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Abstract

In this paper we consider a particular type of modular sequence spaces defined

with the help of a given sequence α = {αn} of strictly positive real numbers αn’s and

an Orlicz function M . Indeed, if we define Mn(x) = M(αnx) and M̃n(x) = M( x
αn

),

x ∈ [0,∞), we consider the modular sequence spaces �{Mn} and �{M̃n}, denoted

by �α
M and �M

α respectively. These are known to be BK-spaces and if M satisfies

Δ2-condition, they are AK-spaces as well. However, if we consider the spaces �M
α

and �α
N corresponding to two complementary Orlicz functions M and N satisfying

Δ2-condition, they are perfect sequence spaces, each being the Köthe dual of the

other. We show that these are subspaces of the normal sequence spaces μ and η

which contain α and α−1, respectively. We also consider the interrelationship of �M
α

and �α
M for different choices of α.
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1. Introduction

An Orlicz function is a continuous, convex, non-decreasing function defined from
[0,∞) to itself such that M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞ as x → ∞.
Such function M always has the integral representation

M(x) =
∫ x

0

p(t)dt,
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where p, known as the kernel of M , is right continuous for t > 0, p(0) = 0, p(t) > 0 for
t > 0, p is non- decreasing and p(x) → ∞ as x → ∞.

Given an Orlicz function M with kernel p, define q(s) =sup{t : p(t) ≤ s}, s ≥ 0. Then
q possesses the same properties as p and the function N defined as N(x) =

∫ x

0
q(t)dt,

is an Orlicz function. The functions M and N are called mutually complementary
Orlicz functions.

An Orlicz function M is said to satisfy the Δ2-condition for small x or at ‘0’ if for
each k > 1, there exist Rk > 0 and xk > 0 such that

M(kx) ≤ RkM(x) , ∀ x ∈ (0, xk].

Let ω be the family of all real or complex sequences, which is a vector space with the
usual pointwise addition and scalar multiplication. We write en (n ≥ 1) for the n-th unit
vector in ω, i.e en = {δnj}∞j=1 where δnj is the Kronecker delta, and φ for the subspace
of ω generated by the en’s , n ≥ 1, i.e, φ = sp{en : n ≥ 1}. A sequence space λ is
a subspace of ω containing φ. It is called normal or solid if y = {yi} ∈ λ whenever
|yi| ≤ |xi| , i ≥ 1 for some sequence x = {xi} ∈ λ. The α-dual or cross dual of λ is
the space λα or λ× defined as

λ× ≡ λα = {y = {yi} ∈ ω :
∑

|xiyi| converges for all {xi} ∈ λ}.

The β-dual of λ is the space λβ given by

λβ = {y = {yi} ∈ ω :
∑

xiyi converges for all {xi} ∈ λ}.

Clearly, λ× ⊂ λβ . However, if λ is normal, λ× = λβ; cf [3], p.52.

A sequence space λ is said to be perfect if λ = λ×× = (λ×)×. Every perfect sequence
space is normal. A Banach sequence space (λ, S) is called a BK- space if the topology S

of λ is finer than the co-ordinatewise convergence topology, or equivalently, the projection
maps Pi : λ → K, Pi(x) = xi , i ≥ 1 are continuous, where K is the scalar field R

(the set of all reals) or C (the complex plane). For x = (x1, ...xn, ...) and n ∈ N(the
set of natural numbers ), we write the nth section of x as x(n) = (x1, ..., xn, 0, 0, ...).
If {x(n)} tends to x in (λ, S) for each x ∈ λ, we say that (λ, S) is an AK-space. The
norm ‖ · ‖λ generating the topology S of λ is said to be monotone if ‖x‖λ ≤ ‖y‖λ for
x = {xi}, y = {yi} ∈ λ with |xi| ≤ |yi|, for all i ≥ 1.
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Corresponding to an Orlicz function M , the set

˜�M = {x ∈ ω : δ(x, M) ≡
∑
i≥1

M(|xi|) < ∞}

is known as an Orlicz sequence class. If M and N are mutually complementary Orlicz
functions, the Orlicz sequence space is defined as

�M = {x ∈ ω :
∑
i≥1

xiyi converges for all y ∈ �̃N}.

It is a Banach space with respect to the norm ‖ · ‖M given by

‖x‖M = sup{|
∑
i≥1

xiyi| : δ(y, N) ≤ 1}.

