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Abstract

In this paper the sufficient conditions on the existence and uniqueness of a

generalized solution on the axis are obtained for higher order operator-differential

equations, the main part of which is multi characteristic.
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1. Introduction

Let H be a separable Hilbert space, and A be a positive-definite self-adjoint operator
in H with domain of definition D (A). Denote by Hγ a scale of Hilbert spaces generated
by the operator A, i.e. Hγ = D (Aγ) , (γ ≥ 0) , (x, y)γ = (Aγx, Aγy) , x, y ∈ D (Aγ).

We denote by L2 ((a, b) ; Hγ) (−∞ ≤ a < b ≤ +∞) a Hilbert space of vector-functions
f (t) determined in (a, b) almost everywhere with values from H measurable, square
integrable in the Bochner’s sense

‖f‖L2((a,b);H) =

⎛
⎝ b∫

a

‖f‖2
γ dt

⎞
⎠

1/2

.

Assume
L2 ((−∞, +∞) ; H) ≡ L2 (R; H) .
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Further, we define a Hilbert space for natural m ≥ 1 [1].

Wm
2 ((a; b) ; H) =

{
u

∣∣∣u(m) ∈ L2 ((a; b) ; H) , Amu ∈ L2 ((a, b) ; Hm)
}

with norm

‖u‖Wm
2 ((a,b);H) =

(∥∥∥u(m)
∥∥∥2

L2((a,b);H)
+ ‖Amu‖2

L2((a,b);H)

)1/2

.

Here and in sequel the derivatives are understood in the sense of distributions theory
[1]. Here we assume

Wm
2 ((−∞, +∞) ; H) ≡ Wm

2 (R; H) .

We denote by D (R; H)a set of infinitely-differentiable functions with values in H .

In the space H we consider the operator – differential equation

P

(
d

dt

)
u (t) ≡

(
− d2

dt2
+ A2

)m

u (t) +
2m∑
j=0

Aju
(2m−j) (t) = f (t) ,

t ∈ R = (−∞, +∞) ,

(1)

where f (t) and u (t) are vector-valued functions from H , and coefficients A and
Aj

(
j = 0, 2m

)
satisfy the following conditions:

1) A is a positive-definite self-adjoint operator in H ;

2) the operators Aj

(
j = 0, 2m

)
are linear in H .

In this paper we’ll give definition of a generalized solution of equation (1) and prove a
theorem on the existence and uniqueness of generalized solution (1). Notice that another
definition of generalized solution of operator-differential equations and their existence is
given in the book [2]. In the paper [3] by S. S. Mirzoyev,and in [4] by M. B. Orazov it
was investigated a boundary-value problem when the principal part of equation has the

form (−1)m d2m

dt2m + A2m where A is a self-adjount operator A boundary-value problem
when m = 2 on the semi-axis R+ = (0, +∞) was studied by the author in [5].
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2. Some Auxiliary Facts

First of all we consider some facts that we’ll need in future. Denote

P0

(
d

dt

)
u (t) =

(
− d2

dt2
+ A2

)m

u (t) , u (t) ∈ D (R; H)

and

P1

(
d

dt

)
u (t) =

2m∑
j=0

Aju
(2m−j) (t) , u (t) ∈ D (R; H) .

Now let’s formulate a lemma that shows the conditions on operator coefficients (1)
under which the solution of the equation from the class Wm

2 (R; H) has sense.

Lemma 2.1 Let conditions 1) and 2) be fulfilled, moreover, Bj = Aj × A−j(
j = 0, m

)
and Dj = A−mAjA

m−j
(
j = m + 1, 2m

)
be bounded in H. Then a bi-

linear functional L (u, ψ) ≡ (P1 (d/dt)u, ψ)L2(R;H) determined for all vector-functions

u ∈ D(R; H) and ψ ∈ D (R; H) continues on the space Wm
2 (R; H) ⊕ Wm

2 (R; H) that
acts in the following way:

L (u, ψ) = (P1 (d/dt)u, ψ)L2(R;H) =
2m∑
j=0

(
Aju

(2m−j), ψ
)

L2(R;H)

=
2m∑
j=0

(−1)m
(
Aju

(m−j), ψm
)

L2(R;H)
+

2m∑
j=m+1

(
Aju

(2m−j), ψ
)

L2(R;H)
.

Proof. Let u ∈ D (R; H) , ψ ∈ D (R; H). Then integrating by parts we get

L (u, ψ) = (P1 (d/dt)u, ψ)L2(R;H) =
2m∑
j=0

(
Aju

(2m−j), ψ
)

L2(R;H)

=
m∑

j=0

(−1)m
(
Aju

(m−j), ψm
)

L2(R;H)
+

2m∑
j=m+1

(
Aju

(2m−j), ψ(m)
)

L2(R;H)
.

