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Abstract

Nonlinear semi-discrete equations of the form tx(n+1) = f(t(n), t(n+1), tx(n))

are studied. An adequate algebraic formulation of the Darboux integrability is

discussed and an attempt to adopt this notion to the classification of Darboux

integrable chains has been undertaken.
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1. Introduction

The notion of integrability has various of meanings. Different approaches and methods
are applied to classify different types of integrable equations (see [1], [8]-[11], [14], [15],
[17] and [20]).

Investigation of the class of hyperbolic type differential equations of the form

uxy = f(x, y, u, ux, uy) (1)

has a very long history. Various approaches have been developed to look for particu-
lar and general solutions of these kind equations. In the literature one can find sev-
eral definitions of integrability. According to one given by G. Darboux (see [5], [7]),
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equation (1) is called integrable if there exist functions F (x, y, u, ux, uxx, ..., Dm
x u) and

G(x, y, u, uy, uyy, ..., D
n
yu) such that arbitrary solution of (1) satisfies DyF = 0 and

DxG = 0, where Dx and Dy are operators of differentiation with respect to x and y.
Functions F and G are called y- and x-integrals of equation (1), respectively.

An effective criterion of Darboux integrability has been proposed by G. Darboux
himself. Equation (1) is integrable if and only if the Laplace sequence of the linearized
equation terminates at both ends. The reader may find the definition of the Laplace
sequence and the proof of the criterion in [3], [19]. A complete list of the Darboux
integrable equations of the form (1) is given in [21].

1.1. Characteristic Lie algebras. Continuous Case.

An alternative method of investigation and classification of the Darboux integrable equa-
tions has been developed by A. B. Shabat in [18], based on the notion of characteristic
Lie algebra. Let us give a brief explanation of this notion. Define two vector fields as

T1 =
∂

∂y
+ uy

∂

∂u
+ f

∂

∂ux
+ Dx(f)

∂

∂uxx
+ ..., T2 =

∂

∂uy
.

Denote by Ly the Lie algebra generated by T1 and T2. Any vector field T from Ly satisfies
TF = 0. Algebra Ly is called the characteristic Lie algebra of equation (1) in the direction
of y. Characteristic Lie algebra in the x-direction is defined in a similar way. By virtue
of the famous Jacobi theorem, equation (1) is Darboux integrable if and only if both of
its characteristic Lie algebras are of finite dimension. In [16] and [18] the characteristic
Lie algebras for the systems of nonlinear hyperbolic equations and their applications are
studied.

1.2. Characteristic Lie Algebras. Semi-Discrete Case.

In this paper we study semi-discrete chains of the form

t1x = f(t, t1, tx) (2)

from the Darboux integrability point of view. The unknown t = t(n, x) is a function
of two independent variables: one discrete n and one continuous x. It is assumed
that ∂f

∂tx
�= 0. Subindex means shift or derivative, for instance, t1 = t(n + 1, x) and

tx = ∂
∂x t(n, x). Below we use D to denote the shift operator and Dx to denote the x-

278



HABIBULLIN, PEKCAN, ZHELTUKHINA

derivative: Dh(n, x) = h(n + 1, x) and Dxh(n, x) = ∂
∂xh(n, x). For the iterated shifts we

use the subindex: Djh = hj .
The characteristic Lie algebra has proved to be an effective tool for classifying non-

linear hyperbolic partial differential equations. This concept can be extended to discrete
versions of partial differential equations (see [12]). Discrete models have become rather
popular in the last decade because of their applications in physics and biology (see survey
[22]). The problem of classification of the discrete Darboux integrable equations is very
important and, to our knowledge, still open.

In accordance with the continuous case, function I = I(x, n, t, tx, txx, ...Dm
x t) is called

an n-integral of the chain (2) if it satisfies the equation (D − 1)I = 0. In other words,
n-integral should still be unchanged under the action of the shift operator DI = I, (see
also [2]). One can write it in an enlarged form:

I(x, n + 1, t1, f, fx, fxx, ...) = I(x, n, t, tx, txx, ...). (3)

Notice that it is a functional equation, the unknown is taken at two different ”points”.
This circumstance causes the main difficulty in studying discrete chains. Problems of this
kind appear when the symmetry approach is applied to discrete equations (see [4], [6]).
However, the concept of the Lie algebra of characteristic vector fields can serve as a basis
for chains’ investigation.

