On Generalized Solution of a Class of Higher Order Operator-Differential Equations

Rovshan Z. Humbataliyev

Abstract

In this paper the sufficient conditions on the existence and uniqueness of a generalized solution on the axis are obtained for higher order operator-differential equations, the main part of which is multi characteristic.

Key Words: Operator-differential equations, Hilbert spaces, existence of generalized solution.

1. Introduction

Let H be a separable Hilbert space, and A be a positive-definite self-adjoint operator in H with domain of definition $D(A)$. Denote by H_{γ} a scale of Hilbert spaces generated by the operator A, i.e. $H_{\gamma}=D\left(A^{\gamma}\right),(\gamma \geq 0),(x, y)_{\gamma}=\left(A^{\gamma} x, A^{\gamma} y\right), x, y \in D\left(A^{\gamma}\right)$.

We denote by $L_{2}\left((a, b) ; H_{\gamma}\right) \quad(-\infty \leq a<b \leq+\infty)$ a Hilbert space of vector-functions $f(t)$ determined in (a, b) almost everywhere with values from H measurable, square integrable in the Bochner's sense

$$
\|f\|_{L_{2}((a, b) ; H)}=\left(\int_{a}^{b}\|f\|_{\gamma}^{2} d t\right)^{1 / 2}
$$

Assume

$$
L_{2}((-\infty,+\infty) ; H) \equiv L_{2}(R ; H)
$$

[^0]
HUMBATALIYEV

Further, we define a Hilbert space for natural $m \geq 1$ [1].

$$
W_{2}^{m}((a ; b) ; H)=\left\{u \mid u^{(m)} \in L_{2}((a ; b) ; H), A^{m} u \in L_{2}\left((a, b) ; H_{m}\right)\right\}
$$

with norm

$$
\|u\|_{W_{2}^{m}((a, b) ; H)}=\left(\left\|u^{(m)}\right\|_{L_{2}((a, b) ; H)}^{2}+\left\|A^{m} u\right\|_{L_{2}((a, b) ; H)}^{2}\right)^{1 / 2}
$$

Here and in sequel the derivatives are understood in the sense of distributions theory [1]. Here we assume

$$
W_{2}^{m}((-\infty,+\infty) ; H) \equiv W_{2}^{m}(R ; H)
$$

We denote by $D(R ; H)$ a set of infinitely-differentiable functions with values in H. In the space H we consider the operator - differential equation

$$
\begin{align*}
& P\left(\frac{d}{d t}\right) u(t) \equiv\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{m} u(t)+\sum_{j=0}^{2 m} A_{j} u^{(2 m-j)}(t)=f(t) \tag{1}\\
& t \in R=(-\infty,+\infty)
\end{align*}
$$

where $f(t)$ and $u(t)$ are vector-valued functions from H, and coefficients A and $A_{j}(j=\overline{0,2 m})$ satisfy the following conditions:

1) A is a positive-definite self-adjoint operator in H;
2) the operators $A_{j}(j=\overline{0,2 m})$ are linear in H.

In this paper we'll give definition of a generalized solution of equation (1) and prove a theorem on the existence and uniqueness of generalized solution (1). Notice that another definition of generalized solution of operator-differential equations and their existence is given in the book [2]. In the paper [3] by S. S. Mirzoyev, and in [4] by M. B. Orazov it was investigated a boundary-value problem when the principal part of equation has the form $(-1)^{m} \frac{d^{2 m}}{d t^{2 m}}+A^{2 m}$ where A is a self-adjount operator A boundary-value problem when $m=2$ on the semi-axis $R_{+}=(0,+\infty)$ was studied by the author in [5].

HUMBATALIYEV

2. Some Auxiliary Facts

First of all we consider some facts that we'll need in future. Denote

$$
P_{0}\left(\frac{d}{d t}\right) u(t)=\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{m} u(t), \quad u(t) \in D(R ; H)
$$

and

$$
P_{1}\left(\frac{d}{d t}\right) u(t)=\sum_{j=0}^{2 m} A_{j} u^{(2 m-j)}(t), \quad u(t) \in D(R ; H)
$$

Now let's formulate a lemma that shows the conditions on operator coefficients (1) under which the solution of the equation from the class $W_{2}^{m}(R ; H)$ has sense.

