (14) and (16) yields

2 |x(τ )| ≤
b∫

σ(a)

|α1(t)| |x(σ(t))|Δt +

σ(b)∫
σ(a)

β1(t) |u(t)|γ−1 Δt. (17)

By applying Hölder’s inequality to the second integral of the right hand side of (17) with
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the indices α and γ, we obtain

σ(b)∫
σ(a)

β1(t) |u(t)|γ−1 Δt =

σ(b)∫
σ(a)

β
1
γ

1 (t)β
1
α

1 (t) |u(t)|γ−1 Δt

≤

⎛
⎜⎝

σ(b)∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

σ(b)∫
σ(a)

β1(t) |u(t)|(γ−1)α Δt

⎞
⎟⎠

1/α

=

⎛
⎜⎝

σ(b)∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

σ(b)∫
σ(a)

β1(t) |u(t)|γ Δt

⎞
⎟⎠

1/α

, (18)

where 1
α + 1

γ = 1. Substituting the inequality (18) into (17) yields

2 |x(τ )| ≤
b∫

σ(a)

|α1(t)| |x(σ(t))|Δt +

⎛
⎜⎝

σ(b)∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

σ(b)∫
σ(a)

β1(t) |u(t)|γ Δt

⎞
⎟⎠

1/α

. (19)

Substituting equality (12) into (19), we get

2 |x(τ )| ≤
b∫

σ(a)

|α1(t)| |x(σ(t))|Δt +

⎛
⎜⎝

σ(b)∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β2(t) |x(σ(t))|α Δt

⎞
⎟⎠

1/α

≤ |x(τ )|
b∫

σ(a)

|α1(t)|Δt + |x(τ )|

⎛
⎜⎝

σ(b)∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β+
2 (t)Δt

⎞
⎟⎠

1/α

. (20)

Dividing the latter inequality by |x(τ )| , we obtain inequality (9). �

Remark 1 We should note here that Theorem 1 reduces to Corollary 2 in [30] when
T = R and to Theorem 1 with β = α in [31] when T = Z.

Theorem 2 Suppose 1 − μ(t)α1(t) > 0 and β1(t) > 0 on [a, σ(b)]. Let a, b ∈ T

with σ(a) < b. Assume that (1) has a real solution (x, u) such that x(σ(a)) = 0 and
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x(b)x(σ(b)) < 0. Then the inequality

1 <

b∫
σ(a)

|α1(t)|Δt +

⎛
⎜⎝

b∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β+
2 (t)Δt

⎞
⎟⎠

1/α

(21)

holds, where β+
2 (t) = max{0, β2(t)} and 1

α
+ 1

γ
= 1.

Proof. Integrating (10) from σ(a) to b and observing that x(σ(a)) = 0 we obtain

u(b)x(b) =

b∫
σ(a)

β1(t) |u(t)|γ Δt−
b∫

σ(a)

β2(t) |x(σ(t))|α Δt. (22)

Rewriting the first equation of (1) by using the formula fσ(t) = f(t) + μ(t)fΔ(t), we get

(1 − μ(t)α1(t))x(σ(t)) = x(t) + μ(t)β1(t) |u(t)|γ−2
u(t). (23)

Taking t = b in (23) and multiplying this result by x(b) yields

(1 − μ(b)α1(b))x(b)x(σ(b)) = x2(b) + μ(b)β1(b) |u(b)|γ−2
u(b)x(b). (24)

Since x(b)x(σ(b)) < 0, it is easy to see that μ(b) > 0. Also since 1 − μ(t)α1(t) > 0 and
β1(t) > 0 for all t ∈ T by the hypothesis of theorem, (24) gives rise to u(b)x(b) < 0.