Introduce vector fields in the following way. Concentrate on the main equation (3).
The left hand side of (3) contains the variable t1, while the right hand side does not.
Hence the total derivative of the function DI with respect to t1 should vanish. In other
words, the n-integral is in the kernel of the operator Y1 := D−1 ∂

∂t1
D. Similarly one can

check that I is in the kernel of the operator Y2 := D−2 ∂
∂t1

D2. Really, the right hand

side of the equation D2I = I, which immediately follows from (3), does not depend on
t1, therefore the derivative of the function D2I with respect to t1 vanishes. Proceeding
this way one can easily prove that for any j ≥ 1 the operator Yj = D−j ∂

∂t1
Dj solves the

equation YjI = 0.
Rewrite the original equation (2) in the form

t−1x = g(t, t−1, tx). (4)

This can be done because of the condition ∂f
∂tx

�= 0 assumed above. In the enlarged form

the equation D−1I = I looks like

I(x, n − 1, t−1, g, gx, gxx, ...) = I(x, n, t, tx, txx, ...). (5)
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The right side of equation (5) does not depend on t−1 so the total derivative of D−1I

with respect to t−1 is zero, i.e. the operator Y−1 := D ∂
∂t−1

D−1 solves the equation

Y−1I = 0. Moreover, the operators Y−j = Dj ∂
∂t−1

D−j , j ≥ 1, also satisfy similar

conditions Y−jI = 0.
Summarizing the reasonings above one can conclude that the n-integral is annu-

lated by any operator from the Lie algebra L̃n generated by the set of operators Y =
{..., Y−2, Y−1, Y−0, Y0, Y1, Y2, ..., }, where Y0 = ∂

∂t1
and Y−0 = ∂

∂t−1
.

The algebra L̃n consists of the operators from the set Y, all possible commutators
and linear combinations with coefficients depending on the variables n and x. Evidently
equation (2) admits a nontrivial n-integral only if the dimension of the algebra L̃n is

finite. However the converse is not true: dimL̃n < ∞ does not imply the existence of
n-integrals. By this reason we introduce another Lie algebra, called the characteristic
Lie algebra Ln of equation (2) in the direction of n. First we define in addition to the
operators Y1, Y2, ... differential operators Xj = ∂

∂t−j
for j ≥ 1.

The following theorem (see [13]) allows us to define this characteristic Lie algebra.

Theorem 1.1 Equation (2) admits a nontrivial n-integral if and only if the following
two conditions hold:
1) Linear space spanned by the operators {Yj}∞1 is of finite dimension. Denote this
dimension by N .
2) Lie algebra Ln generated by the operators Y1, Y2, ..., YN, X1, X2, ..., XN is of finite
dimension. We call Ln the characteristic Lie algebra of (2) in the direction of n.

Note that elements of the algebra Ln are operators acting on locally analytical func-
tions of a finite number of the dynamical variables: t, t±1, t±2, · · · , tx, txx, · · · .

Remark 1.2 If dimension of the linear space LY generated by {Yj}∞1 is N then the set
{Yj}N

1 constitutes a basis in LY .

The x-integral and the characteristic Lie algebra in the x-direction of equation
(2) are defined in a similar way to the continuous case. We call a function F =
F (x, n, t, t±1, t±2, ...) depending on a finite number of shifts an x-integral of the chain
(2), if the following condition is valid DxF = 0, i.e. K0F = 0, where

K0 =
∂

∂x
+ tx

∂

∂t
+ f

∂

∂t1
+ g

∂

∂t−1
+ f1

∂

∂t2
+ g−1

∂

∂t−2
+ · · · . (6)
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Vector fields K0 and

X =
∂

∂tx
, (7)

as well as any vector field from the Lie algebra generated by K0 and X, annulate F . This
algebra is called the characteristic Lie algebra Lx of the chain (2) in the x-direction. The
following result is essential; its proof can be found in [18].

Theorem 1.3 Equation (2) admits a nontrivial x-integral if and only if its Lie algebra
Lx is of finite dimension.

