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On Generalized Solution of a Class of Higher Order

Operator-Differential Equations
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Abstract

In this paper the sufficient conditions on the existence and uniqueness of a
generalized solution on the axis are obtained for higher order operator-differential

equations, the main part of which is multi characteristic.
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1. Introduction

Let H be a separable Hilbert space, and A be a positive-definite self-adjoint operator
in H with domain of definition D (A). Denote by H., a scale of Hilbert spaces generated
by the operator A, i.e. Hy =D (A7), (y>0), (z,y), = (A2, AVy), z,y € D (A).

We denote by Ly ((a,b) ; Hy) (—o0 < a < b < 400) a Hilbert space of vector-functions
f(t) determined in (a,b) almost everywhere with values from H measurable, square

integrable in the Bochner’s sense

1/2

b
2
1 o = | [ 1712
a

Assume
Ly ((—o00,+0); H) = Ly (R; H).
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Further, we define a Hilbert space for natural m > 1 [1].
W3 ((a;0); H) = {u ‘u(m) € Ly ((a;0);H), A™u € Lo ((a,b); Hm)}

with norm

],

1/2
2

Here and in sequel the derivatives are understood in the sense of distributions theory

[1]. Here we assume

W3 ((—o0, +00); H) = W3 (R; H) .

We denote by D (R; H)a set of infinitely-differentiable functions with values in H.

In the space H we consider the operator — differential equation

P (%) u(t) = (-j—; + A2>mu(t) +§Aju(2m—j) (t) = f (1), Q)

t€ R=(—00,+00),

where f(t) and wu(t) are vector-valued functions from H, and coefficients A and
A; (7 =0,2m) satisfy the following conditions:

1) A is a positive-definite self-adjoint operator in H ;

2) the operators A; (j = 0,2m) are linear in H.

In this paper we’ll give definition of a generalized solution of equation (1) and prove a
theorem on the existence and uniqueness of generalized solution (1). Notice that another
definition of generalized solution of operator-differential equations and their existence is
given in the book [2]. In the paper [3] by S. S. Mirzoyev,and in [4] by M. B. Orazov it

was investigated a boundary-value problem when the principal part of equation has the

form (—1)™ ;;Z + A?™ where A is a self-adjount operator A boundary-value problem

when m = 2 on the semi-axis Ry = (0, +00) was studied by the author in [5].
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2. Some Auxiliary Facts

First of all we consider some facts that we’ll need in future. Denote

Py (%) u(t) = (—j—; +A2>mu(t), u(t) € D(R; H)

and

P (%) u(t) = ;Aju@m—ﬂ (t), w(t)eD(R;H).

Now let’s formulate a lemma that shows the conditions on operator coefficients (1)

under which the solution of the equation from the class W™ (R; H) has sense.

Lemma 2.1 Let conditions 1) and 2) be fulfilled, moreover, B; = A; x A7
(=0,m) and D; = A"™A;A™3  (j=m+1,2m) be bounded in H. Then a bi-
linear functional L (u,v) = (Py (d/dt)u,w)LQ(R;H) determined for all vector-functions
u € D(R;H) and ¢ € D (R; H) continues on the space Wi (R; H) & W3 (R; H) that
acts in the following way:

2m

L (u,) = (P (d/dt)u, w)LQ(R;H) = Z (Aju(Qm—j), w)

Jj=0

= 22% (-n™ (Aju"”‘j’,w’”)
=0

Lo (R;H)

+ Qi (4julm=9), )

L s H
2(BiH) A

La(R;H)

Proof. Letue€ D(R;H), v € D(R; H). Then integrating by parts we get

2m

L (u,v) = (P (d/dt)u, w)LQ(R;H) = Z (Aju(Qm—j), w)

L sH
ot 2(RiH)

2m
+ Y (Aju@m—j),w(m))

L sH
2(BiH) A

La(R;H)

= f: (=™ (Aju"”‘j’,w’”)
=0

J

On the other hand,for j = 0, m we apply the intermediate derivatives theorem [1] and

get
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BjAjul™, wm) <

A=) _gm)
(i)

L2(R?H)‘ - ‘( Lz(R;H)‘

<11yl - [ 47ulm|

.H¢<m>‘

< Con 1D511 - Nl - 1l ey - (3)

