On Certain Type of Modular Sequence Spaces

Manjul Gupta and Shesadev Pradhan

Abstract

In this paper we consider a particular type of modular sequence spaces defined with the help of a given sequence $\alpha = \{\alpha_n\}$ of strictly positive real numbers α_n 's and an Orlicz function M. Indeed, if we define $M_n(x) = M(\alpha_n x)$ and $\tilde{M}_n(x) = M(\frac{x}{\alpha_n})$, $x \in [0, \infty)$, we consider the modular sequence spaces $\ell\{M_n\}$ and $\ell\{\tilde{M}_n\}$, denoted by ℓ_M^{α} and ℓ_{α}^M respectively. These are known to be BK-spaces and if M satisfies Δ_2 -condition, they are AK-spaces as well. However, if we consider the spaces ℓ_{α}^M and ℓ_N^{α} corresponding to two complementary Orlicz functions M and N satisfying Δ_2 -condition, they are perfect sequence spaces, each being the Köthe dual of the other. We show that these are subspaces of the normal sequence spaces μ and η which contain α and α^{-1} , respectively. We also consider the interrelationship of ℓ_{α}^M and ℓ_M^{α} for different choices of α .

Key Words: Orlicz functions, Modular sequence spaces, Köthe dual.

1. Introduction

An **Orlicz function** is a continuous, convex, non-decreasing function defined from $[0, \infty)$ to itself such that M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$. Such function M always has the integral representation

$$M(x) = \int_0^x p(t)dt,$$

AMS Mathematics Subject Classification: 46A45, 46A80, 46B45.

where p, known as the **kernel** of M, is right continuous for t > 0, p(0) = 0, p(t) > 0 for t > 0, p is non-decreasing and $p(x) \to \infty$ as $x \to \infty$.

Given an Orlicz function M with kernel p, define $q(s) = \sup\{t : p(t) \le s\}, s \ge 0$. Then q possesses the same properties as p and the function N defined as $N(x) = \int_0^x q(t)dt$, is an Orlicz function. The functions M and N are called **mutually complementary Orlicz functions**.

An Orlicz function M is said to satisfy the Δ_2 -condition for small x or at '0' if for each k > 1, there exist $R_k > 0$ and $x_k > 0$ such that

$$M(kx) \le R_k M(x) , \quad \forall \ x \in (0, x_k].$$

Let ω be the family of all real or complex sequences, which is a vector space with the usual pointwise addition and scalar multiplication. We write e^n $(n \ge 1)$ for the *n*-th unit vector in ω , i.e $e^n = \{\delta_{nj}\}_{j=1}^{\infty}$ where δ_{nj} is the Kronecker delta, and ϕ for the subspace of ω generated by the e^{n} 's , $n \ge 1$, i.e, $\phi = \operatorname{sp}\{e^n : n \ge 1\}$. A sequence space λ is a subspace of ω containing ϕ . It is called **normal or solid** if $y = \{y_i\} \in \lambda$ whenever $|y_i| \le |x_i|$, $i \ge 1$ for some sequence $x = \{x_i\} \in \lambda$. The α -dual or cross dual of λ is the space λ^{α} or λ^{\times} defined as

$$\lambda^{\times} \equiv \lambda^{\alpha} = \{ y = \{ y_i \} \in \omega : \sum |x_i y_i| \text{ converges for all } \{ x_i \} \in \lambda \}.$$

The β -dual of λ is the space λ^{β} given by

$$\lambda^{\beta} = \{y = \{y_i\} \in \omega : \sum x_i y_i \text{ converges for all } \{x_i\} \in \lambda\}.$$

Clearly, $\lambda^{\times} \subset \lambda^{\beta}$. However, if λ is normal, $\lambda^{\times} = \lambda^{\beta}$; cf [3], p.52.