Therefore, it follows from (22) that the inequality

b∫
σ(a)

β1(t) |u(t)|γ Δt <

b∫
σ(a)

β2(t) |x(σ(t))|α Δt ≤
b∫

σ(a)

β+
2 (t) |x(σ(t))|α Δt (25)

holds. Choose τ ∈ [σ(a), b) such that |x(τ )| = max
σ(a)≤t≤b

|x(t)| . Integrating the first

equation of (1) from σ(a) to τ and noticing that x(σ(a)) = 0, we obtain

x(τ ) =

τ∫
σ(a)

α1(t)x(σ(t))Δt +

τ∫
σ(a)

β1(t) |u(t)|γ−2
u(t)Δt, (26)

and hence

|x(τ )| ≤
b∫

σ(a)

|α1(t)| |x(σ(t))|Δt +

b∫
σ(a)

β1(t) |u(t)|γ−1 Δt. (27)
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By using Hölder’s inequality in the second integral of the right hand side of (27) with the
indices α and γ, we obtain

b∫
σ(a)

β1(t) |u(t)|γ−1 Δt =

b∫
σ(a)

β
1
γ

1 (t)β
1
α
1 (t) |u(t)|γ−1 Δt

≤

⎛
⎜⎝

b∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β1(t) |u(t)|(γ−1)α Δt

⎞
⎟⎠

1/α

=

⎛
⎜⎝

b∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β1(t) |u(t)|γ Δt

⎞
⎟⎠

1/α

, (28)

where 1
α + 1

γ = 1. Substituting the inequality (28) into (27) yields

|x(τ )| ≤
b∫

σ(a)

|α1(t)| |x(σ(t))|Δt +

⎛
⎜⎝

b∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β1(t) |u(t)|γ Δt

⎞
⎟⎠

1/α

. (29)

Using (25) in (29), we have

|x(τ )| <

b∫
σ(a)

|α1(t)| |x(σ(t))|Δt +

⎛
⎜⎝

b∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β+
2 (t) |x(σ(t))|α Δt

⎞
⎟⎠

1/α

≤ |x(τ )|
b∫

σ(a)

|α1(t)|Δt + |x(τ )|

⎛
⎜⎝

b∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

b∫
σ(a)

β+
2 (t)Δt

⎞
⎟⎠

1/α

. (30)

Dividing the latter inequality by |x(τ )| , we get the desired inequality (21). �

Theorem 3 Suppose 1 − μ(t)α1(t) > 0 and β1(t) > 0 on [a, σ(b)]. Let a, b ∈ T with
σ(a) < b. Assume that (1) has a real solution (x, u) such that x(a)x(σ(a)) < 0 and
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ÜNAL, ÇAKMAK

x(σ(b)) = 0. Then the inequality

1 <

b∫
σ(a)

|α1(t)|Δt +

⎛
⎜⎝

σ(b)∫
σ(a)

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎝

b∫
a

β+
2 (t)Δt

⎞
⎠

1/α

(31)

holds, where β+
2 (t) = max{0, β2(t)} and 1

α + 1
γ = 1.

Proof. The proof can be obtained easily by the similar method used in the proof of
the Theorem 2 with a slight modification. Hence it is omitted. �

Theorem 4 Suppose 1−μ(t)α1(t) > 0, β1(t) > 0 and β2(t) > 0 on [a, σ(b)]. Let a, b ∈ T

with σ(a) < b. Assume that (1) has a real solution (x, u) such that x(a)x(σ(a)) < 0 and
x(b)x(σ(b)) < 0. Then the inequality

1 <

b∫
a

|α1(t)|Δt +

⎛
⎜⎝

σ(b)∫
a

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎝

b∫
a

β2(t)Δt

⎞
⎠

1/α

(32)

holds, where 1
α + 1

γ = 1.

Proof. We have two cases: Either x(t) �= 0 for all t ∈ [a, b] or x(t0) = 0 for some
t0 ∈ (σ(a), b). The latter case follows from applying Theorem 2 to the point t0 and b.