The article is organized as follows. In Section 2 we study the algebra Ln introduced
in Theorem 1.1. Section 3 is devoted to properties of the Lie algebra Lx. These alge-
bras Ln and Lx can be used as a new classifying tool for equations on a lattice. From
this viewpoint the system of equations (26) is of special importance. Actually, the consis-
tency condition of this overdetermined system of ”ordinary” difference equations provides
necessary conditions of the Darboux integrability of the original equation (2). As an il-
lustration of efficiency of our approach in the last Section 4 we study in details equation
(2) admitting characteristic Lie algebras Ln and Lx of minimal possible dimensions equal
2 and 3 respectively. It is proved that in this case the equation (2) can be reduced to
t1x = tx + t1 − t.

2. Characteristic Lie Algebra Ln

The proof of the first two lemmas can be found in [13].

Lemma 2.1 If for some integer N the operator YN+1 is a linear combination of the
operators Yi with i ≤ N : YN+1 = α1Y1 + α2Y2 + ...+ αNYN , then for any integer j > N ,
we have a similar expression Yj = β1Y1 + β2Y2 + ... + βNYN .

Lemma 2.2 The following commutativity relations take place: [Y0, Y−0] = 0, [Y0, Y1] = 0
and [Y−0, Y−1] = 0.

Note that by direct computations

Y1H = D−1 d

dt1
DH(t, tx, txx, ...)

=
{ ∂

∂t
+ D−1

( ∂f

∂t1

) ∂

∂tx
+ D−1

(∂fx

∂t1

) ∂

∂txx
+ ...

}
H(t, tx, txx, ...)
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one gets

Y1 =
∂

∂t
+ D−1

( ∂f

∂t1

) ∂

∂tx
+ D−1

(∂fx

∂t1

) ∂

∂txx
+ D−1

(∂fxx

∂t1

) ∂

∂txxx
+ ... . (8)

Now notice that all of the functions f , fx, fxx, ... depend on the variables t1, t, tx, txx, ...

and do not depend on t2 hence the coefficients of the vector field Y1 do not depend on t1

and therefore the operators Y1 and Y0 commute. In a similar way, by using the explicit

coordinate representation, we have Y−1 = ∂
∂t

+ D
(

∂g
∂t−1

)
∂

∂tx
+ D

(
∂gx

∂t−1

)
∂

∂txx
+ ..., where

g is defined by (4).
The following statement turned out to be very useful for studying the characteristic

Lie algebra Ln.

Lemma 2.3 (1) Suppose that the vector field

Y = α(0)
∂

∂t
+ α(1)

∂

∂tx
+ α(2)

∂

∂txx
+ ...,

where αx(0) = 0, solves the equation [Dx, Y ] = 0, then Y = α(0) ∂
∂t .

(2) Suppose that the vector field

Y = α(1)
∂

∂tx
+ α(2)

∂

∂txx
+ α(3)

∂

∂txxx
+ ...

solves the equation [Dx, Y ] = hY , where h is a function of variables t, tx, txx, . . ., t±1,
t±2, . . ., then Y = 0.

The proof of Lemma 2.3 can be easily derived from the formula

[Dx, Y ] = −(α(0)ft + α(1)ftx)
∂

∂t1
+ (αx(0) − α(1))

∂

∂t

+ (αx(1) − α(2))
∂

∂tx
+ (αx(2) − α(3))

∂

∂txx
+ ... . (9)

In formula (8) we have already given an enlarged coordinate form of the operator Y1.
One can check that the operator Y2 is a vector field of the form

Y2 = D−1(Y1(f))
∂

∂tx
+ D−1(Y1(fx))

∂

∂txx
+ D−1(Y1(fxx))

∂

∂txxx
+ ... . (10)
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It immediately follows from the equation Y2 = D−1Y1D and the coordinate representation
(8). By induction one can prove similar formulas for arbitrary Yj+1, j ≥ 1:

Yj+1 = D−1(Yj(f))
∂

∂tx
+ D−1(Yj(fx))

∂

∂txx
+ D−1(Yj(fxx))

∂

∂txxx
+ ... . (11)

Lemma 2.4 For any n ≥ 0, we have

[Dx, Yn] = −
n∑

j=0

D−j(Yn−j(f))Yj . (12)

In particular,

[Dx, Y0] = −Y0(f)Y0 , [Dx, Y1] = −Y1(f)Y0 − D−1(Y0(f))Y1 . (13)

Proof. We have,

[Dx, Y0]H(t, t1, tx, txx, ...) = DxHt1 − Y0DxH

= (Htt1tx + Ht1t1t1x + ...)− ∂

∂t1

(Httx + Ht1t1x + ...)