A sequence space λ is said to be **perfect** if $\lambda = \lambda^{\times \times} = (\lambda^{\times})^{\times}$. Every perfect sequence space is normal. A Banach sequence space (λ, S) is called a *BK*- **space** if the topology *S* of λ is finer than the co-ordinatewise convergence topology, or equivalently, the projection maps $P_i : \lambda \to \mathbb{K}$, $P_i(x) = x_i$, $i \ge 1$ are continuous, where \mathbb{K} is the scalar field \mathbb{R} (the set of all reals) or \mathbb{C} (the complex plane). For $x = (x_1, \dots, x_n, \dots)$ and $n \in \mathbb{N}$ (the set of natural numbers), we write the n^{th} **section** of x as $x^{(n)} = (x_1, \dots, x_n, 0, 0, \dots)$. If $\{x^{(n)}\}$ tends to x in (λ, S) for each $x \in \lambda$, we say that (λ, S) is an *AK*-**space**. The norm $\|\cdot\|_{\lambda}$ generating the topology *S* of λ is said to be **monotone** if $\|x\|_{\lambda} \le \|y\|_{\lambda}$ for $x = \{x_i\}, y = \{y_i\} \in \lambda$ with $|x_i| \le |y_i|$, for all $i \ge 1$.

Corresponding to an Orlicz function M, the set

$$\tilde{\ell_M} = \{x \in \omega : \delta(x, M) \equiv \sum_{i \ge 1} M(|x_i|) < \infty\}$$

is known as an **Orlicz sequence class**. If M and N are mutually complementary Orlicz functions, the **Orlicz sequence space** is defined as

$$\ell_M = \{ x \in \omega : \sum_{i \ge 1} x_i y_i \text{ converges for all } y \in \tilde{\ell_N} \}.$$

It is a Banach space with respect to the norm $\|\cdot\|_M$ given by

$$||x||_M = \sup\{|\sum_{i\geq 1} x_i y_i| : \delta(y, N) \le 1\}$$

An equivalent way of defining ℓ_M is

$$\ell_M = \{ x \in \omega : \sum_{i \ge 1} M(\frac{|x_i|}{k}) < \infty \text{ for some } k > 0 \}.$$

In this case, norm $\|\cdot\|_{(M)}$ is defined by

$$||x||_{(M)} = \inf\{k > 0 : \sum_{i \ge 1} M(\frac{|x_i|}{k}) \le 1\}.$$

The norms $\|\cdot\|_M$ and $\|\cdot\|_{(M)}$ are equivalent; indeed,

$$||x||_{(M)} \le ||x||_M \le 2||x||_{(M)}$$
 for $x \in \ell_M$.

An important subspace of ℓ_M , which is an AK-apace is the space h_M defined as

$$h_M = \{ x \in \ell_M : \sum_{n \ge 1} M(\frac{|x_n|}{k}) < \infty, \text{ for each } k > 0 \}.$$

The Δ_2 -condition of M is equivalent to the equality of the spaces ℓ_M and h_M . Also in this case $(h_M)^{\times} = \ell_N$; cf [3], p.311.

For a sequence $\{M_n\}$ of Orlicz functions, the modular sequence space $\ell\{M_n\}$ is defined as

$$\ell\{M_n\} = \{ x \in \omega : \sum_{n \ge 1} M_n(\frac{|x_n|}{k}) < \infty \text{ for some } k > 0 \}$$

The space $\ell\{M_n\}$ is a Banach space with respect to the norm $\|\cdot\|_{\{M_n\}}$ defined as

$$||x||_{\{M_n\}} = \inf\{k > 0 : \sum_{n \ge 1} M_n(\frac{|x_n|}{k}) \le 1\}$$

These spaces were introduced by Woo [8] around the year 1973, and generalizes the Orlicz sequence spaces ℓ_M and the modulared sequence spaces considered earlier by Nakano in [7].

An important subspace of $\ell\{M_n\}$, which is an AK-apace, is the space $h\{M_n\}$ defined as

$$h\{M_n\} = \{x \in \ell\{M_n\} : \sum_{n \ge 1} M_n(\frac{|x_n|}{k}) < \infty, \text{ for each } k > 0\}.$$

A sequence $\{M_n\}$ of Orlicz functions is said to satisfy uniform Δ_2 -condition at '0' if there exists p > 1 and $n_0 \in \mathbb{N}$ such that for all $x \in (0, 1)$ and $n > n_0$, we have $\frac{xM'_n(x)}{M_n(x)} \leq p$, or equivalently, there exists a constant K > 1 and $n_0 \in \mathbb{N}$ such that $\frac{M_n(2x)}{M_n(x)} \leq K$ for all $n > n_0$ and $x \in (0, \frac{1}{2}]$. If the sequence $\{M_n\}$ satisfies uniform Δ_2 -condition, then $h\{M_n\} = \ell\{M_n\}$ and vice-versa.