Hence, we only prove the first case.
Assume that x(t) �= 0 for all t ∈ [a, b]. Let b0 be the smallest number in (a, b] such that
x(b0)x(σ(b0)) < 0, then x does not have any generalized zero in (σ(a), b0). Without loss of
generality we may assume x(t) > 0 for all t ∈ [σ(a), b0] and it follows from x(a)x(σ(a)) < 0
and x(b0)x(σ(b0)) < 0 that x(a) < 0 and x(σ(b0)) < 0 must hold. Let s ∈ [a, σ(b0)] be
such that |u(s)| = max

a≤t≤σ(b0)
|u(t)| . Integrating the second equality of (1) from a to s and

then from s to b0, we obtain

u(s) − u(a) = −
s∫

a

β2(t) |x(σ(t))|α−2
x(σ(t))Δt −

s∫
a

α1(t)u(t)Δt, (33)
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and

u(b0) − u(s) = −
b0∫

s

β2(t) |x(σ(t))|α−2
x(σ(t))Δt −

b0∫
s

α1(t)u(t)Δt, (34)

respectively. We note that for s = a we write solely (34), and for s = b0 only (33) is
written. We claim that u(a) > 0 and u(b0) < 0. Indeed, multiplying (23) by x(t), we
obtain

(1 − μ(t)α1(t))x(t)x(σ(t)) = x2(t) + μ(t)β1(t) |u(t)|γ−2
u(t)x(t). (35)

Setting t = a and t = b0 in (35) yields

(1 − μ(a)α1(a))x(a)x(σ(a)) = x2(a) + μ(a)β1(a) |u(a)|γ−2 u(a)x(a),

and

(1 − μ(b0)α1(b0))x(b0)x(σ(b0)) = x2(b0) + μ(b0)β1(b0) |u(b0)|γ−2
u(b0)x(b0),

respectively. It is easy to see that μ(a) > 0 and μ(b0) > 0 from x(a)x(σ(a)) < 0 and
x(b0)x(σ(b0)) < 0, respectively. Combining 1 − μ(t)α1(t) > 0 and β1(t) > 0 with the
above inequalities, we get u(a)x(a) < 0 and u(b0)x(b0) < 0. Since x(a) < 0 and x(b0) > 0,

we must have u(a) > 0 and u(b0) < 0 as claimed. Now, if u(s) < 0 then we have from
(33) and u(a) > 0 that

|u(s)| ≤
s∫

a

β2(t) |x(σ(t))|α−1 Δt +

s∫
a

|α1(t)| |u(t)|Δt

≤
b0∫

a

β2(t) |x(σ(t))|α−1 Δt +

b0∫
a

|α1(t)| |u(t)|Δt,

and if u(s) > 0 then we have from (34) and u(b0) < 0 that

|u(s)| ≤
b0∫

s

β2(t) |x(σ(t))|α−1 Δt +

b0∫
s

|α1(t)| |u(t)|Δt

≤
b0∫

a

β2(t) |x(σ(t))|α−1 Δt +

b0∫
a

|α1(t)| |u(t)|Δt.
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So in either case, we have

|u(s)| ≤
b0∫

a

β2(t) |x(σ(t))|α−1 Δt +

b0∫
a

|α1(t)| |u(t)|Δt. (36)

Using Hölder’s inequality in the first integral of the right hand side of (36) with the indices
α and γ, we obtain

b0∫
a

β2(t) |x(σ(t))|α−1 Δt ≤

⎛
⎝

b0∫
a

β2(t)Δt

⎞
⎠

1/α ⎛
⎝

b0∫
a

β2(t) |x(σ(t))|(α−1)γ Δt

⎞
⎠

1/γ

=

⎛
⎝

b0∫
a

β2(t)Δt

⎞
⎠

1/α ⎛
⎝

b0∫
a

β2(t) |x(σ(t))|α Δt

⎞
⎠

1/γ

. (37)

Substituting (37) into (36) yields

|u(s)| ≤

⎛
⎝

b0∫
a

β2(t)Δt

⎞
⎠

1/α ⎛
⎝

b0∫
a

β2(t) |x(σ(t))|α Δt

⎞
⎠

1/γ

+

b0∫
a

|α1(t)| |u(t)|Δt. (38)

Integrating (10) from a to σ(b0), we obtain

x(σ(b0))u(σ(b0)) − x(a)u(a) =

σ(b0)∫
a

β1(t) |u(t)|γ Δt −
σ(b0)∫
a

β2(t) |x(σ(t))|α Δt. (39)

Notice that the second integral of the right hand side of (39), by using (5) and (6), can
be written as

