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On Certain Type of Modular Sequence Spaces
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Abstract

In this paper we consider a particular type of modular sequence spaces defined
with the help of a given sequence ao = {«, } of strictly positive real numbers a,’s and
an Orlicz function M. Indeed, if we define M, (x) = M (anx) and M, (z) = M(=Z),

Qn
x € [0,00), we consider the modular sequence spaces ¢{M,} and ¢{M,}, denoted
by £, and ¢ respectively. These are known to be BK-spaces and if M satisfies
As-condition, they are AK-spaces as well. However, if we consider the spaces ¢
and £ corresponding to two complementary Orlicz functions M and N satisfying
Asz-condition, they are perfect sequence spaces, each being the Kéthe dual of the
other. We show that these are subspaces of the normal sequence spaces p and 7
which contain o and o™}, respectively. We also consider the interrelationship of ¢

and (%, for different choices of a.
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1. Introduction

An Orlicz function is a continuous, convex, non-decreasing function defined from
[0, 00) to itself such that M(0) =0, M(x) >0 for z > 0 and M(x) — oo as z — 0.

Such function M always has the integral representation
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where p, known as the kernel of M, is right continuous for ¢t > 0, p(0) = 0, p(¢) > 0 for
t > 0, p is non- decreasing and p(z) — o0 as x — 0.

Given an Orlicz function M with kernel p, define ¢(s) =sup{t : p(¢t) < s}, s > 0. Then
q possesses the same properties as p and the function N defined as N(x) = fox q(t)dt,
is an Orlicz function. The functions M and N are called mutually complementary
Orlicz functions.

An Orlicz function M is said to satisfy the As-condition for small z or at ‘0’ if for
each k > 1, there exist R > 0 and zj > 0 such that

M (kx) < RpM(x), Vz € (0,xg].

Let w be the family of all real or complex sequences, which is a vector space with the
usual pointwise addition and scalar multiplication. We write e™ (n > 1) for the n-th unit
vector in w, i.e e = {d,;}32, where d,; is the Kronecker delta, and ¢ for the subspace
of w generated by the e"’s , n > 1, i.e, ¢ = sp{e” : n > 1}. A sequence space \ is
a subspace of w containing ¢. It is called normal or solid if y = {y;} € A whenever
lyisl < lz;i] , @ > 1 for some sequence © = {z;} € A\. The a-dual or cross dual of X is
the space A* or A* defined as

N=X={y={y}lew: Z |x;y;| converges for all {z;} € A}
The -dual of X is the space A\? given by
M={y={y}cw : inyi converges for all {x;} € A}.

Clearly, \* C M. However, if A is normal, \X = \?; cf [3], p.52.

A sequence space A is said to be perfect if A = A** = (A*)*. Every perfect sequence
space is normal. A Banach sequence space (A, S) is called a BK- space if the topology S
of )\ is finer than the co-ordinatewise convergence topology, or equivalently, the projection
maps P, : A = K, Pi(z) ==, ¢ > 1 are continuous, where K is the scalar field R
(the set of all reals) or C (the complex plane). For z = (z1,...xy,...) and n € N(the
set of natural numbers ), we write the n'® section of 2 as (™ = (z1,...,2,,0,0,...).
If {x(™} tends to x in (A, S) for each x € ), we say that (), S) is an AK-space. The
norm || - ||x generating the topology S of A is said to be monotone if ||z||x < ||y||x for
x={z;},y={y:} € X with |a;| < |y, for all i > 1.
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Corresponding to an Orlicz function M, the set

(y={rcw:dx,M)= ZM|$1| < oo}

1>1

is known as an Orlicz sequence class. If M and N are mutually complementary Orlicz

functions, the Orlicz sequence space is defined as

by={rcw: inyi converges for all y € E;v}
i>1

It is a Banach space with respect to the norm || - || given by

2 = SUP{|Z%‘%| 1(y, N) < 1}

i>1

An equivalent way of defining #5; is

mM={zr€cw: ZM(%)<O® for some k > 0}.

i>1
In this case, norm || - |[(ar) is defined by
]| (ary = inf{k >0 : ZM |x’| ) < 1}.
i>1
The norms || - ||ar and || - [[(ar) are equivalent; indeed,

lzllary < ll2llar < 2(|zll(ary for @ € £as.