(2)

On the other hand,for j = 0, m we apply the intermediate derivatives theorem [1] and
get

307



HUMBATALIYEV

∣∣∣∣(Aju
(m−j), ψ(m)

)
L2(R;H)

∣∣∣∣ =
∣∣∣∣(BjAju

(m−j), ψm
)

L2(R;H)

∣∣∣∣ ≤
≤ ‖Bj‖ ·

∥∥∥Aju(m−j)
∥∥∥

L2(R;H)
·
∥∥∥ψ(m)

∥∥∥
L2(R;H)

≤ Cm−j ‖Dj‖ · ‖u‖ · ‖ψ‖Wm
2 (R;H) . (3)

And for j = m + 1, 2m we again use the theorem on intermediate derivatives [1] and
get ∣∣∣∣(Aju

(2m−j), ψm
)

L2(R;H)

∣∣∣∣ =
∣∣∣∣Dj

(
Am−ju(2m−j), Amψ

)
L2(R;H)

∣∣∣∣ ≤
≤ ‖Dj‖

∥∥∥Am−ju(2m−j)
∥∥∥

L2(R;H)
· ‖Amψ‖L2(R;H) ≤

≤ C2m−j ‖Dj‖ · ‖u‖Wm
2 (R;H) ‖ψ‖Wm

2 (R;H).

(4)

Since the set D (R; H) in dense is the space Wm
2 (R; H), allowing for inequality (3)

and (4) in (2) we get that the inequality

‖L (u, ψ)‖ ≤ const ‖u‖Wm
2 (R;H) · ‖ψ‖Wm

2 (R;H)

is true for all u, ϕ ∈ Wm
2 (R; H), i.e. L (u, ψ) continues by continuity up to a bilinear

functional acting on the spaces Wm
2 (R; H) ⊕ Wm

2 (R; H). We denote this functional by
L (u, ψ) as well. The lemma is proved. �

Definition The vector function u (t) ∈ Wm
2 (R; H) is said to be a generalized solution of

(1) if for any vector-function ψ (t) ∈ Wm
2 (R; H) it holds the identity

(u, ψ)Wm
2 (R;H) +

2m−1∑
k=1

Ck
2m

(
Am−ku(k), Am−kψ(k)

)
L2(R;H)

= (f, ψ)L2(R;H) , (5)

where Ck
2m = 2m(2m−1)...(2m−k+1)

k! .
To find the solvability conditions of equation (1) we prove the following Lemma by

using the method of paper [3].

Lemma 2.2 For any u (t) ∈ Wm
2 (R; H) , hold the following estimates:

∥∥∥Am−ju(j)
∥∥∥

L2(R;H)
≤ d

m/2
m,j |||u|||Wm

2 (R;H) ,
(
j = 0, m

)
, (6)
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where

|||u|||Wm
2 (R;H) =

(
‖u‖2

Wm
2 (R;Hm) +

2m−1∑
k=1

ck
2m

∣∣∣∣∣∣∣∣∣Am−ku(k)
∣∣∣∣∣∣∣∣∣2

L2(R;H)

)1/2

;

and the numbers from inequalities (6) are determined as follows

dm,j =

{ (
j
m

) j
m ·

(
m−j

m

)m−j
m , j = 1, m− 1

1, j = 0, m

Proof. Obviously, the norm |||u|||
W

m(R;H)
2

is equivalent to the norm ‖u‖Wm
2 (R;H). Then

it follows from the intermediate derivatives theorem that the final numbers

bj = sup
0 �=u∈Wm

2 (R;H)

∥∥∥Am−ju(j)
∥∥∥

L2(R;H)
· ‖u‖−1

Wm
2 (R;H) , j = 0, m.

Show that bj = d
m/2
m,j , j = 0, m. Then u (t) ∈ D (R; H).