σ(b0)∫
a

β2(t) |x(σ(t))|α Δt =

b0∫
a

β2(t) |x(σ(t))|α Δt +

σ(b0)∫
b0

β2(t) |x(σ(t))|α Δt

=

b0∫
a

β2(t) |x(σ(t))|α Δt + μ(b0)β2(b0) |x(σ(b0))|α ,
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ÜNAL, ÇAKMAK

and substituting the above equality into (39), we get

x(σ(b0))u(σ(b0)) + μ(b0)β2(b0) |x(σ(b0))|α − x(a)u(a)

=

σ(b0)∫
a

β1(t) |u(t)|γ Δt −
b0∫

a

β2(t) |x(σ(t))|α Δt. (40)

We claim that x(σ(b0))u(σ(b0))+μ(b0)β2(b0) |x(σ(b0))|α > 0. To this end, from the second
equation of (1) by using the formula fσ(t) = f(t) + μ(t)fΔ(t), we get

u(σ(t)) − u(t) = −μ(t)β2(t) |x(σ(t))|α−2
x(σ(t)) − μ(t)α1(t)u(t),

which implies

(1 − μ(t)α1(t))u(t) = u(σ(t)) + μ(t)β2(t) |x(σ(t))|α−2
x(σ(t)). (41)

First taking t = b0 in (41) and then multiplying the result by x(σ(b0)) yields

(1 − μ(b0)α1(b0))u(b0)x(σ(b0)) = u(σ(b0))x(σ(b0)) + μ(b0)β2(b0) |x(σ(b0))|α . (42)

It follows from the fact 1 − μ(b0)α1(b0) > 0, u(b0) < 0 and x(σ(b0)) < 0 that the
left hand side of (42) is strictly positive, so is the right hand side as claimed. Hence,
x(σ(b0))u(σ(b0))+μ(b0)β2(b0) |x(σ(b0))|α−x(a)u(a) > 0 since x(a)u(a) < 0 which yields

0 <

σ(b0)∫
a

β1(t) |u(t)|γ Δt −
b0∫

a

β2(t) |x(σ(t))|α Δt,

and hence
b0∫

a

β2(t) |x(σ(t))|α Δt <

σ(b0)∫
a

β1(t) |u(t)|γ Δt. (43)

Substituting (43) into (38), we obtain

|u(s)| <

⎛
⎝

b0∫
a

β2(t)Δt

⎞
⎠

1/α
⎛
⎜⎝

σ(b0)∫
a

β1(t) |u(t)|γ Δt

⎞
⎟⎠

1/γ

+

b0∫
a

|α1(t)| |u(t)|Δt

≤ |u(s)|

⎛
⎝

b0∫
a

β2(t)Δt

⎞
⎠

1/α
⎛
⎜⎝

σ(b0)∫
a

β1(t)Δt

⎞
⎟⎠

1/γ

+ |u(s)|
b0∫

a

|α1(t)|Δt,
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and hence, dividing the above inequality by |u(s)| and since b0 ≤ b, we get

1 <

⎛
⎝

b0∫
a

β2(t)Δt

⎞
⎠

1/α
⎛
⎜⎝

σ(b0)∫
a

β1(t)Δt

⎞
⎟⎠

1/γ

+

b0∫
a

|α1(t)|Δt

≤

⎛
⎝

b∫
a

β2(t)Δt

⎞
⎠

1/α
⎛
⎜⎝

σ(b)∫
a

β1(t)Δt

⎞
⎟⎠

1/γ

+

b∫
a

|α1(t)|Δt,

which completes the proof. �

Combining Theorems 1–4, we have the following corollary.

Corollary 1 Suppose 1 − μ(t)α1(t) > 0, β1(t) > 0 and β2(t) > 0 on [a, σ(b)]. Let a,
b ∈ T with σ(a) < b. Assume that (1) has a real solution (x, u) with generalized zeros in
σ(a) and σ(b) and x is not identically zero on [σ(a), b]. Then the inequality

1 <

σ(b)∫
a

|α1(t)|Δt +

⎛
⎜⎝

σ(b)∫
a

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

σ(b)∫
a

β2(t)Δt

⎞
⎟⎠

1/α

(44)

holds, where 1
α + 1

γ = 1.