Lemma 2.1 Let conditions 1) and 2) be fulfilled, moreover, $B_{j}=A_{j} \times A^{-j}$ $(j=\overline{0, m})$ and $D_{j}=A^{-m} A_{j} A^{m-j} \quad(j=\overline{m+1,2 m})$ be bounded in H. Then a bilinear functional $L(u, \psi) \equiv\left(P_{1}(d / d t) u, \psi\right)_{L_{2}(R ; H)}$ determined for all vector-functions $u \in D(R ; H)$ and $\psi \in D(R ; H)$ continues on the space $W_{2}^{m}(R ; H) \oplus W_{2}^{m}(R ; H)$ that acts in the following way:

$$
\begin{aligned}
L(u, \psi) & =\left(P_{1}(d / d t) u, \psi\right)_{L_{2}(R ; H)}=\sum_{j=0}^{2 m}\left(A_{j} u^{(2 m-j)}, \psi\right)_{L_{2}(R ; H)} \\
& =\sum_{j=0}^{2 m}(-1)^{m}\left(A_{j} u^{(m-j)}, \psi^{m}\right)_{L_{2}(R ; H)}+\sum_{j=m+1}^{2 m}\left(A_{j} u^{(2 m-j)}, \psi\right)_{L_{2}(R ; H)} .
\end{aligned}
$$

Proof. Let $u \in D(R ; H), \psi \in D(R ; H)$. Then integrating by parts we get

$$
\begin{align*}
L(u, \psi) & =\left(P_{1}(d / d t) u, \psi\right)_{L_{2}(R ; H)}=\sum_{j=0}^{2 m}\left(A_{j} u^{(2 m-j)}, \psi\right)_{L_{2}(R ; H)} \\
& =\sum_{j=0}^{m}(-1)^{m}\left(A_{j} u^{(m-j)}, \psi^{m}\right)_{L_{2}(R ; H)}+\sum_{j=m+1}^{2 m}\left(A_{j} u^{(2 m-j)}, \psi^{(m)}\right)_{L_{2}(R ; H)} \tag{2}
\end{align*}
$$

On the other hand,for $j=\overline{0, m}$ we apply the intermediate derivatives theorem [1] and get

HUMBATALIYEV

$$
\begin{array}{r}
\left|\left(A_{j} u^{(m-j)}, \psi^{(m)}\right)_{L_{2}(R ; H)}\right|=\left|\left(B_{j} A_{j} u^{(m-j)}, \psi^{m}\right)_{L_{2}(R ; H)}\right| \leq \\
\leq\left\|B_{j}\right\| \cdot\left\|A^{j} u^{(m-j)}\right\|_{L_{2}(R ; H)} \cdot\left\|\psi^{(m)}\right\|_{L_{2}(R ; H)} \leq C_{m-j}\left\|D_{j}\right\| \cdot\|u\| \cdot\|\psi\|_{W_{2}^{m}(R ; H)} \tag{3}
\end{array}
$$

And for $j=\overline{m+1,2 m}$ we again use the theorem on intermediate derivatives [1] and get

$$
\begin{align*}
& \left|\left(A_{j} u^{(2 m-j)}, \psi^{m}\right)_{L_{2}(R ; H)}\right|=\left|D_{j}\left(A^{m-j} u^{(2 m-j)}, A^{m} \psi\right)_{L_{2}(R ; H)}\right| \leq \\
& \leq\left\|D_{j}\right\|\left\|A^{m-j} u^{(2 m-j)}\right\|_{L_{2}(R ; H)} \cdot\left\|A^{m} \psi\right\|_{L_{2}(R ; H)} \leq \tag{4}\\
& \leq C_{2 m-j}\left\|D_{j}\right\| \cdot\|u\|_{W_{2}^{m}(R ; H)}\|\psi\|_{W_{2}^{m}(R ; H)} .
\end{align*}
$$