For details of the general theory of sequence spaces and, in particular, of Orlicz and modulared sequence spaces, we refer to [3], [6] and references given therein.

2. The Sequence Spaces ℓ^M_{α} and ℓ^{α}_N

Corresponding to two Orlicz functions M and N and a strictly positive sequence $\alpha = \{\alpha_n\}$ of real numbers, let us define

$$\ell^M_\alpha = \{ x \in \omega : \{ \frac{x_n}{\alpha_n} \} \in \ell_M \}$$

and

$$\ell_N^{\alpha} = \{ x \in \omega : \{ \alpha_n x_n \} \in \ell_N \}.$$

The spaces ℓ_{α}^{M} and ℓ_{N}^{α} are respectively the modular sequence spaces $\ell\{M_{n}\}$ and $\ell\{N_{n}\}$, where $M_{n}(x) = M(\frac{x}{\alpha_{n}})$ and $N_{n}(x) = N(\alpha_{n}x)$, for $x \in [0, \infty)$ and $n \in \mathbb{N}$. In the sequel, we use the notation $\|\cdot\|_{\alpha}^{M}$ for $\|\cdot\|_{\{M_{n}\}}$ and $\|\cdot\|_{N}^{\alpha}$ for $\|\cdot\|_{\{N_{n}\}}$. Though the modular sequence spaces $\ell\{M_{n}\}$ and $\ell\{N_{n}\}$ are known to be Banach spaces; but for the sake of

completeness, we give the direct proof of completeness for one of the spaces, namely ℓ_{α}^{M} , in this section. Our underlying assumption throughout for the Orlicz functions M and N are M(1) = 1 and N(1) = 1.

Let us begin with the following theorem.

Theorem 2.1 The space ℓ^M_{α} equipped with the norm $\|\cdot\|^M_{\alpha}$ is a BK-space; and it is AK if M satisfies Δ_2 -condition at '0'.

Proof. For $x \in \ell_{\alpha}^{M}$, let us recall

$$\|x\|_{\alpha}^{M} = \inf \{\rho > 0 : \sum_{n \ge 1} M(\frac{|x_{n}|}{\rho \alpha_{n}}) \le 1\}.$$

We now prove the completeness of the space $(\ell^M_\alpha, \|\cdot\|^M_\alpha)$. Let us consider a Cauchy sequence $\{x^n\}$ in ℓ^M_α . Then for $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$||x^n - x^m||_{\alpha}^M < \varepsilon, \text{ for } n, m \ge n_0.$$

Hence there exists $\rho_{\varepsilon} > 0$ with $\rho_{\varepsilon} < \varepsilon$ such that

$$\sum_{k\geq 1} M(\frac{|x_k^n - x_k^m|}{\rho_{\varepsilon}\alpha_k}) \le 1 \quad \text{for} \quad n, m \ge n_0.$$

$$\tag{1}$$

As M(1) = 1, we get

$$\frac{|x_k^n - x_k^m|}{\rho_{\varepsilon} \alpha_k} \le 1 \quad \text{for} \quad n, m \ge n_0,$$

and for each $k \ge 1$. Thus for each given $k \in \mathbb{N}$, the sequence $\{x_k^n\}$ is a Cauchy sequence of scalars and so $x_k^n \to x_k$, as $n \to \infty$. Write $x = \{x_k\}$. Then by continuity of M, we get from (1)

$$\sum_{k\geq 1} M(\frac{|x_k^n - x_k|}{\rho_{\varepsilon} \alpha_k}) \leq 1 \quad \text{for} \quad n \geq n_0.$$

Hence $x \in \ell_{\alpha}^{M}$ and $||x^{n} - x||_{\alpha}^{M} < \varepsilon$ for $n \ge n_{0}$. Consequently, $(\ell_{\alpha}^{M}, || \cdot ||_{\alpha}^{M})$ is a Banach space.

 $(\ell^M_\alpha, \|\cdot\|^M_\alpha)$ is a $K\text{-space since we have$

$$|P_k(x)| = |x_k| \le \alpha_k ||x||_{\alpha}^M$$

for $x \in \ell^M_{\alpha}$ and for each given k in N. Thus $(\ell^M_{\alpha}, \|\cdot\|^M_{\alpha})$ is a *BK*-space.