For all β ∈ [0, b−2
j ), where

bj = sup
ξ∈R

∣∣∣ξj
(
ξ2 + 1

)−m/2
∣∣∣ = d

m/2
m,j ,

we use the Plancherel theorem and get

|||u|||Wm
2 (R;H) − β

∥∥∥Am−ju(j)
∥∥∥2

L2(R;H)
=

2m∑
k=0

Ck
2m

∥∥Am−kξkû (ξ)
∥∥2

L2(R;H)
−

−β
∥∥Am−jξjû (ξ)

∥∥2

L2(R;H)
=

2m∑
k=0

Ck
2m

(
Am−kξkû (ξ) , Am−kξkû (ξ)

)
L2(R;H)

−

−β
(
Am−jξj û (ξ) , Am−jξj û (ξ)

)
L2(R;H)

=

=

+∞∫
−∞

([
(ξ2E + A2)m − βξ2jA(2m−j)

]
û (ξ) , û (ξ)

)
L2(R;H)

dξ,

(7)
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where û (ξ) is a Fourier transformation of the vector-function u (t). Since for β ∈ [0, b−2
j ),

it follows from the spectral expansion of the operator A that

(((
ξ2E + A2

)m − βξ2jA2(m−j)
)

x, x
)

=

+∞∫
−∞

((
ξ2 + μ2

)m − βξ2jμ2(m−j)
)

(dEμx, x) =

=

∞∫
μ0

(
1 − β

ξ2jμ2(m−j)

(ξ2 + μ2)μ

)(
ξ2 + μ2

)
(dEμx, x) ≥

∞∫
μ0

(
1 − βb2

j

) (
ξ2 + μ2

)
(dEμx, x) ;

then equality (6) yields

|||u|||2Wm
2 (R;H) ≥ β

∥∥∥Am−ju(j)
∥∥∥2

L2(R;H)
, (8)

for all β ∈ [0, b−2
j and u(t) ∈ D(R; H). Passing to the limit as β → b−2

j we get

|||u|||2Wm
2 (R;H) ≥ d

−m/2
m,j

∥∥∥Am−ju(j)
∥∥∥2

L2(R;H)
.

Hence it follows

∥∥∥Am−ju(j)
∥∥∥2

L2(R;H)
≤ d

m/2
m,j |||u|||2Wm

2 (R;H) ,
(
j = 0, m

)
. (9)

Show that inequalities (9) are exact. To this end, for the given ε > 0 we show the
existence of the vector-function uε (t) ∈ Wm

2 (R; H) , such that

E (uε) = |||u|||2Wm
2 (R;H) − (d−m

m,j + ε)
∥∥∥Am−ju(j)

∥∥∥2

L2(R;H)
< 0. (10)

We’ll look for uε (t) in the form uε (t) = gε (t)ϕε (t) , where gε (t) is a scalar function from
the space Wm

2 (R) and ϕε ∈ H2m, where ‖ϕε‖ = 1. Using the Plancherel theorem, we
write E (uε) in the equivalent form

E (uε) =

+∞∫
−∞

(((
ξ2E + A2

)m −
(
d−m

m,j + ε
)
ξ2jA2m−2j

)
ϕε, ϕε

)
|ĝε (ξ)|2 dξ.

Note that û (ξ) and ĝε (ξ) are the Fourier transformations of the vector-functions u (t)
and gε (t), respectively.
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Notice that if A has even if one even value μ, then for ϕε we can choose appropriate

eigen-vector ϕε = ϕ (‖ϕ‖ = 1) . Indeed, then at the point ξ0 = (j/m)1/2 · μ
(((

ξ2
0E + A2

)m −
(
d−m

m,j + ε
)
ξ2j
0 A2m−2j

)
ϕε, ϕε

)
=

(
ξ2
0 + μ2

)m −

−
(
d−m

m,j + ε
)
ξ2j
0 μ2m−2j =

(
ξ2
0 + μ2

)m

[
1 −

(
d−m

m,j + ε
) ξ2j

0 μ2m−2j

(ξ2 + μ2)m

]
< 0. (11)

If the operator A has no eigenvalue, for μ ∈ σ (A) and for any δ > 0 we can construct
a vector ϕδ, ‖ϕδ‖ = 1 such that

Aδϕδ = μmϕδ + 0 (1, δ) , δ → 0, m = 1, 2, ...

In this case, and for ξ0 = (j/m)1/2
μ and

(((
ξ2E + A2

)m −
(
d−m

m,j + ε
)
ξ2j
0 A2m−2j

)
ϕδ , ϕδ

)
=

=
((

ξ2
0 + μ2

)
−

(
d−m

m,j + ε
)
ξ2jμ2m−2j

)
+ 0 (1, δ) .

Thus for small δ > 0 it holds inequality (11). Consequently, for any ε > 0 there will
be found a vector ϕε (‖ϕε‖ = 1), for which

(((
ξ2E + A2

)m −
(
d−m

m,j + ε
)
ξ2j
0 A2m−2j

)
ϕε, ϕε

)
< 0 (12)

Now for ξ = ξ0 we construct gε (t). Since the left hand side of inequality (12) is
a continuous function from the argument ξ, it is true at some vicinity of the point ξ0.
Assume that inequality (12) holds in the vicinity (η1, η2). Then we construct ĝ (ξ)-
infinitely-differentiable function of argument ξ with support in (η1, η2) and denote it by

gε (t) =
1√
2π

η2∫
η1

ĝ (ξ) eiξtdξ.