Since the set $D(R ; H)$ in dense is the space $W_{2}^{m}(R ; H)$, allowing for inequality (3) and (4) in (2) we get that the inequality

$$
\|L(u, \psi)\| \leq \mathrm{const}\|u\|_{W_{2}^{m}(R ; H)} \cdot\|\psi\|_{W_{2}^{m}(R ; H)}
$$

is true for all $u, \varphi \in W_{2}^{m}(R ; H)$, i.e. $L(u, \psi)$ continues by continuity up to a bilinear functional acting on the spaces $W_{2}^{m}(R ; H) \oplus W_{2}^{m}(R ; H)$. We denote this functional by $L(u, \psi)$ as well. The lemma is proved.

Definition The vector function $u(t) \in W_{2}^{m}(R ; H)$ is said to be a generalized solution of (1) if for any vector-function $\psi(t) \in W_{2}^{m}(R ; H)$ it holds the identity

$$
\begin{equation*}
(u, \psi)_{W_{2}^{m}(R ; H)}+\sum_{k=1}^{2 m-1} C_{2 m}^{k}\left(A^{m-k} u^{(k)}, A^{m-k} \psi^{(k)}\right)_{L_{2}(R ; H)}=(f, \psi)_{L_{2}(R ; H)}, \tag{5}
\end{equation*}
$$

where $C_{2 m}^{k}=\frac{2 m(2 m-1) \ldots(2 m-k+1)}{k!}$.
To find the solvability conditions of equation (1) we prove the following Lemma by using the method of paper [3].

Lemma 2.2 For any $u(t) \in W_{2}^{m}(R ; H)$, hold the following estimates:

$$
\begin{equation*}
\left\|A^{m-j} u^{(j)}\right\|_{L_{2}(R ; H)} \leq d_{m, j}^{m / 2}\|\mid u\| \|_{W_{2}^{m}(R ; H)}, \quad(j=\overline{0, m}) \tag{6}
\end{equation*}
$$

HUMBATALIYEV

where

$$
\|u\|_{W_{2}^{m}(R ; H)}=\left(\|u\|_{W_{2}^{m}\left(R ; H_{m}\right)}^{2}+\sum_{k=1}^{2 m-1} c_{2 m}^{k}\| \| A^{m-k} u^{(k)}\| \|_{L_{2}(R ; H)}^{2}\right)^{1 / 2}
$$

and the numbers from inequalities (6) are determined as follows

$$
d_{m, j}= \begin{cases}\left(\frac{j}{m}\right)^{\frac{j}{m}} \cdot\left(\frac{m-j}{m}\right)^{\frac{m-j}{m}}, & j=\overline{1, m-1} \\ 1, & j=0, m\end{cases}
$$

Proof. Obviously, the norm $\left\|\|u \mid\|_{W_{2}^{m(R ; H)}}\right.$ is equivalent to the norm $\| u \|_{W_{2}^{m}(R ; H)}$. Then it follows from the intermediate derivatives theorem that the final numbers

$$
b_{j}=\sup _{0 \neq u \in W_{2}^{m}(R ; H)}\left\|A^{m-j} u^{(j)}\right\|_{L_{2}(R ; H)} \cdot\|u\|_{W_{2}^{m}(R ; H)}^{-1}, \quad j=\overline{0, m} .
$$

Show that $b_{j}=d_{m, j}^{m / 2}, \quad j=\overline{0, m}$. Then $u(t) \in D(R ; H)$.
For all $\beta \in\left[0, b_{j}^{-2}\right)$, where

$$
b_{j}=\sup _{\xi \in R}\left|\xi^{j}\left(\xi^{2}+1\right)^{-m / 2}\right|=d_{m, j}^{m / 2}
$$