An important subspace of £, which is an AK-apace is the space hjy; defined as

hy ={x €l : ZM(M) < oo, foreach k> 0}.
k
n>1
The As-condition of M is equivalent to the equality of the spaces ¢j; and hps. Also in
this case (hpr)* = £y; cf [3], p.311.
For a sequence {M,, } of Orlicz functions, the modular sequence space £{ M, } is defined
as

UM} ={z€w : ZM ) < oo for some k > 0}

n>1
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The space ¢{M,} is a Banach space with respect to the norm || - ||;az,} defined as

||

HxH{MW} = inf{k? >0: Z Mn(T) < 1}

n>1

These spaces were introduced by Woo [8] around the year 1973, and generalizes the Orlicz
sequence spaces ¢); and the modulared sequence spaces considered earlier by Nakano in
[7].

An important subspace of ¢{M, }, which is an AK-apace, is the space h{M,,} defined

as
||

h{M,} = {x € ¢{M,} : Z Mn(T) < oo, foreach k> 0}.

n>1

A sequence {M,,} of Orlicz functions is said to satisfy uniform As-condition at ‘0’ if

there exists p > 1 and ng € N such that for all € (0,1) and n > ng, we have %% <bp,

or equivalently, there exists a constant K > 1 and ng € N such that J\J@L(Qf)) < K for

all n > ng and = € (0,1

h{M,} = ¢{M,} and vice-versa.

For details of the general theory of sequence spaces and, in particular, of Orlicz and

]. If the sequence {M,} satisfies uniform As-condition, then

modulared sequence spaces, we refer to [3], [6] and references given therein.

2. The Sequence Spaces ¢ and (%,

Corresponding to two Orlicz functions M and N and a strictly positive sequence

a = {ay} of real numbers, let us define
M Tn
0 = {zrew : {—}ely}
Qn
and

(y = {rew : {anz,} €ln}.

The spaces ¢2 and £%; are respectively the modular sequence spaces £{M,,} and /{N,,},
where M, (z) = M(ﬁ) and N, (z) = N(anz), for z € [0,00) and n € N. In the sequel,

we use the notation [ - || for || - |[(as,y and || - | for || - [l{n,}- Though the modular

sequence spaces ¢({M,} and ¢{N,} are known to be Banach spaces; but for the sake of
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completeness, we give the direct proof of completeness for one of the spaces, namely ¢
in this section. Our underlying assumption throughout for the Orlicz functions M and
N are M(1)=1and N(1) =

Let us begin with the following theorem.

Theorem 2.1 The space (M equipped with the norm || - | is a BK-space; and it is AK
if M satisfies As-condition at ‘0.

Proof. Forz € E%, let us recall

a2 = inf {p > 0 - Szl <y

(0%
n>1 pQn

We now prove the completeness of the space (¢, || - [|M). Let us consider a Cauchy

sequence {x"} in 2. Then for & > 0 there exists ng € N such that

n— mey < g,

[l for n,m > nog.

Hence there exists p. > 0 with p. < € such that

ZM 7k = =] ) <1 for n,m > nyg. (1)
k>1 peak

As M (1) =1, we get
|z — 7’|

P

<1 for n,m > ng,

and for each k > 1. Thus for each given k € N, the sequence {z}} is a Cauchy sequence
of scalars and so x} — xy, as n — oo. Write = {z}}. Then by continuity of M, we get
from (1)

ZM |)<1 for n > ng.
k>1 peak
Hence x € ¢ and ||z" — z||M < ¢ for n > ng. Consequently, (/M| - [|M) is a Banach
space.
(M- IM) is a K-space since we have

|Pr(2)] = |2x] < o]l
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for x € M and for each given k in N. Thus (¢ || - ||M) is a BK-space.