Now if M satisfies Δ_2 -condition at '0', then $\ell_M = h_M$ and so for any $\varepsilon > 0$ and $x \in \ell_{\alpha}^M$,

$$\|x - x^{(n)}\|_{\alpha}^{M} = \inf \{\rho > 0 : \sum_{k \ge n} M(\frac{|x_{k}|}{\rho \alpha_{k}}) \le 1\} < \varepsilon$$

for sufficiently large n. Hence the space is AK.

Note: If M satisfies Δ_2 -condition at '0', then $\ell\{M_n\} = h\{M_n\}$, where $M_n(x) = M(\frac{x}{\alpha_n}), x \in (0, \infty), n \in \mathbb{N}$. Also, $\ell\{M_n\} = h\{M_n\}$ if and only if $\{M_n\}$ satisfies uniform Δ_2 -condition at '0'. Thus if M satisfies Δ_2 -condition at '0' then $\{M_n\}$ satisfies uniform Δ_2 -condition at '0'. However, it is natural to ask: if the sequence $\{M_n\}$ of Orlicz functions defined with the help of an Orlicz function M and a strictly positive sequence $\{\alpha_n\}$ of scalars, as above, satisfies uniform Δ_2 -condition at '0', does M satisfy Δ_2 -condition at '0'? If it holds, the result proved for modular sequence spaces $\ell\{M_n\}$ with the assumption of $\{M_n\}$ satisfying uniform Δ_2 -condition at '0' would be equivalent to proving them with the assumption of M satisfying Δ_2 -condition at '0'.

Next, we prove the following proposition.

Proposition 2.2 If μ is a normal sequence space containing α , then ℓ_{α}^{M} is a proper subspace of μ . In addition, if μ is equipped with the monotone norm(quasi-norm) $\|\cdot\|_{\mu}$, the inclusion map I : $\ell_{\alpha}^{M} \to \mu$ is continuous with $\|I\| \leq \|\{\alpha_{n}\}\|_{\mu}$.

Proof. Let $x \in \ell_{\alpha}^{M}$. Then $\sum_{n \geq 1} M(\frac{|x_{n}|}{\rho\alpha_{n}}) < \infty$ for some $\rho > 0 \Rightarrow \frac{|x_{n}|}{\rho\alpha_{n}} \leq K$ for some constant K > 0 and each $n \in \mathbb{N}$. Hence $\{x_{n}\} \in \mu$. As $\{\alpha_{n}\} \notin \ell_{\alpha}^{M}$, it is a proper subspace of μ . Further,

$$\sum_{n \ge 1} M(\frac{|x_n|}{\|x\|_{\alpha}^M \alpha_n}) \le 1$$

$$\Rightarrow |x_n| \le \alpha_n \|x\|_{\alpha}^M, \text{ for all } n \in \mathbb{N}$$

As $\|\cdot\|_{\mu}$ is monotone, $\|Ix\|_{\mu} = \|\{x_n\}\|_{\mu} \le \|\{\alpha_n\}\|_{\mu} \|x\|_{\alpha}^M$ and so $\|I\| \le \|\{\alpha_n\}\|_{\mu}$. \Box

Remark: Note that one can take μ to be any of the spaces ℓ^{∞} , δ , ℓ^{p} , c_{0} etc. If we take α in δ , ℓ^{M}_{α} are the Banach spaces of the entire sequences, as was revealed in a study

298

carried out earlier in [2] for finding the duals of the spaces $E_M(\gamma)$ which are subspaces of the space of entire functions.

Concerning the spaces ℓ_N^{α} , we have this next theorem.

Theorem 2.3 The space $(\ell_N^{\alpha}, \|\cdot\|_N^{\alpha})$ is a BK-space. If N satisfies Δ_2 -condition at '0', it is also AK.

Proof. Omitted, as it is analogous to the proof of Theorem 2.1.

Proposition 2.4 If η is a normal sequence space containing $\{\frac{1}{\alpha_n}\} \equiv \alpha^{-1}$, then ℓ_N^{α} is a proper subspace of η . If the norm (quasi-norm) $\|\cdot\|_{\eta}$ of η is monotone, then the inclusion map $J : \ell_N^{\alpha} \to \eta$ is continuous with $\|J\| \leq \|\{\alpha^{-1}\}\|_{\eta}$.