we use the Plancherel theorem and get

$$
\begin{align*}
& \|\|u\|\|_{W_{2}^{m}(R ; H)}-\beta\left\|A^{m-j} u^{(j)}\right\|_{L_{2}(R ; H)}^{2}=\sum_{k=0}^{2 m} C_{2 m}^{k}\left\|A^{m-k} \xi^{k} \hat{u}(\xi)\right\|_{L_{2}(R ; H)}^{2}- \\
& -\beta\left\|A^{m-j} \xi^{j} \hat{u}(\xi)\right\|_{L_{2}(R ; H)}^{2}=\sum_{k=0}^{2 m} C_{2 m}^{k}\left(A^{m-k} \xi^{k} \hat{u}(\xi), A^{m-k} \xi^{k} \hat{u}(\xi)\right)_{L_{2}(R ; H)}- \\
& -\beta\left(A^{m-j} \xi^{j} \hat{u}(\xi), A^{m-j} \xi^{j} \hat{u}(\xi)\right)_{L_{2}(R ; H)}= \\
& \quad=\int_{-\infty}^{+\infty}\left(\left[\left(\xi^{2} E+A^{2}\right)^{m}-\beta \xi^{2 j} A^{(2 m-j)}\right] \hat{u}(\xi), \hat{u}(\xi)\right)_{L_{2}(R ; H)} d \xi \tag{7}
\end{align*}
$$

HUMBATALIYEV

where $\hat{u}(\xi)$ is a Fourier transformation of the vector-function $u(t)$. Since for $\beta \in\left[0, b_{j}^{-2}\right)$, it follows from the spectral expansion of the operator A that

$$
\begin{aligned}
& \left(\left(\left(\xi^{2} E+A^{2}\right)^{m}-\beta \xi^{2 j} A^{2(m-j)}\right) x, x\right)=\int_{-\infty}^{+\infty}\left(\left(\xi^{2}+\mu^{2}\right)^{m}-\beta \xi^{2 j} \mu^{2(m-j)}\right)\left(d E_{\mu} x, x\right)= \\
& =\int_{\mu_{0}}^{\infty}\left(1-\beta \frac{\xi^{2 j} \mu^{2(m-j)}}{\left(\xi^{2}+\mu^{2}\right)^{\mu}}\right)\left(\xi^{2}+\mu^{2}\right)\left(d E_{\mu} x, x\right) \geq \int_{\mu_{0}}^{\infty}\left(1-\beta b_{j}^{2}\right)\left(\xi^{2}+\mu^{2}\right)\left(d E_{\mu} x, x\right)
\end{aligned}
$$

then equality (6) yields

$$
\begin{equation*}
\|u\|\left\|_{W_{2}^{m}(R ; H)}^{2} \geq \beta\right\| A^{m-j} u^{(j)} \|_{L_{2}(R ; H)}^{2} \tag{8}
\end{equation*}
$$

for all $\beta \in\left[0, b_{j}^{-2}\right.$ and $u(t) \in D(R ; H)$. Passing to the limit as $\beta \rightarrow b_{j}^{-2}$ we get

$$
\|u \mid\|_{W_{2}^{m}(R ; H)}^{2} \geq d_{m, j}^{-m / 2}\left\|A^{m-j} u^{(j)}\right\|_{L_{2}(R ; H)}^{2}
$$

Hence it follows

$$
\begin{equation*}
\left\|A^{m-j} u^{(j)}\right\|_{L_{2}(R ; H)}^{2} \leq d_{m, j}^{m / 2}\| \| u \|_{W_{2}^{m}(R ; H)}^{2}, \quad(j=\overline{0, m}) \tag{9}
\end{equation*}
$$

Show that inequalities (9) are exact. To this end, for the given $\varepsilon>0$ we show the existence of the vector-function $u_{\varepsilon}(t) \in W_{2}^{m}(R ; H)$, such that

$$
\begin{equation*}
E\left(u_{\varepsilon}\right)=\| \| u\| \|_{W_{2}^{m}(R ; H)}^{2}-\left(d_{m, j}^{-m}+\varepsilon\right)\left\|A^{m-j} u^{(j)}\right\|_{L_{2}(R ; H)}^{2}<0 \tag{10}
\end{equation*}
$$