Now if M satisfies As-condition at ‘0’, then £p; = hps and so for any € > 0 and
z €M

|z —2z™|M = inf{p > 0 : ZM(M)§1}<E
k>n Pek

for sufficiently large n. Hence the space is AK. a

Note: If M satisfies As-condition at ‘0’, then ¢{M,} = h{M,}, where M, (z) =
M(&), x € (0,00), n € N. Also, /{M,,} = h{M,,} if and only if {M,,} satisfies uniform
Ag—cdndition at ‘0’. Thus if M satisfies Ag-condition at ‘0’ then {M,,} satisfies uniform
As-condition at ‘0’. However, it is natural to ask: if the sequence { M, } of Orlicz functions
defined with the help of an Orlicz function M and a strictly positive sequence {a,} of
scalars, as above, satisfies uniform As-condition at ‘0’, does M satisfy As-condition at
‘0’7 If it holds, the result proved for modular sequence spaces ¢{M,, } with the assumption
of { M, } satisfying uniform As-condition at ‘0’ would be equivalent to proving them with
the assumption of M satisfying As-condition at ‘0.

Next, we prove the following proposition.

Proposition 2.2 If u is a normal sequence space containing «, then éi/[ s a proper

subspace of . In addition, if pu is equipped with the monotone norm(quasi-norm) || - ||,
the inclusion map I : €2 — i is continuous with ||I|| < |[{cn}| -
Proof. Let z € /M. Then D>t M(l;—"wl) < oo for some p > 0 = |l"| < K for some

constant K > 0 and each n € N. Hence {z,} € u. As {a,,} ¢ ¢, it is a proper subspace
of u. Further,

|xn|
M 1
2 Mpmian) <

n>1
M
= |z, < apllz|ly , foralln e N

As || - |lu is monotone, [Tzl = [{zn}, < [{an}lullz]la" and so [[1] < [[{am} ], .

Remark: Note that one can take p to be any of the spaces £°°, 9§, P, ¢y etc. If we

take « in 6, ég/[ are the Banach spaces of the entire sequences, as was revealed in a study
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carried out earlier in [2] for finding the duals of the spaces Eas(7y) which are subspaces of
the space of entire functions.

Concerning the spaces ¢%;, we have this next theorem.

Theorem 2.3 The space (¢%, ] - ||%) is a BK-space. If N satisfies Aq-condition at ‘0’
it is also AK.

Proof. Omitted, as it is analogous to the proof of Theorem 2.1. a

Proposition 2.4 If n is a normal sequence space containing {&} =a™ !, then 1 is a
proper subspace of n. If the norm (quasi-norm) ||-||;, of n is monotone, then the inclusion
map J : £ — 1 is continuous with ||J| < [[{a™ '},

Proof. In this case, we have

[yl < o Iyl

for all n € N and for y € £%,. The result now follows as in the case of Proposition 2.2. O

Remark: Note that if a,, = n, n € N, then {a,,'} € co; and in this case £ C co. On

1
the other hand, if {«,} is such that a7 — 0, then ¢ is a proper subspace of £%; and

the inclusion map from ¢ to /M is continuous. (Indeed, {n} € £$; and {n} ¢ £>; also

for x € £°°, len"l < 1, for all n € N where ||z]|oc = sup,,>|2n| and o, < 37 for n > ng

= Yo, Ny < 30,0 N(3) < N(1) = 1 = z € £, and [l < [|]|c) Thus,

we get different sequence spaces for different choices of . In the next section, we consider

this aspect.

3. Interrelationship Between The Spaces /) and (%,

In this section we study the interrelationship between spaces ég/[ and ¢4, defined
corresponding to the same Orlicz function M; for three different behaviours of the

sequence « = {a,}. Indeed, we prove this theorem:

Theorem 3.1 (i) If o = {aw,} is such that a < ay, < b for alln € N for some a,b > 0

(i.e both o and o= are in £), then €5, = (M = ly;:
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(it) If {om} € €°° with ¢ = sup,> 0 and {a™'} is unbounded, then (A" is properly
contained in (S, and the inclusion map J : M — €%, is continuous with || J|| < 2.

(i1i) If {on} is unbounded with sup, 0, = d < oo then (3 is properly contained in

(M and the inclusion map Jy : 0§, — (M is continuous with || J1| < d2.