= −Ht1ft1 = −Y0(f)Y0H,

i.e. the first equation of (13) holds. By (8), (9) and [Dx, Y0] = −Y0(f)Y0 ,

[Dx, Y1] = −Y1(f)
∂

∂t1
− D−1(Y0(f))

∂

∂t
+ D−1[Dx, Y0]f

∂

∂tx
+ D−1[Dx, Y0]fx

∂

∂txx
+ . . .

= −Y1(f)Y0 − D−1(Y0(f))
∂

∂t
− D−1(Y0(f)Y0(f))

∂

∂tx
− D−1(Y0(f)Y0(fx))

∂

∂txx
− . . .

= −Y1(f)Y0 − D−1(Y0(f))Y1 .

By Mathematical Induction we have the equation (12). �

Lemma 2.5 Lie algebra generated by the operators Y1, Y2, Y3, ... is commutative.

Proof. By Lemma 2.2, [Y1, Y0] = 0. The reason for this equality is that the coefficients
of the vector field Y1 do not depend on the variable t1. They might depend only on t−1, t,
tx, txx, txxx, . . .. The coefficients of the vector field Y2 being of the form D−1(Y1(Dj

xf))
(see (10)) also do not depend on the variable t1. They might depend only on t−2, t−1,
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t, tx, txx, txxx, . . .. Therefore, we have [Y2, Y0] = 0. Continuing this reasoning we see
that for any n ≥ 1 the commutativity relation [Yn, Y0] = 0 takes place. Consider now the
commutator [Yn, Yn+m], n ≥ 1, m ≥ 1. We have,

[Yn, Yn+m] = [D−nY0D
n, D−(n+m)Y0D

n+m] = D−n[Y0, Ym]Dn = 0,

that finishes the proof of Lemma 2.5. �

Lemma 2.6 If the operator Y2 = 0 then [X1, Y1] = 0.

Proof. By (10), Y2 = 0 implies that Y1(f) = 0. Due to (8), Y1(f) = 0 means that
ft + D−1(ft1 )ftx = 0 and, therefore, D−1(ft1) does not depend on t−1. Together with
Lemma 2.4 and the fact that [Dx, X1] = 0, it allows us to conclude that [Dx, [X1, Y1]] =
−[X1, D

−1(ft1)Y1] = −D−1(ft1)[X1, Y1] i.e. [Dx, [X1, Y1]] = −D−1(ft1)[X1, Y1]. By
Lemma 2.4, part (2), it follows that [X1, Y1] = 0. �

Lemma 2.7 The operator Y2 = 0 if and only if we have

ft + D−1(ft1 )ftx = 0. (14)

Proof. Assume Y2 = 0. By (10), Y1(f) = 0. Due to (8) equality Y1(f) = 0 is another
way of writing (14).
Conversely, assume (14) holds, i.e. Y1(f) = 0. It follows from (10) that Y2(f) = 0. Due
to Lemma 2.4, we have [Dx, Y2] = −D−2(Y0(f))Y2 that implies, by Lemma 2.3, part (2),
that Y2 = 0. �

Corollary 2.8 The dimension of Lie algebra Ln associated with n-integral is equal to 2
if and only if (14) holds, or the same Y2 = 0.

Proof. By Theorem 1.1, the dimension of Ln is 2 if and only if Y2 = λ1X1 +μ1Y1 and
[X1, Y1] = λ2X1 + μ2Y1 for some λi, μi, i = 1, 2.