We'll look for $u_{\varepsilon}(t)$ in the form $u_{\varepsilon}(t)=g_{\varepsilon}(t) \varphi_{\varepsilon}(t)$, where $g_{\varepsilon}(t)$ is a scalar function from the space $W_{2}^{m}(R)$ and $\varphi_{\varepsilon} \in H_{2 m}$, where $\left\|\varphi_{\varepsilon}\right\|=1$. Using the Plancherel theorem, we write $E\left(u_{\varepsilon}\right)$ in the equivalent form

$$
E\left(u_{\varepsilon}\right)=\int_{-\infty}^{+\infty}\left(\left(\left(\xi^{2} E+A^{2}\right)^{m}-\left(d_{m, j}^{-m}+\varepsilon\right) \xi^{2 j} A^{2 m-2 j}\right) \varphi_{\varepsilon}, \varphi_{\varepsilon}\right)\left|\hat{g}_{\varepsilon}(\xi)\right|^{2} d \xi
$$

Note that $\hat{u}(\xi)$ and $\hat{g}_{\varepsilon}(\xi)$ are the Fourier transformations of the vector-functions $u(t)$ and $g_{\varepsilon}(t)$, respectively.

HUMBATALIYEV

Notice that if A has even if one even value μ, then for φ_{ε} we can choose appropriate eigen-vector $\varphi_{\varepsilon}=\varphi(\|\varphi\|=1)$. Indeed, then at the point $\xi_{0}=(j / m)^{1 / 2} \cdot \mu$

$$
\begin{gather*}
\left(\left(\left(\xi_{0}^{2} E+A^{2}\right)^{m}-\left(d_{m, j}^{-m}+\varepsilon\right) \xi_{0}^{2 j} A^{2 m-2 j}\right) \varphi_{\varepsilon}, \varphi_{\varepsilon}\right)=\left(\xi_{0}^{2}+\mu^{2}\right)^{m}- \\
-\left(d_{m, j}^{-m}+\varepsilon\right) \xi_{0}^{2 j} \mu^{2 m-2 j}=\left(\xi_{0}^{2}+\mu^{2}\right)^{m}\left[1-\left(d_{m, j}^{-m}+\varepsilon\right) \frac{\xi_{0}^{2 j} \mu^{2 m-2 j}}{\left(\xi^{2}+\mu^{2}\right)^{m}}\right]<0 \tag{11}
\end{gather*}
$$

If the operator A has no eigenvalue, for $\mu \in \sigma(A)$ and for any $\delta>0$ we can construct a vector $\varphi_{\delta},\left\|\varphi_{\delta}\right\|=1$ such that

$$
A^{\delta} \varphi_{\delta}=\mu^{m} \varphi_{\delta}+0(1, \delta), \quad \delta \rightarrow 0, \quad m=1,2, \ldots
$$

In this case, and for $\xi_{0}=(j / m)^{1 / 2} \mu$ and

$$
\begin{aligned}
& \left(\left(\left(\xi^{2} E+A^{2}\right)^{m}-\left(d_{m, j}^{-m}+\varepsilon\right) \xi_{0}^{2 j} A^{2 m-2 j}\right) \varphi_{\delta}, \varphi_{\delta}\right)= \\
& =\left(\left(\xi_{0}^{2}+\mu^{2}\right)-\left(d_{m, j}^{-m}+\varepsilon\right) \xi^{2 j} \mu^{2 m-2 j}\right)+0(1, \delta)
\end{aligned}
$$

Thus for small $\delta>0$ it holds inequality (11). Consequently, for any $\varepsilon>0$ there will be found a vector $\varphi_{\varepsilon}\left(\left\|\varphi_{\varepsilon}\right\|=1\right)$, for which

$$
\begin{equation*}
\left(\left(\left(\xi^{2} E+A^{2}\right)^{m}-\left(d_{m, j}^{-m}+\varepsilon\right) \xi_{0}^{2 j} A^{2 m-2 j}\right) \varphi_{\varepsilon}, \varphi_{\varepsilon}\right)<0 \tag{12}
\end{equation*}
$$