Proof. In this case, we have

$$y_n| \le \alpha_n^{-1} \|y\|_N^\alpha$$

for all $n \in \mathbb{N}$ and for $y \in \ell_N^{\infty}$. The result now follows as in the case of Proposition 2.2.

Remark: Note that if $\alpha_n = n$, $n \in \mathbb{N}$, then $\{\alpha_n^{-1}\} \in c_0$; and in this case $\ell_N^{\alpha} \subset c_0$. On the other hand, if $\{\alpha_n\}$ is such that $\alpha_n^{\frac{1}{n}} \to 0$, then ℓ^{∞} is a proper subspace of ℓ_N^{α} and the inclusion map from ℓ^{∞} to ℓ_{α}^M is continuous. (Indeed, $\{n\} \in \ell_N^{\alpha}$ and $\{n\} \notin \ell^{\infty}$; also for $x \in \ell^{\infty}, \frac{|x_n|}{\|x\|_{\infty}} \leq 1$, for all $n \in \mathbb{N}$ where $\|x\|_{\infty} = \sup_{n\geq 1} |x_n|$ and $\alpha_n < \frac{1}{2^n}$ for $n \geq n_0$ $\Rightarrow \sum_{n\geq n_0} N(\frac{|x_n\alpha_n|}{\|x\|_{\infty}}) \leq \sum_{n\geq n_0} N(\frac{1}{2^n}) \leq N(1) = 1 \Rightarrow x \in \ell_N^{\alpha}$ and $\|x\|_N^{\alpha} \leq \|x\|_{\infty}$.) Thus, we get different sequence spaces for different choices of α . In the next section, we consider this aspect.

3. Interrelationship Between The Spaces ℓ^M_{α} and ℓ^{α}_M

In this section we study the interrelationship between spaces ℓ_{α}^{M} and ℓ_{M}^{α} defined corresponding to the same Orlicz function M; for three different behaviours of the sequence $\alpha = \{\alpha_n\}$. Indeed, we prove this theorem:

Theorem 3.1 (i) If $\alpha = \{\alpha_n\}$ is such that $a \leq \alpha_n \leq b$ for all $n \in \mathbb{N}$ for some a, b > 0(i.e both α and α^{-1} are in ℓ^{∞}), then $\ell^{\alpha}_M = \ell^M_\alpha = \ell_M$:

299

(ii) If $\{\alpha_n\} \in \ell^{\infty}$ with $c = \sup_{n \ge 1} \alpha_n$ and $\{\alpha^{-1}\}$ is unbounded, then ℓ^M_{α} is properly contained in ℓ^{α}_M and the inclusion map $J : \ell^M_{\alpha} \longrightarrow \ell^{\alpha}_M$ is continuous with $\|J\| \le c^2$.

(iii) If $\{\alpha_n\}$ is unbounded with $\sup_{n\geq 1}\alpha_n^{-1} = d < \infty$ then ℓ_M^{α} is properly contained in ℓ_{α}^M and the inclusion map $J_1: \ell_M^{\alpha} \longrightarrow \ell_{\alpha}^M$ is continuous with $\|J_1\| \leq d^2$.

Proof. (i) We first show that $\ell_M = \ell_M^{\alpha}$. If $x \in \ell_M$, then $\sum_{n \ge 1} M(\frac{|x_n|}{\rho}) < \infty$ for some $\rho > 0$. If $\dot{\rho} = \rho b$, then from the increasing character of M, it follows that $\sum_{n\ge 1} M(\frac{\alpha_n|x_n|}{\dot{\rho}}) \le \sum_{n\ge 1} M(\frac{|x_n|}{\rho}) < \infty$. Hence $\ell_M \subset \ell_M^{\alpha}$. Other inclusion, namely $\ell_M^{\alpha} \subset \ell_M$ follows from the inequality $\sum_{n\ge 1} M(\frac{|x_n|}{\rho/a}) \le \sum_{n\ge 1} M(\frac{\alpha_n|x_n|}{\rho})$ valid for any $\rho > 0$. Similarly, one can prove $\ell_M^{\alpha} = \ell_M$. Hence (i) holds.