Proof. (1) We first show that £y = £;. If x € lp, then > - M(%) < 00

for some p > 0. If p = pb, then from the increasing character of M, it follows that

Yot M(%) < Vs M(%) < oo. Hence ¢); C £%;. Other inclusion, namely

(3, C Ly follows from the inequality > -, M(lg/"al) < Dt M(%) valid for any

p > 0. Similarly, one can prove 2 = ¢,,. Hence (i) holds.
(ii) For any p > 0 and g = pc?, we have

|| M
> () < Y ar()

n>1 n>1

for x = {x,,}. Hence ¢M C (3.

We now show that the containment ¢ C ¢%, is proper. From the unboundedness of
the sequence {a, '}, choose a subsequence {ny} of N such that o, > k. Define z = {z,,}
as follows:

1/k, n=ng, k=1,2,3,...
Ty =
0, otherwise.

Then = € ¢§,; but x ¢ (M.
To prove the continuity of inclusion map J, let us first consider the case when ¢ = 1.
For z € E%, write

A @) = (> 05 w2y <1y

n>1

and
|zn]an

By (x)={p>0:> M(——")<1}.

n>1 p

As M is increasing and ¢ = 1, we get
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Hence
)% = inf Biy(z) < inf AY (z) = ||=||2,

ie, || J(2)|% < ||lz||M. Thus J is continuous with ||J|| < 1 = c2.
If ¢ # 1, define 3, = “=,n € N. Then 3, <1 and from the above, it follows that
lzllfy < llzlif" for z €€ (2)
(note that £/ = ¢47). Now
1

Bl llis
and

Ilzll5" = cllll"-

Hence from (2)

17 @) 15 = lzli§y < lllls’

= J is continuous with ||J|| < ¢. This completes the proof of part (ii). The proof of (iii)

is analogous to that of (ii) and so is omitted. 0

Note: Observe that for a = {a,} € fur, we have 2 ¢ (5 & ¢5,. However, “If the
sequence {z,} is such that > M, (|z,|) < oo and lim, .2, # 0, then ¢{M,} contains
a subspace isomorphic to ¢>° ” (quoted from, and proved in, [8], p.274), we have this

proposition.

Proposition 3.2 If the sequence {a,} is such that ) M(&) <00 (or>. M(ay) < ),
then (M (49,) contains a subspace isomorphic to £>°.

Proof. Indeed, consider the sequence {z,} with x,, = 1, for each n € N and use the

result stated above. O

4. Perfectness of the Spaces ¢} and (%

Let M and N be complementary Orlicz functions such that M (1) =1 and N(1) = 1.

Then we prove the following theorem.

Theorem 4.1 If M satisfies Ag-condition, then (£X)% = (%; and if N satisfies Ao-

condition, then (£3;)* = (M.
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Proof. Let M satisfy As-condition. Then for z € % and y € ¢ we have

Qn Qn oy
S | = 37 |2 2 ZN(MHZM(M) .
P Qp P &7
n>1 n>1 n>1 n>1
where p > 0 is such that ZnZINﬂa"Tx"l) < co. Thusz € ()< ory € (£%)*.
Hence (%, C (¢M)* and ¢M C (£)%.
To prove the equality (¢/M)* = (%, let y € (¢M)*. Then

> [@ayal < oo for all {z,} with {Z—"} €ty (3)
n

n>1

As M satisfies Ag-condition, £jr = hps and so for {z,} € har, we get Y |anznyn| < 00
by (3). Hence {anyn} € (ham)* = In = y = {yn} € £$. Thus ((M)* = (% Similarly,

one can prove (%)% = (M if N satisfies As-condition. O

Finally, we derive the perfectness of the spaces 2 and £%; in this final corollary:

Corollary 4.2 If M and N satisfy Aq-condition, then the sequence spaces {2 and %

are perfect.

Proof. Immediate from Theorem 4.1. O

Remark: As the dual of a barreled AK-sequence space can be identified with its (-
duals (cf [1], p.964 or [3], p.6), the spaces ¢M and (%, are topological duals of each other
in the case M and N are complementary Orlicz functions satisfying As-condition with
M(1) = N(1) = 1. Besides, if M, (z) = M(;-) and N, = N(anz), n € N, then one
can easily check that for given n € N, M, and’Nn are mutually complementary Orlicz
functions provided M and N are so. Thus the results proved in [8] for modular sequence

spaces concerning duality relations shall also be applicable for our spaces Eg/[ and £%;.
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