Now for $\xi=\xi_{0}$ we construct $g_{\varepsilon}(t)$. Since the left hand side of inequality (12) is a continuous function from the argument ξ, it is true at some vicinity of the point ξ_{0}. Assume that inequality (12) holds in the vicinity $\left(\eta_{1}, \eta_{2}\right)$. Then we construct $\hat{g}(\xi)$ -infinitely-differentiable function of argument ξ with support in $\left(\eta_{1}, \eta_{2}\right)$ and denote it by

$$
g_{\varepsilon}(t)=\frac{1}{\sqrt{2 \pi}} \int_{\eta_{1}}^{\eta_{2}} \hat{g}(\xi) e^{i \xi t} d \xi
$$

It follows from the Paley-Wienere theorem that $g_{\varepsilon}(t) \in W_{2}^{m}(R)$ and obviously

HUMBATALIYEV

$$
\begin{aligned}
& E\left(u_{\varepsilon}\right)=E\left(g_{e}, \varphi_{\varepsilon}\right)= \\
& =\int_{\eta_{1}}^{\eta_{2}}\left(\left(\left(\xi^{2} E+A^{2}\right)^{m}-\left(d_{m, j}^{-m}+\varepsilon\right) \xi^{2 j} A^{2 m-2 j}\right) \varphi_{\varepsilon}, \varphi_{\varepsilon}\right)\left|\hat{g}_{\varepsilon}(\xi)\right|^{2} d \xi<0
\end{aligned}
$$

i.e. inequalities (9) are exact. The lemma is proved.

The Main Result

Now let's prove the main theorem.
Theorem 3.1. Let A be a positive-definite self-adjoint operator in H, the operators $B_{j}=A_{j} \cdot A^{-j} \quad(j=\overline{0, m})$ and $D_{j}=A^{-m} A_{j} A^{m-j} \quad(j=\overline{m+1,2 m})$ be bounded in H and it holds the inequality

$$
\begin{equation*}
\gamma=\sum_{j=0}^{m} d_{m, j}^{m / 2}\left\|B_{j}\right\|+\sum_{j=m+1}^{2 m} d_{m, 2 m-j}^{m / 2}\left\|D_{j}\right\|<1 \tag{13}
\end{equation*}
$$

where the numbers $d_{m, j}$ are determined from lemma 2.
Then equation (1) has a unique generalized solution and the inequality

$$
\|u\|_{W_{2}^{m}(R ; H)} \leq \mathrm{const}\|f\|_{L_{2}(R ; H)}
$$

holds.
Proof. Show that for $\gamma<1$ for all vector-functions $\psi \in W_{2}^{m}(R ; H)$ it holds the inequality

$$
\begin{aligned}
& (P(d / d t) \psi, \psi)_{L_{2}(R ; H)} \equiv \\
& \equiv\|\psi\|_{W_{2}^{m}(R ; H)}^{2}+\sum_{k=1}^{2 m} C_{2 m}^{k}\left\|A^{m-k} \psi^{(k)}\right\|_{L_{2}(R ; H)}^{2}+L(\psi, \psi) \geq C\|\psi\|_{W_{2}^{m}(R ; H)}^{2}
\end{aligned}
$$

where $C>0$ is a constant number.
Obviously,

$$
\begin{equation*}
\left|(P(d / d t) \psi, \psi)_{L_{2}(R ; H)}\right| \geq\left|\left||\psi| \|_{W_{2}^{m}(R ; H)}^{2}-|L(\psi, \psi)|\right.\right. \tag{14}
\end{equation*}
$$

HUMBATALIYEV

Since

$$
|L(\psi, \psi)|<\sum_{j=0}^{m}\left|\left(A_{j} \psi^{(m-j)}, \psi^{(m)}\right)_{L_{2}(R ; H)}\right|+\sum_{j=m+1}^{2 m}\left|\left(A_{j} \psi^{(2 m-j)}, \psi\right)_{L_{2}(R ; H)}\right|
$$

then we use lemma 2 and get

$$
\begin{align*}
& |L(\psi, \psi)| \leq\left(\sum_{j=0}^{m}\left\|B_{j}\right\| d_{m, j}^{m / 2}+\sum_{j=m+1}^{2 m}\left\|D_{j}\right\| d_{m, 2 m-j}^{m / 2}\right)\|\mid \psi\| \|_{W_{2}^{m}(R ; H)}^{2}= \tag{15}\\
& =\gamma\|\psi\|_{W_{2}^{m}(R ; H)} .
\end{align*}
$$