Assume the dimension of Ln is 2. Then Y2 = λ1X1 + μ1Y1. Since among X1, Y1,
Y2 differentiation by t−1 is used only in X1, differentiation by t is used only in Y1, then
λ1 = μ1 = 0. Therefore, Y2 = 0, or the same, by Lemma 2.7, (14) holds.
Conversely, assume (14) holds, that is Y2 = 0. By Lemma 2.6, [X1, Y1] = 0. Since Y2

and [X1, Y1] are trivial linear combinations of X1 and Y1 then the dimension of Ln is 2. �
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3. Characteristic Lie Algebra Lx

Denote by

K1 = [X, K0], K2 = [X, K1], . . . , Kn+1 = [X, Kn], n ≥ 1 , (15)

where X and K0 are defined by (7) and (6).
It is easy to see that

K1 =
∂

∂t
+ X(f)

∂

∂t1
+ X(g)

∂

∂t−1
+ X(f1)

∂

∂t2
+ X(g−1)

∂

∂t−2
+ . . . , (16)

Kn =
∞∑

j=1

{
Xn(fj−1)

∂

∂tj
+ Xn(g−j+1)

∂

∂t−j

}
, n ≥ 2, (17)

where f0 := f and g0 := g.

Lemma 3.1 We have,

DXD−1 =
1

ftx

X, DK0D
−1 = K0 −

txft + fft1

ftx

X, (18)

DK1D
−1 =

1
ftx

K1 −
ft + ftxft1

f2
tx

X, DK2D
−1 =

1
f2

tx

K2 −
ftxtx

f3
tx

K1 +
ftxtxft

f4
tx

X, (19)

DK3D
−1 =

1
f3

tx

K3 − 3
ftxtx

f4
tx

K2 +
(

3
f2

txtx

f5
tx

− ftxtxtx

f4
tx

)
K1 −

ft

ftx

(
3
f2

txtx

f5
tx

− ftxtxtx

f4
tx

)
X.

(20)

Proof. By simple calculations we find the equations (18), (19) and (20). �

Lemma 3.2 For any n ≥ 1 we have,

DKnD−1 = a(n)
n Kn + a

(n)
n−1Kn−1 + a

(n)
n−2Kn−2 + . . . + a

(n)
1 K1 + b(n)X, (21)

where coefficients b(n) and a
(n)
k are functions that depend only on variables t, t1 and tx

for all k, 1 ≤ k ≤ n. Moreover,

a(n)
n =

1
fn

tx

, n ≥ 1, a
(n)
n−1 = −n(n − 1)

2
ftxtx

fn+1
tx

, n ≥ 2,

b(n) = − ft

ftx

a
(n)
1 , n ≥ 2, (22)
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a
(n)
n−2 =

(n − 2)(n2 − 1)n
4

f2
txtx

2fn+2
tx

− (n − 2)(n − 1)n
3

ftxtxtx

2fn+1
tx

, n ≥ 3 . (23)

Proof. It is easy to prove the Lemma by using Mathematical Induction. �

Lemma 3.3 Suppose that the vector field

K =
∞∑

j=1

{
α(k)

∂

∂tk
+ α(−k)

∂

∂t−k

}

solves the equation DKD−1 = hK, where h is a function of variables t, t±1, t±2, . . ., tx,
txx, . . ., then K = 0.

The proof of Lemma 3.3 can be easily derived from the following formula

DKD−1 = − ft

ftx

D(α(−1))X + D(α(−1))
∂

∂t
+ D(α(−2))

∂

∂t−1

+
∞∑

j=2

{
D(α(j − 1))

∂

∂tj
+ D(α(−j − 1))

∂

∂t−j

}
. (24)

Consider the linear space L∗ generated by X and Kn, n ≥ 0. It is a subset in the finite
dimensional Lie algebra Lx. Therefore, there exists a natural number N such that

KN+1 = μX + λ0K0 + λ1K1 + . . . + λNKN , (25)

where X, Kn, 0 ≤ n ≤ N are linearly independent. It can be proved that the coefficients
μ, λi, 0 ≤ i ≤ N , are functions depending on a finite number of the dynamical variables.
Since μ = λ0 = λ1 = 0, then the equality above should be studied only if N ≥ 2, or the
same, if the dimension of Lx is 4 or more. The case of when the dimension of Lx is equal
to 3 must be considered separately.
Assume N ≥ 2. Then

DKN+1D−1 = D(λ2)DK2D
−1 + D(λ3)DK3D

−1 + . . . + D(λN−1)DKN−1D
−1

+ D(λN )DKN D−1.