An equivalent way of defining �M is

�M = { x ∈ ω :
∑
i≥1

M(
|xi|
k

) < ∞ for some k > 0}.

In this case, norm ‖ · ‖(M) is defined by

‖x‖(M) = inf{k > 0 :
∑
i≥1

M(
|xi|
k

) ≤ 1}.

The norms ‖ · ‖M and ‖ · ‖(M) are equivalent; indeed,

‖x‖(M) ≤ ‖x‖M ≤ 2‖x‖(M) for x ∈ �M .

An important subspace of �M , which is an AK-apace is the space hM defined as

hM = {x ∈ �M :
∑
n≥1

M(
|xn|
k

) < ∞, for each k > 0}.

The Δ2-condition of M is equivalent to the equality of the spaces �M and hM . Also in
this case (hM )× = �N ; cf [3], p.311.

For a sequence {Mn} of Orlicz functions, the modular sequence space �{Mn} is defined
as

�{Mn} = { x ∈ ω :
∑
n≥1

Mn(
|xn|
k

) < ∞ for some k > 0}
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The space �{Mn} is a Banach space with respect to the norm ‖ · ‖{Mn} defined as

‖x‖{Mn} = inf{k > 0 :
∑
n≥1

Mn(
|xn|
k

) ≤ 1}

These spaces were introduced by Woo [8] around the year 1973, and generalizes the Orlicz
sequence spaces �M and the modulared sequence spaces considered earlier by Nakano in
[7].

An important subspace of �{Mn}, which is an AK-apace, is the space h{Mn} defined
as

h{Mn} = {x ∈ �{Mn} :
∑
n≥1

Mn(
|xn|
k

) < ∞, for each k > 0}.

A sequence {Mn} of Orlicz functions is said to satisfy uniform Δ2-condition at ‘0’ if

there exists p > 1 and n0 ∈ N such that for all x ∈ (0, 1) and n > n0, we have xM ′
n(x)

Mn(x) ≤ p,

or equivalently, there exists a constant K > 1 and n0 ∈ N such that Mn(2x)
Mn(x) ≤ K for

all n > n0 and x ∈ (0, 1
2
]. If the sequence {Mn} satisfies uniform Δ2-condition, then

h{Mn} = �{Mn} and vice-versa.
For details of the general theory of sequence spaces and, in particular, of Orlicz and

modulared sequence spaces, we refer to [3], [6] and references given therein.

2. The Sequence Spaces �M
α and �α

N

Corresponding to two Orlicz functions M and N and a strictly positive sequence
α = {αn} of real numbers, let us define

�M
α = {x ∈ ω : {xn

αn
} ∈ �M}

and
�α
N = {x ∈ ω : {αnxn} ∈ �N}.

The spaces �M
α and �α

N are respectively the modular sequence spaces �{Mn} and �{Nn},
where Mn(x) = M( x

αn
) and Nn(x) = N(αnx), for x ∈ [0,∞) and n ∈ N. In the sequel,

we use the notation ‖ · ‖M
α for ‖ · ‖{Mn} and ‖ · ‖α

N for ‖ · ‖{Nn}. Though the modular
sequence spaces �{Mn} and �{Nn} are known to be Banach spaces; but for the sake of
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completeness, we give the direct proof of completeness for one of the spaces, namely �M
α ,

in this section. Our underlying assumption throughout for the Orlicz functions M and
N are M(1) = 1 and N(1) = 1.

Let us begin with the following theorem.

Theorem 2.1 The space �M
α equipped with the norm ‖ · ‖M

α is a BK-space; and it is AK

if M satisfies Δ2-condition at ‘0’.

Proof. For x ∈ �M
α , let us recall

‖x‖M
α = inf {ρ > 0 :

∑
n≥1

M(
|xn|
ραn

) ≤ 1}.

We now prove the completeness of the space (�M
α , ‖ · ‖M

α ). Let us consider a Cauchy
sequence {xn} in �M

α . Then for ε > 0 there exists n0 ∈ N such that

‖xn − xm‖M
α < ε, for n, m ≥ n0.