(ii) For any $\rho > 0$ and $\dot{\rho} = \rho c^2$, we have

:

$$\sum_{n\geq 1} M(\frac{\alpha_n |x_n|}{\dot{\rho}}) < \sum_{n\geq 1} M(\frac{|x_n|}{\alpha_n \rho})$$

for $x = \{x_n\}$. Hence $\ell_{\alpha}^M \subset \ell_M^{\alpha}$.

We now show that the containment $\ell_{\alpha}^{M} \subset \ell_{M}^{\alpha}$ is proper. From the unboundedness of the sequence $\{\alpha_{n}^{-1}\}$, choose a subsequence $\{n_{k}\}$ of \mathbb{N} such that $\alpha_{n_{k}}^{-1} \geq k$. Define $x = \{x_{n}\}$ as follows:

$$x_n = \begin{cases} 1/k, & n = n_k, \quad k = 1, 2, 3, \dots \\ 0, & \text{otherwise.} \end{cases}$$

Then $x \in \ell_M^{\alpha}$; but $x \notin \ell_{\alpha}^M$.

To prove the continuity of inclusion map J, let us first consider the case when c = 1. For $x \in \ell^M_{\alpha}$, write

$$A^{M}_{\alpha}(x) = \{\rho > 0 : \sum_{n \ge 1} M(\frac{|x_{n}|}{\rho \alpha_{n}}) \le 1\}$$

and

$$B_M^{\alpha}(x) = \{\rho > 0 : \sum_{n \ge 1} M(\frac{|x_n|\alpha_n}{\rho}) \le 1\}.$$

As M is increasing and c = 1, we get

$$A^M_\alpha(x) \subseteq B^\alpha_M(x).$$

Hence

$$||x||_{M}^{\alpha} = \inf B_{M}^{\alpha}(x) \leq \inf A_{\alpha}^{M}(x) = ||x||_{\alpha}^{M},$$

i.e, $\|J(x)\|_M^{\alpha} \le \|x\|_{\alpha}^M$. Thus J is continuous with $\|J\| \le 1 = c^2$.

If $c \neq 1$, define $\beta_n = \frac{\alpha_n}{c}, n \in \mathbb{N}$. Then $\beta_n \leq 1$ and from the above, it follows that

$$\|x\|_{M}^{\beta} \le \|x\|_{\beta}^{M} \quad \text{for } x \in \ell_{\alpha}^{M}$$

$$\tag{2}$$

(note that $\ell^M_{\alpha} = \ell^M_{\beta}$). Now

$$||x||_{M}^{\beta} = \frac{1}{c} ||x||_{M}^{\alpha}$$

and

$$||x||_{\beta}^{M} = c||x||_{\alpha}^{M}.$$

Hence from (2)

$$||J(x)||_M^{\alpha} = ||x||_M^{\alpha} \le c^2 ||x||_{\alpha}^M$$

⇒ J is continuous with $||J|| \le c^2$. This completes the proof of part (ii). The proof of (iii) is analogous to that of (ii) and so is omitted.

Note: Observe that for $\alpha = \{\alpha_n\} \in \ell_M$, we have $\ell_{\alpha}^M \subsetneq \ell_M \subsetneq \ell_M^{\alpha}$. However, "If the sequence $\{x_n\}$ is such that $\sum M_n(|x_n|) < \infty$ and $\lim_{n \to \infty} x_n \neq 0$, then $\ell\{M_n\}$ contains a subspace isomorphic to ℓ^{∞} " (quoted from, and proved in, [8], p.274), we have this proposition.

Proposition 3.2 If the sequence $\{\alpha_n\}$ is such that $\sum M(\frac{1}{\alpha_n}) < \infty$ (or $\sum M(\alpha_n) < \infty$), then ℓ_{α}^M (ℓ_M^{α}) contains a subspace isomorphic to ℓ^{∞} .

Proof. Indeed, consider the sequence $\{x_n\}$ with $x_n = 1$, for each $n \in \mathbb{N}$ and use the result stated above.

4. Perfectness of the Spaces ℓ^M_{α} and ℓ^{α}_N

Let M and N be complementary Orlicz functions such that M(1) = 1 and N(1) = 1. Then we prove the following theorem.

Theorem 4.1 If M satisfies Δ_2 -condition, then $(\ell_{\alpha}^M)^{\times} = \ell_N^{\alpha}$; and if N satisfies Δ_2 -condition, then $(\ell_N^{\alpha})^{\times} = \ell_{\alpha}^M$.