La(R;H) Lo(R;H) —

And for j =m + 1,2m we again use the theorem on intermediate derivatives [1] and

get

‘(Aju@m_j), wm) — ‘Dj (Am—ju@m—j), Amw)

<
LQ(R;H)‘ L2(R;H)‘ B

< 1D, | Atz

m
Lo(R:H) 14 wHLﬂR:H) S

(4)

< Com—j 1D Ntllwge oy 1l wpe iy -

Since the set D (R; H) in dense is the space W3 (R; H), allowing for inequality (3)
and (4) in (2) we get that the inequality

(1L (u, V)| < const [Jullywm gy - [¥llwye (i

is true for all u, o € WJ* (R; H), i.e. L (u,) continues by continuity up to a bilinear
functional acting on the spaces Wi (R; H) @ WJ" (R; H). We denote this functional by
L (u,) as well. The lemma is proved. o

Definition The vector function u (t) € Wi (R; H) is said to be a generalized solution of
(1) if for any vector-function ¢ (t) € Wi (R; H) it holds the identity

2m—1

(W ) wp ey + D Chm (Am—ku(k),Am—kw(k))
k=1

=)y, )

La(R;H)

2m(2m—1)...(2m—k+1
where Ck = 2m2m )k!(m k)

To find the solvability conditions of equation (1) we prove the following Lemma by

using the method of paper [3].

Lemma 2.2 For any u (t) € WJ* (R; H), hold the following estimates:

H Am—ju<j>‘

m/2 A W
Loy = Bmi el (gorry» (5 =0,m), (6)
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where

2m—

1 ) 1/2

_ 2 k m—k (k)H )

m . - m . A 9
el s <|u|w2 ) 2 || 47 Fu M(R;m)

and the numbers from inequalities (6) are determined as follows

. L . %L .
g BT DT =TT
7 1, 7=0,m

Proof.  Obviously, the norm |[[ul[|;,ms:m) is equivalent to the norm H“HW;:"(R-H)' Then
s ;

it follows from the intermediate derivatives theorem that the final numbers

bj = sup HAm_jU(j)H : H“H;Vzm(R;H) ; J=0,m.

0AuEW (R;H) La(R;H)

Show that b; = d”/?, j =0, m. Then u (t) € D (R; H).

m,j’

For all g € [0, bj_Q), where
b = sup [¢7 (62 +1) 7| = di?,
EER

we use the Plancherel theorem and get

2 2m
_ m—j, (j) _ k m—k ¢k 2 _
s =240 =S 5O,

2m
B AR}, sy = D Chm (A" 580, A€M (8)) 1 oy —
k=0

—B (A" (&), A" UE)) oy =

. ™)
= [ ([€B+anm —seraemi]age) i 3

—00

)LQ(R;H)
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where 4 (&) is a Fourier transformation of the vector-function u (¢). Since for 5 € [0, bj_Q),

it follows from the spectral expansion of the operator A that

+oo
(((§2E + A2)m _ ﬁngAQ(m_j)) $,$) — / ((52 + MQ)m _ ﬁngMQ(T)’L—j)) (dEM.ﬁ,J?) —
i £2 p20m=3) ! 2\ (¢2 2
= / (1 - ﬁﬁ) (§ +p ) (dEMx,J?) > / (1 _Bbj) (§ +p ) (dEMx,JZ);
Mo Ho

then equality (6) yields

N > 8|l am-i m‘ 8
ol B ey = 5 ) )
for all 3 € [0, bj_2 and u(t) € D(R; H). Passing to the limit as § — bj—2 we get
i > d- m/2HAm j m‘
|||“|||W (R;H) Lo(R:H)
Hence it follows
) R
HAm J (J)‘ La(R) = m/ |||“|||WW(RH)’ (G =0,m). )

Show that inequalities (9) are exact. To this end, for the given £ > 0 we show the
existence of the vector-function w,. (¢t) € Wa™ (R; H), such that

< 0. (10)

2
E (ue) = [[[ulllfyp peer) — (Al + HAm iy (J)‘L2<RH>

We'll look for ue (t) in the form wu, (¢t) = g- (t) pe (t) , where g () is a scalar function from
the space W3 (R) and ¢. € Hap,, where ||@-|| = 1. Using the Plancherel theorem, we

write F (u.) in the equivalent form

+oo

By = [ (((€8+4)" (@5 +9) 472 o 0 lg. (O de.