Rewriting DKkD−1 in the last equation for each k, 2 ≤ k ≤ N + 1, using formulas (21),
and KN+1 as a linear combination (25), allows us to compare coefficients before Kk,
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2 ≤ k ≤ N and obtain the following system of equations:

a
(N+1)
N+1 λN + a

(N+1)
N = D(λN )a(N)

N

a
(N+1)
N+1 λN−1 + a

(N+1)
N−1 = D(λN−1)a

(N−1)
N−1 + D(λN )a(N)

N−1

. . .

a
(N+1)
N+1 λk + a

(N+1)
k = D(λk)a(k)

k + D(λk+1)a
(k+1)
k + . . . + D(λN )a(N)

k ,

(26)

for 2 ≤ k ≤ N . Using the fact that coefficients λk, 2 ≤ k ≤ N , depend on a finite number
of arguments, it is easy to see that all of them are functions of only variables t and tx.

Lemma 3.4 K2 = 0 if and only if ftxtx = 0.

Proof. Assume K2 = 0. By representation (17) we have X2(f) = 0, that is ftxtx = 0.
Conversely, assume that ftxtx = 0. By (19) we have DK2D

−1 = 1
f2

tx

K2 that implies, by

Lemma 3.3, that K2 = 0. �

Introduce
Z2 = [K0, K1]. (27)

Lemma 3.5 We have,

DZ2D
−1 =

1
ftx

Z2 − txft + fft1

f2
tx

K2 + CK1 −
ft

ftx

CX, (28)

where C = − txftxt

f2
tx

− fftxt1
f2

tx

+ ft

f2
tx

+ ft1
ftx

+ txftftxtx

f3
tx

+ fft1 ftxtx

f3
tx

.

Proof. Using formulas (18) and (19) for DK0D
−1, DK1D

−1 and definition (27), we
can easily get the desired results. �

Lemma 3.6 The dimension of the Lie algebra Lx generated by X and K0 is equal to 3
if and only if

ftxtx = 0 (29)

and

− txftxt

f2
tx

− fftxt1

f2
tx

+
ft

f2
tx

+
ft1

ftx

= 0 . (30)
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Proof. Assume the dimension of the Lie algebra Lx generated by X and K0 is equal to
3. It means that the algebra consists of X, K0 and K1 only, and K2 = λ1X+λ2K0+λ3K1,
Z2 = μ1X + μ2K0 + μ3K1 for some functions λi and μi. Since among X, K0, K1, K2

and Z2 we have differentiation by tx only in X, differentiation by x only in K0, then
λ1 = λ2 = μ1 = μ2 = 0. Therefore, K2 = λ3K1 and Z2 = μ3K1. Also, among K1, K2

and Z2 we have differentiation by t only in K1 then λ3 = μ3 = 0. We have proved that
if the dimension of the Lie algebra Lx is 3 then K2 = 0 and Z2 = 0. By Lemma 3.4,
condition (29) is satisfied. It follows from (28) that

0 = DZ2D
−1 =

1
ftx

Z2 −
txft + fft1

f2
tx

K2 + CK1 −
ft

ftx

CX = CK1 −
ft

ftx

CX.

Since X and K1 are linearly independent then equality CK1− ft

ftx
CX = 0 implies C = 0.

Equality (30) follows from (29) and C = 0.
Conversely, assume that properties (29) and (30) are satisfied. To prove that the dimen-
sion of the Lie algebra Lx is equal to 3 it is enough to show that K2 = 0 and Z2 = 0. It
follows from (29) and Lemma 3.4 that K2 = 0. From formula (28) for DZ2D

−1, prop-
erty (30) and knowing that K2 = 0 we have that DZ2D

−1 = 1
ftx

Z2 that implies, by

Lemma 3.3, that Z2 = 0. �

4. Equations with Characteristic Algebras of the Minimal Possible Dimen-
sions.

Corollary 4.1 If Lie algebras for n− and x− integrals have dimensions 2 and 3 respec-
tively, then equation t1x = f(t, t1, tx) can be reduced to t1x = tx + t1 − t.