Proof. Let M satisfy Δ_2 -condition. Then for $x \in \ell_N^{\alpha}$ and $y \in \ell_{\alpha}^M$, we have

$$\sum_{n\geq 1} |x_n y_n| = \sum_{n\geq 1} |\frac{\alpha_n x_n}{\rho} \frac{\rho y_n}{\alpha_n}| \leq \sum_{n\geq 1} N(\frac{|\alpha_n x_n|}{\rho}) + \sum_{n\geq 1} M(\frac{|\rho y_n|}{\alpha_n}) < \infty,$$

where $\rho > 0$ is such that $\sum_{n \ge 1} N(|\frac{\alpha_n x_n|}{\rho}) < \infty$. Thus $x \in (\ell_{\alpha}^M)^{\times}$ or $y \in (\ell_N^{\alpha})^{\times}$. Hence $\ell_N^{\alpha} \subset (\ell_{\alpha}^M)^{\times}$ and $\ell_{\alpha}^M \subset (\ell_N^{\alpha})^{\times}$.

To prove the equality $(\ell^M_{\alpha})^{\times} = \ell^{\alpha}_N$, let $y \in (\ell^M_{\alpha})^{\times}$. Then

$$\sum_{n \ge 1} |x_n y_n| < \infty \text{ for all } \{x_n\} \text{ with } \{\frac{x_n}{\alpha_n}\} \in \ell_M$$
(3)

As M satisfies Δ_2 -condition, $\ell_M = h_M$ and so for $\{z_n\} \in h_M$, we get $\sum |\alpha_n z_n y_n| < \infty$ by (3). Hence $\{\alpha_n y_n\} \in (h_M)^{\times} = \ell_N \Rightarrow y = \{y_n\} \in \ell_N^{\alpha}$. Thus $(\ell_\alpha^M)^{\times} = \ell_N^{\alpha}$ Similarly, one can prove $(\ell_N^{\alpha})^{\times} = \ell_\alpha^M$ if N satisfies Δ_2 -condition.

Finally, we derive the perfectness of the spaces ℓ^M_{α} and ℓ^{α}_N in this final corollary:

Corollary 4.2 If M and N satisfy Δ_2 -condition, then the sequence spaces ℓ^M_{α} and ℓ^{α}_N are perfect.

Proof. Immediate from Theorem 4.1.

Remark: As the dual of a barreled AK-sequence space can be identified with its β duals (cf [1], p.964 or [3], p.6), the spaces ℓ_{α}^{M} and ℓ_{N}^{α} are topological duals of each other in the case M and N are complementary Orlicz functions satisfying Δ_2 -condition with M(1) = N(1) = 1. Besides, if $M_n(x) = M(\frac{x}{\alpha_n})$ and $N_n = N(\alpha_n x)$, $n \in \mathbb{N}$, then one can easily check that for given $n \in \mathbb{N}$, M_n and N_n are mutually complementary Orlicz functions provided M and N are so. Thus the results proved in [8] for modular sequence spaces concerning duality relations shall also be applicable for our spaces ℓ_{α}^{M} and ℓ_{N}^{α} .

References

- [1] Garling, D. J. H.: The α and γ -duality, Proc. Cambridge Philos. Soc. 63, 963–981 (1967).
- [2] Gupta, M., Pradhan, S.: On Orlicz spaces of entire functions, to appear in Indian Jour. Pure App. Math.

- [3] Kamthan, P. K., Gupta, M.: Sequence Spaces and Series, Lecture Notes No.65, Marcel Dekker Inc, New York, 1981.
- [4] Köthe, G.: Topological Vector Spaces I, Springer-Verlag, Berlin-Heidelberg-New York, 1969.
- [5] Lindenstrauss, J., Tzafriri, L.: On Orlicz Sequence Spaces, Israel J. Math. 10, 379–390 (1971).
- [6] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
- [7] Nakano, H.: Modulared Sequence Spaces, Proc. Jap. Acad. 27 (1951) reprinted in semi ordered Linear Spaces, Tokyo, 1955.
- [8] Woo, J. Y. T.: On Modular Sequence spaces, Studia Math 48, 271–289 (1973).

Manjul GUPTA, Shesadev PRADHAN Department of Mathematics, Indian Institute of Technology 208016, Kanpur-INDIA e-mail: manjul@iitk.ac.in Received 13.04.2007