Hence there exists ρε > 0 with ρε < ε such that

∑
k≥1

M(
|xn

k − xm
k |

ρεαk
) ≤ 1 for n, m ≥ n0. (1)

As M(1) = 1, we get
|xn

k − xm
k |

ρεαk
≤ 1 for n, m ≥ n0,

and for each k ≥ 1. Thus for each given k ∈ N, the sequence {xn
k} is a Cauchy sequence

of scalars and so xn
k → xk, as n → ∞. Write x = {xk}. Then by continuity of M , we get

from (1)
∑
k≥1

M(
|xn

k − xk|
ρεαk

) ≤ 1 for n ≥ n0.

Hence x ∈ �M
α and ‖xn − x‖M

α < ε for n ≥ n0. Consequently, (�M
α , ‖ · ‖M

α ) is a Banach
space.

(�M
α , ‖ · ‖M

α ) is a K-space since we have

|Pk(x)| = |xk| ≤ αk‖x‖M
α
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for x ∈ �M
α and for each given k in N. Thus (�M

α , ‖ · ‖M
α ) is a BK-space.

Now if M satisfies Δ2-condition at ‘0’, then �M = hM and so for any ε > 0 and
x ∈ �M

α ,

‖x − x(n)‖M
α = inf {ρ > 0 :

∑
k≥n

M(
|xk|
ραk

) ≤ 1} < ε

for sufficiently large n. Hence the space is AK. �

Note: If M satisfies Δ2-condition at ‘0’, then �{Mn} = h{Mn}, where Mn(x) =
M( x

αn
), x ∈ (0,∞), n ∈ N. Also, �{Mn} = h{Mn} if and only if {Mn} satisfies uniform

Δ2-condition at ‘0’. Thus if M satisfies Δ2-condition at ‘0’ then {Mn} satisfies uniform
Δ2-condition at ‘0’. However, it is natural to ask: if the sequence {Mn} of Orlicz functions
defined with the help of an Orlicz function M and a strictly positive sequence {αn} of
scalars, as above, satisfies uniform Δ2-condition at ‘0’, does M satisfy Δ2-condition at
‘0’ ? If it holds, the result proved for modular sequence spaces �{Mn} with the assumption
of {Mn} satisfying uniform Δ2-condition at ‘0’ would be equivalent to proving them with
the assumption of M satisfying Δ2-condition at ‘0’.

Next, we prove the following proposition.

Proposition 2.2 If μ is a normal sequence space containing α, then �M
α is a proper

subspace of μ. In addition, if μ is equipped with the monotone norm(quasi-norm) ‖ · ‖μ,
the inclusion map I : �M

α → μ is continuous with ‖I‖ ≤ ‖{αn}‖μ.

Proof. Let x ∈ �M
α . Then

∑
n≥1 M( |xn|

ραn
) < ∞ for some ρ > 0 ⇒ |xn|

ραn
≤ K for some

constant K > 0 and each n ∈ N. Hence {xn} ∈ μ. As {αn} /∈ �M
α , it is a proper subspace

of μ. Further,
∑
n≥1

M(
|xn|

‖x‖M
α αn

) ≤ 1

⇒ |xn| ≤ αn‖x‖M
α , for all n ∈ N

As ‖ · ‖μ is monotone, ‖Ix‖μ = ‖{xn}‖μ ≤ ‖{αn}‖μ‖x‖M
α and so ‖I‖ ≤ ‖{αn}‖μ. �

Remark: Note that one can take μ to be any of the spaces �∞, δ, �p, c0 etc. If we
take α in δ, �M

α are the Banach spaces of the entire sequences, as was revealed in a study
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carried out earlier in [2] for finding the duals of the spaces EM (γ) which are subspaces of
the space of entire functions.

Concerning the spaces �α
N , we have this next theorem.

Theorem 2.3 The space (�α
N , ‖ · ‖α

N) is a BK-space. If N satisfies Δ2-condition at ‘0’,
it is also AK.

Proof. Omitted, as it is analogous to the proof of Theorem 2.1. �

Proposition 2.4 If η is a normal sequence space containing { 1
αn

} ≡ α−1, then �α
N is a

proper subspace of η. If the norm (quasi-norm) ‖ ·‖η of η is monotone, then the inclusion
map J : �α

N → η is continuous with ‖J‖ ≤ ‖{α−1}‖η.