Allowing for inequality (15) in (14), we get

$$
\begin{equation*}
\left|(P(d / d t) \psi, \psi)_{L_{2}(R ; H)}\right| \geq(1-\gamma)\left|\|\psi \mid\|_{W_{2}^{m}(R ; H)}^{2} .\right. \tag{16}
\end{equation*}
$$

Further, we consider the problem

$$
P_{0}(d / d t) u(t)=f(t),
$$

where $f(t) \in L_{2}(R ; H)$. It is easy to see that the vector function

$$
\begin{equation*}
u_{0}(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left(\xi^{2}+A^{2}\right)^{m} \int_{-\infty}^{+\infty} f(s) e^{-2(s-\xi)} d s d \xi \tag{17}
\end{equation*}
$$

belongs to the space $W_{2}^{m}(R ; H)$ and satisfies the condition

$$
\left(u_{0}, \psi\right)=(f, \psi) .
$$

Now we'll look for the generalized solution of equation (1) in the form $u=u_{0}+\xi_{0}$, where $\xi_{0} \in W_{2}^{m}(R ; H)$. Putting this expression into equality (5), we get

$$
\begin{equation*}
(P(d / d t) u, \psi)_{L_{2}(R ; H)}=-L\left(u_{0}, \psi\right), \quad \psi \in W_{2}^{m}(R ; H) . \tag{18}
\end{equation*}
$$

The right hand-side is a continuous functional in $W_{2}^{m}(R ; H)$, the left hand-side satisfies Lax-Milgram [6] theorem's conditions by inequality (16). Therefore, there exists

HUMBATALIYEV

a unique vector function $u(t) \in W_{2}^{m}(R ; H)$ satisfying equality (18). On the other hand, for $\psi=u$ it follows from inequality (16) that

$$
\left|(P(d / d t) u, u)_{L_{2}(R ; H)}\right|=\left|(f, u)_{L_{2}(R ; H)}\right| \geq C \mid\|u\|_{W_{2}^{m}(R ; H)}^{2} \geq C\|u\|_{W_{2}^{m}(R ; H)}^{2}
$$

then hence it follows

$$
\|u\|_{W_{2}^{m}(R ; H)} \leq \mathrm{const}\|f\|_{L_{2}(R ; H)} .
$$

The theorem is proved.

References

[1] Lions, J.-L. and Majenes, E.: Inhomogenous boundary value problems and their applications. Moskva,"Mir",(Russian) 1971.
[2] Gorbachuk, V.I. and Gorbachuk, M.L.: Boundary value problems for differential-operator equations. Kiev, "Naukova Dumka", (Russian) 1984.
[3] Mirzoyev, S.S.: On correct solvability conditions of boundary value problems for operatordifferential equations. J. DAN SSSR,(Russian) 1983.
[4] Orazov, M.B.: On completeness of elementary solutions for some operator-differential equations on a semi-axis and segment. J. DAN SSSR, (Russian) 1979.
[5] Gumbataliyev, R.Z.: On generalized solutions for a class of fourth order operator-differential equations. J. Izv. AN Azerb., ser. phys.-tech. math. nauk, (Russian) 1998.
[6] Bers, L., John, F. and Schechter, M.: Partial equations. Moskva, "Mir", (Russian) 1966.

Rovshan Z. HUMBATALIYEV
Received 14.05.2007
Institute of Mathematics
and Mechanics of NAS of
Azerbaijan, Baku, AZ 1141,
F.Agaev str.9. AZERBAIJAN
e-mail: rovshangumbataliev@rambler.ru

[^0]: 2000 AMS Mathematics Subject Classification: 39B42, 46C05, 36D05