Remark 2 Taking α = γ = 2 in the nonlinear system (1) yields the following Hamilto-
nian system on a time scale T

xΔ(t) = α1(t)x(σ(t)) + β1(t)u(t)
uΔ(t) = −β2(t)x(σ(t)) − α1(t)u(t)

. (45)

Hence, all of above results presented in this section for system (1) is also valid for system
(45). Thus, we should remark here that the nonlinear system (1) may be viewed as the
natural generalization of the Hamiltonian system (45) on a time scale T. On the other
hand, when α = γ = 2 in system (1), it is easy to see that Theorems 1-4 and Corollary 1
reduce to Theorems 1.1-1.4 and Corollary 1.5 of Jiang and Zhou [18], respectively.
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4. A Disconjugacy Criterion

Applying the inequalities derived in section 3, we established a disconjugacy criterion
for the solution of system (1). Let a, b ∈ T with σ(a) < b. Consider the nonlinear system

xΔ(t) = α1(t)x(σ(t)) + β1(t) |u(t)|γ−2
u(t)

uΔ(t) = −β2(t) |x(σ(t))|α−2
x(σ(t)) − α1(t)u(t)

, t ∈ [a, b]κ. (46)

We will assume that the coefficients α1(t), β1(t) and β2(t) are real rd–continuous functions
defined on [a, σ(b)], γ > 1 and α > 1 are constants with 1

α + 1
γ = 1, and

1− μ(t)α1(t) > 0, β1(t) > 0, β2(t) > 0 for all t ∈ [a, σ(b)]. (47)

Note that each solution (x, u) of system (46) will be a vector valued function defined on
[a, σ(b)].

We now define the concept of a relatively generalized zero for the component x of a
real solution (x, u) of system (46) and also the concept of disconjugacy of this system
on [a, σ(b)]. The definition is relative to the interval [a, σ(b)] and the left end–point a is
treated separately.

Definition 1 ([18]) The component x of a real solution (x, u) of (46) has a relatively
generalized zero at a if and only if x(a) = 0, while we say x has a relatively generalized
zero at σ(t0) > a provided (x, u) has a generalized zero at σ(t0). System (46) is called
disconjugacy on [a, σ(b)] if there is no real solution (x, u) of this system with x nontrivial
and having two (or more) relatively generalized zeros in [a, σ(b)].

Notice that when T = Z with the condition (47), definitions of a relatively generalized
zero and of disconjugacy are equivalent to those given in ([3] p. 354; [14], [18]).

Theorem 5 Assume condition (47) holds. If

σ(b)∫
a

|α1(t)|Δt +

⎛
⎜⎝

σ(b)∫
a

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

σ(b)∫
a

β2(t)Δt

⎞
⎟⎠

1/α

≤ 1, (48)

then (46) is disconjugate on [a, σ(b)].
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Proof. Suppose, on the contrary, that system (46) is not disconjugate on [a, σ(b)]. By
Definition 1, there exists a real solution (x, u) of (46) with x nontrivial and such that
x has at least two relatively generalized zeros in [a, σ(b)]. Now, we have two cases to
consider.

Case 1: One of the two relatively generalized zeros is at the left end–point a, i.e.,
x(a) = 0, the other is at σ(b0) ∈ (a, σ(b)]. Therefore, applying Theorem 1 or Theorem 3,
we get

σ(b0)∫
a

|α1(t)|Δt +

⎛
⎜⎝

σ(b0)∫
a

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

σ(b0)∫
a

β2(t)Δt

⎞
⎟⎠

1/α

> 1,

which contradicts to (48).

Case 2: Neither of two relatively generalized zeros is at a. Then x has two generalized
zeros at both σ(a0) and σ(b0) with σ(a0) < σ(b0) in (a, σ(b)]. Therefore, applying
Corollary 1, we have

σ(b0)∫
a0

|α1(t)|Δt +

⎛
⎜⎝

σ(b0)∫
a0

β1(t)Δt

⎞
⎟⎠

1/γ ⎛
⎜⎝

σ(b0)∫
a0

β2(t)Δt

⎞
⎟⎠

1/α

> 1,

which again contradicts to (48).

By combining above two cases, the proof is now completed. �
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