Proof. In this case, we have
|yn| ≤ α−1

n ‖y‖α
N

for all n ∈ N and for y ∈ �α
N . The result now follows as in the case of Proposition 2.2. �

Remark: Note that if αn = n, n ∈ N, then {α−1
n } ∈ c0; and in this case �α

N ⊂ c0. On

the other hand, if {αn} is such that α
1
n
n → 0, then �∞ is a proper subspace of �α

N and
the inclusion map from �∞ to �M

α is continuous. (Indeed, {n} ∈ �α
N and {n} /∈ �∞; also

for x ∈ �∞, |xn|
‖x‖∞

≤ 1, for all n ∈ N where ‖x‖∞ = supn≥1|xn| and αn < 1
2n for n ≥ n0

⇒
∑

n≥n0
N( |xnαn|

‖x‖∞
) ≤

∑
n≥n0

N( 1
2n ) ≤ N(1) = 1 ⇒ x ∈ �α

N and ‖x‖α
N ≤ ‖x‖∞.) Thus,

we get different sequence spaces for different choices of α. In the next section, we consider
this aspect.

3. Interrelationship Between The Spaces �M
α and �α

M

In this section we study the interrelationship between spaces �M
α and �α

M defined
corresponding to the same Orlicz function M ; for three different behaviours of the
sequence α = {αn}. Indeed, we prove this theorem:

Theorem 3.1 (i) If α = {αn} is such that a ≤ αn ≤ b for all n ∈ N for some a, b > 0
(i.e both α and α−1 are in �∞), then �α

M = �M
α = �M :
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(ii) If {αn} ∈ �∞ with c = supn≥1αn and {α−1} is unbounded, then �M
α is properly

contained in �α
M and the inclusion map J : �M

α −→ �α
M is continuous with ‖J‖ ≤ c2.

(iii) If {αn} is unbounded with supn≥1α
−1
n = d < ∞ then �α

M is properly contained in

�M
α and the inclusion map J1 : �α

M −→ �M
α is continuous with ‖J1‖ ≤ d2.

Proof. (i) We first show that �M = �α
M . If x ∈ �M , then

∑
n≥1 M( |xn|

ρ ) < ∞
for some ρ > 0. If ρ́ = ρb, then from the increasing character of M , it follows that∑

n≥1 M(αn|xn|
ρ́ ) ≤

∑
n≥1 M( |xn|

ρ ) < ∞. Hence �M ⊂ �α
M . Other inclusion, namely

�α
M ⊂ �M follows from the inequality

∑
n≥1 M( |xn|

ρ/a
) ≤

∑
n≥1 M(αn|xn|

ρ
) valid for any

ρ > 0. Similarly, one can prove �M
α = �M . Hence (i) holds.

(ii) For any ρ > 0 and ρ́ = ρc2, we have

∑
n≥1

M(
αn|xn|

ρ́
) <

∑
n≥1

M(
|xn|
αnρ

)

for x = {xn}. Hence �M
α ⊂ �α

M .
We now show that the containment �M

α ⊂ �α
M is proper. From the unboundedness of

the sequence {α−1
n }, choose a subsequence {nk} of N such that α−1

nk
≥ k. Define x = {xn}

as follows:

xn =

⎧⎪⎨
⎪⎩

1/k, n = nk, k = 1, 2, 3, . . .

0, otherwise.

Then x ∈ �α
M ; but x /∈ �M

α .
To prove the continuity of inclusion map J , let us first consider the case when c = 1.

For x ∈ �M
α , write

AM
α (x) = {ρ > 0 :

∑
n≥1

M(
|xn|
ραn

) ≤ 1}

and

Bα
M (x) = {ρ > 0 :

∑
n≥1

M(
|xn|αn

ρ
) ≤ 1}.

As M is increasing and c = 1, we get

AM
α (x) ⊆ Bα

M (x).
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Hence
‖x‖α

M = inf Bα
M (x) ≤ inf AM

α (x) = ‖x‖M
α ,

i.e, ‖J(x)‖α
M ≤ ‖x‖M

α . Thus J is continuous with ‖J‖ ≤ 1 = c2.
If c = 1, define βn = αn

c , n ∈ N. Then βn ≤ 1 and from the above, it follows that

‖x‖β
M ≤ ‖x‖M

β for x ∈ �M
α (2)

(note that �M
α = �M

β ). Now

‖x‖β
M =

1
c
‖x‖α

M

and
‖x‖M

β = c‖x‖M
α .