It follows from the Paley-Wienere theorem that gε (t) ∈ Wm
2 (R) and obviously
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E (uε) = E (ge, ϕε) =

=

η2∫
η1

(((
ξ2E + A2

)m −
(
d−m

m,j + ε
)
ξ2jA2m−2j

)
ϕε, ϕε

)
|ĝε (ξ)|2 dξ < 0,

i.e. inequalities (9) are exact. The lemma is proved. �

The Main Result

Now let’s prove the main theorem.

Theorem 3.1. Let A be a positive-definite self-adjoint operator in H, the operators
Bj = Aj · A−j

(
j = 0, m

)
and Dj = A−mAjA

m−j
(
j = m + 1, 2m

)
be bounded in

H and it holds the inequality

γ =
m∑

j=0

d
m/2
m,j ‖Bj‖ +

2m∑
j=m+1

d
m/2
m,2m−j ‖Dj‖ < 1, (13)

where the numbers dm,j are determined from lemma 2.
Then equation (1) has a unique generalized solution and the inequality

‖u‖Wm
2 (R;H) ≤ const ‖f‖L2(R;H)

holds.

Proof. Show that for γ < 1 for all vector-functions ψ ∈ Wm
2 (R; H) it holds the

inequality

(P (d/dt)ψ, ψ)L2(R;H) ≡

≡ ‖ψ‖2
Wm

2 (R;H) +
2m∑
k=1

Ck
2m

∥∥∥Am−kψ(k)
∥∥∥2

L2(R;H)
+ L (ψ, ψ) ≥ C ‖ψ‖2

Wm
2 (R;H) ,

where C > 0 is a constant number.
Obviously, ∣∣∣(P (d/dt)ψ, ψ)L2(R;H)

∣∣∣ ≥ |||ψ|||2Wm
2 (R;H) − |L (ψ, ψ)| . (14)
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Since

|L (ψ, ψ)| <

m∑
j=0

∣∣∣∣(Ajψ
(m−j), ψ(m)

)
L2(R;H)

∣∣∣∣ +
2m∑

j=m+1

∣∣∣∣(Ajψ
(2m−j), ψ

)
L2(R;H)

∣∣∣∣ ,

then we use lemma 2 and get

|L (ψ, ψ)| ≤

⎛
⎝ m∑

j=0

‖Bj‖ d
m/2
m,j +

2m∑
j=m+1

‖Dj‖ d
m/2
m,2m−j

⎞
⎠ |||ψ|||2Wm

2 (R;H) =

= γ‖ψ‖Wm
2 (R;H).

(15)

Allowing for inequality (15) in (14), we get

∣∣∣(P (d/dt)ψ, ψ)L2(R;H)

∣∣∣ ≥ (1 − γ) |||ψ|||2Wm
2 (R;H) . (16)

Further, we consider the problem

P0 (d/dt)u (t) = f (t) ,

where f(t) ∈ L2(R; H). It is easy to see that the vector function

u0 (t) =
1
2π

+∞∫
−∞

(
ξ2 + A2

)m

+∞∫
−∞

f (s) e−2(s−ξ)dsdξ (17)

belongs to the space Wm
2 (R; H) and satisfies the condition

(u0, ψ) = (f, ψ) .

Now we’ll look for the generalized solution of equation (1) in the form
u = u0 + ξ0, where ξ0 ∈ Wm

2 (R; H). Putting this expression into equality (5), we
get

(P (d/dt)u, ψ)L2(R;H) = −L (u0, ψ) , ψ ∈ Wm
2 (R; H) . (18)

The right hand-side is a continuous functional in Wm
2 (R; H), the left hand-side

satisfies Lax-Milgram [6] theorem’s conditions by inequality (16). Therefore, there exists
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a unique vector function u (t) ∈ Wm
2 (R; H) satisfying equality (18). On the other hand,

for ψ = u it follows from inequality (16) that

∣∣∣(P (d/dt)u, u)L2(R;H)

∣∣∣ =
∣∣∣(f, u)L2(R;H)

∣∣∣ ≥ C |||u|||2Wm
2 (R;H) ≥ C ‖u‖2

Wm
2 (R;H) ,

then hence it follows
‖u‖Wm

2 (R;H) ≤ const ‖f‖L2(R;H) .

The theorem is proved. �
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