—00

Note that @ (€) and §. (§) are the Fourier transformations of the vector-functions w (t)

and g. (t), respectively.
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Notice that if A has even if one even value p, then for ¢. we can choose appropriate

1/2

eigen-vector . = ¢ (|l¢|| = 1) . Indeed, then at the point & = (j/m) L

(@B +a%)" — (@05 +) A ) o) = (& +47)" -

i, 2m—27j
1 J

a1 49

If the operator A has no eigenvalue, for p € o (A) and for any § > 0 we can construct

a vector s, ||@s|| = 1 such that

Adps = ™5 +0(1,8), § -0, m=1,2,...
In this case, and for & = (j/m)l/Qu and
(((§2E +A%)" (4,7 + <) éngQm_Qj) s, %) =

= (6 +0%) = (@7 +€) €202 2) 01,

Thus for small 6 > 0 it holds inequality (11). Consequently, for any € > 0 there will
be found a vector ¢. (||¢c|| = 1), for which

(((§2E +4%)" — (d,) +e) §§jA2m‘2j) e, %) <0 (12)

Now for £ = & we construct g (¢). Since the left hand side of inequality (12) is
a continuous function from the argument &, it is true at some vicinity of the point &.
Assume that inequality (12) holds in the vicinity (n1,72). Then we construct §(&)-
infinitely-differentiable function of argument £ with support in (11, 72) and denote it by

72
ge () = % / §(6) e,
m

It follows from the Paley-Wienere theorem that g. (t) € W4™ (R) and obviously
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E(UE) = E(gea pe) =

= ]2 (((§2E + AQ)m o (d;@f’; + E) §2jA2m—2j) ©e, 906) |g€ (§)|2 d¢ <0,
m
O

i.e. inequalities (9) are exact. The lemma is proved.

The Main Result

Now let’s prove the main theorem.

Theorem 3.1. Let A be a positive-definite self-adjoint operator in H, the operators
Bj = Aj - A7 (j = O,m) and Dj = A"™A;A™I (j =m+ 1,2m) be bounded in
H and it holds the inequality

V—deﬂ Bl S a2 i< (13)

Jj=m+1

where the numbers dy, ; are determined from lemma 2.
Then equation (1) has a unique generalized solution and the inequality

lwllwy iy < constfll L, aim

holds.

Proof.
inequality

Show that for v < 1 for all vector-functions ¢ € W (R; H) it holds the

(P (d/dt), w)LQ(R;H) =

_ k m—k (k) 2
= ¥l oy +ZO [am-su @] L) 2 Ol

where C' > 0 is a constant number.
Obviously,
2
(P (@d/at) 6, ) Loy | 2 Mgy — 1L (5,01 (14)
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Since
m 2m
L) < A=) _m) AjpEm=a), ,
Ll <3 (At ) - t 2 (A D)

then we use lemma 2 and get

m 2m
2 2 2
L, 0) < | SOIB A+ > D5l s | N ey =
3=0 j=m-+1 (15)

=Mbllwy ;-
Allowing for inequality (15) in (14), we get
2
(P(d/dt) Y, )y msmy | 2 (L= P (rym - (16)

Further, we consider the problem

By (d/dt)u(t) = f(t),

where f(t) € Ly(R; H). It is easy to see that the vector function

+oo +oo
w(® =5 [ (€ +a)" [ £ls)e9asag (17)

belongs to the space W3 (R; H) and satisfies the condition

(UOaw) = (faw) :

Now we’ll look for the generalized solution of equation (1) in the form
u = ug + &, where § € W3" (R; H). Putting this expression into equality (5), we
get

(P (d/dt)uw, ), (pemry = —L (w0, ), ¢ € W™ (R; H). (18)

The right hand-side is a continuous functional in W3 (R; H), the left hand-side

satisfies Lax-Milgram [6] theorem’s conditions by inequality (16). Therefore, there exists
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a unique vector function u (t) € Wi (R; H) satisfying equality (18). On the other hand,
for 1) = u it follows from inequality (16) that

2 2
(P (d/dt)uau)Lg(R;H)‘ = ‘(fa U)LQ(R;H) =>C |||u|||Wg"(R;H) >C HUHWQW(R;H) )

then hence it follows

lullwgn sy < const [ fll 1, rsmy -

The theorem is proved. O
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