Hence from (2)
‖J(x)‖α

M = ‖x‖α
M ≤ c2‖x‖M

α

⇒ J is continuous with ‖J‖ ≤ c2. This completes the proof of part (ii). The proof of (iii)
is analogous to that of (ii) and so is omitted. �

Note: Observe that for α = {αn} ∈ �M , we have �M
α � �M � �α

M . However, “If the
sequence {xn} is such that

∑
Mn(|xn|) < ∞ and limn→∞xn = 0, then �{Mn} contains

a subspace isomorphic to �∞ ” (quoted from, and proved in, [8], p.274), we have this
proposition.

Proposition 3.2 If the sequence {αn} is such that
∑

M( 1
αn

) < ∞ (or
∑

M(αn) < ∞),

then �M
α ( �α

M ) contains a subspace isomorphic to �∞.

Proof. Indeed, consider the sequence {xn} with xn = 1, for each n ∈ N and use the
result stated above. �

4. Perfectness of the Spaces �M
α and �α

N

Let M and N be complementary Orlicz functions such that M(1) = 1 and N(1) = 1.
Then we prove the following theorem.

Theorem 4.1 If M satisfies Δ2-condition, then (�M
α )× = �α

N ; and if N satisfies Δ2-
condition, then (�α

N )× = �M
α .
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Proof. Let M satisfy Δ2-condition. Then for x ∈ �α
N and y ∈ �M

α , we have

∑
n≥1

|xnyn| =
∑
n≥1

|αnxn

ρ

ρyn

αn
| ≤

∑
n≥1

N(
|αnxn|

ρ
) +

∑
n≥1

M(
|ρyn|
αn

) < ∞,

where ρ > 0 is such that
∑

n≥1 N(|αnxn|
ρ ) < ∞. Thus x ∈ (�M

α )× or y ∈ (�α
N )×.

Hence �α
N ⊂ (�M

α )× and �M
α ⊂ (�α

N )×.

To prove the equality (�M
α )× = �α

N , let y ∈ (�M
α )×. Then

∑
n≥1

|xnyn| < ∞ for all {xn} with {xn

αn
} ∈ �M (3)

As M satisfies Δ2-condition, �M = hM and so for {zn} ∈ hM , we get
∑

|αnznyn| < ∞
by (3). Hence {αnyn} ∈ (hM )× = �N ⇒ y = {yn} ∈ �α

N . Thus (�M
α )× = �α

N Similarly,
one can prove (�α

N )× = �M
α if N satisfies Δ2-condition. �

Finally, we derive the perfectness of the spaces �M
α and �α

N in this final corollary:

Corollary 4.2 If M and N satisfy Δ2-condition, then the sequence spaces �M
α and �α

N

are perfect.

Proof. Immediate from Theorem 4.1. �

Remark: As the dual of a barreled AK-sequence space can be identified with its β-
duals (cf [1], p.964 or [3], p.6), the spaces �M

α and �α
N are topological duals of each other

in the case M and N are complementary Orlicz functions satisfying Δ2-condition with
M(1) = N(1) = 1. Besides, if Mn(x) = M( x

αn
) and Nn = N(αnx), n ∈ N, then one

can easily check that for given n ∈ N, Mn and Nn are mutually complementary Orlicz
functions provided M and N are so. Thus the results proved in [8] for modular sequence
spaces concerning duality relations shall also be applicable for our spaces �M

α and �α
N .
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[4] Köthe, G.: Topological Vector Spaces I, Springer-Verlag, Berlin-Heidelberg-New York, 1969.

[5] Lindenstrauss, J., Tzafriri, L.: On Orlicz Sequence Spaces, Israel J. Math. 10, 379–390

(1971).

[6] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.

[7] Nakano, H.: Modulared Sequence Spaces, Proc. Jap. Acad. 27 (1951) reprinted in semi

ordered Linear Spaces, Tokyo, 1955.

[8] Woo, J. Y. T.: On Modular Sequence spaces, Studia Math 48, 271–289 (1973).

Manjul GUPTA, Shesadev PRADHAN

Department of Mathematics,

Indian Institute of Technology

208016, Kanpur-INDIA

e-mail: manjul@iitk.ac.in

Received 13.04.2007

303