Proof. By Lemma 3.6 and Corollary 2.8, the dimensions of n- and x-Lie algebras
are 2 and 3 correspondingly mean equations (14), (29), and (30) are satisfied. It follows
from property (29) that f(t, t1, tx) = G(t, t1)tx + H(t, t1) for some functions G(t, t1) and
H(t, t1). By (14), Gttx + Ht + {D−1(Gt1tx + Ht1)}G = 0, that is

D−1(Gt1tx + Ht1) = −Gt

G
tx − Ht

G
. (31)

Note that t1x = Gtx + H implies tx = D−1(G)t−1x + D−1(H) and, therefore, t−1x =
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1
D−1(G) tx − D−1(H)

D−1(G) . We continue with (31) and obtain the equality

D−1

(
Gt1

G

)
tx − D−1

(
Gt1H

G

)
+ D−1(Ht1) = −Gt

G
tx − Ht

G

which gives rise to the two equations

D−1

(
Gt1

G

)
= −Gt

G
, D−1

(
Ht1 −

Gt1H

G

)
= −Ht

G
. (32)

It is seen from the first equation of (32) that Gt

G is a function that depends only on variable

t, even though functions G and Gt depend on variables t and t1. Denote Gt

G =: a(t).

Then Gt1
G = −a(t1). The last two equations imply that G = A1(t1)eã(t) = A2(t)e−ã(t1)

for some functions A1(t1) and A2(t) and ã(t) =
∫ t

0
a(τ )dτ . Noticing that A1(t1)eã(t1) =

A2(t)e−ã(t), we conclude that A1(t1)eã(t1) is a constant. Denoting γ := A1(t1)eã(t1) and
G1(t) := e−ã(t), we have

G(t, t1) = γ
G1(t1)
G1(t)

and, therefore, f(t, t1, tx) = γ
G1(t1)
G1(t)

tx + H. (33)

The second equation of (32) implies that

Ht

G
= −μ(t) and Ht1 −

Gt1H

G
= μ(t1) (34)

for some function μ(t). Using (33), the second equation in (34) can be rewritten as

Ht1 −
G′

1(t1)H
G1(t1)

= μ(t1), or the same, as
{

H(t,t1)
G1(t1)

}
t1

= μ(t1)
G1(t1)

. It means that

H(t, t1) = G1(t1)H1(t1) + G1(t1)H2(t) (35)

for some functions H1(t1) and H2(t). By substituting H(t, t1) from (35), G(t, t1) from
(33) into the second equation of (34) and making all cancellations we have,

G1(t1)H ′
1(t1) = μ(t1), or the same, G1(t)H ′

1(t) = μ(t) . (36)

By substituting G(t, t1) from (33) and H(t, t1) from (35) into the first equation of (34),
we have

H ′
2(t)G1(t) = −γμ(t) . (37)
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Combining together (36) and (37) we obtain that H ′
2(t)G1(t) = −γG1(t)H ′

1(t), or the
same, H ′

2(t) = −γH ′
1(t), or (H2(t)+ γH1(t))′ = 0 that implies that H2(t) = −γH1(t)+ η

for some constant η. Therefore,

f(t, t1, tx) = γ
G1(t1)
G1(t)

tx + G1(t1)H1(t1) − γG1(t1)H1(t) + ηG1(t1) . (38)

Note that only properties (29) and (14) were used to obtain representation (38) for

f(t, t1, tx). Using (30) and (14) we have 0 = γG1(t1)
G1(t)

{−H ′
1(t)G1(t) + G1(t1)H ′

1(t1)}, i.e.

−H ′
1(t)G1(t) + G1(t1)H ′

1(t1) = 0. This implies that H ′
1(t)G1(t) = c, where c is some

constant. Substituting G1(t) = c
H′

1(t)
into (38) we have,

f(t, t1, tx) = γ
H ′

1(t)
H ′

1(t1)
tx + c

H1(t1)
H ′

1(t1)
− γc

H1(t)
H ′(t1)

+ η
c

H ′
1(t1)

. (39)

By using substitution s = H1(t) equation (39) is reduced to s1x = γsx + cs1 − cγs + ηc.
Introducing x̃ = cx allows to rewrite the last equation as s1x̃ = γsx̃ +s1−γs+η. If γ = 1
substitution s = τ − nη reduces the equation to τ1x̃ = τx̃ + τ1 − τ . If γ �= 1, substitution

s = γnτ + η γn−1
1−γ

reduces the equation to τ1x̃ = τx̃ + τ1 − τ . �
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