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Abstract

In this paper we introduce the concept of primary finitely compactly packed

modules, which generalizes the concept of primary compactly packed modules. We

first find the conditions that make the primary finitely compactly packed modules

primary compactly packed. Also, several results on the primary finitely compactly

packed modules are proved. In addition, the necessary and sufficient conditions for

an R−module M to be primary finitely compactly packed are investigated. Finally,

we introduce the S-Avoidance Theorem for modules.
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1. Introduction

Let Mbe a unitary R−module, where Ris a commutative ring with identity. A proper
submodule Nof M is primary if rm ∈ N for r ∈ Rand m ∈ M implies that either m ∈ Nor
rnM ⊆ N for some positive integer n. It is known that a proper submodule Nof an
R−module M is primary compactly packed (pcp) if for each family {Pα}α∈λof primary
submodules of Mwith N ⊆ ∪

α∈λ
Pα, ∃β ∈ λ such that N ⊆ Pβ. A moduleM is called pcp if

every proper submodule of M is pcp; see [3]. We generalizes the concept of pcp modules
to the concept of primary finitely compactly packed (pfcp) modules. Thus we say that
a proper submodule Nof an R−module M is pfcp if for each family {Pα}α∈λof primary

submodules ofMwith N ⊆ ∪
α∈λ

Pα, ∃α1, α2, ..., αn ∈ λ such that N ⊆
n
∪

i=1
Pαi . A module
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M is said to be pfcp if every proper submodule of M is pfcp.
In section 2 of this paper, we give some examples of pfcp modules and find the relation

between pcp modules and pfcp modules. We also find the conditions that make a pfcp
module pcp.

In section 3, we investigate some properties of pfcp modules. We also find the necessary
and sufficient conditions for any R-module Mto be pfcp.

In 1997 Chin Pi Lu proved the Prime Avoidance Theorem for modules, see [9].
Mohammed El- Atrash and Arwa Ashour introduced the Primary Avoidance Theorem
for modules in 2005, see [3]. In Section 4 of this paper we introduce and prove the
S−Avoidance Theorem for modules.

Throughout this paper, all rings are assumed to be commutative rings with identity
and all modules will be unitary.

2. Relation Between Primary Compactly Packed Modules and Primary
Finitely Compactly Packed Modules

We first recall the following definitions.

Definitions 2.1 Let Mbe a unitary R−module, where Ris a commutative ring with
identity. A proper submodule Nof M is primary if rm ∈ N for r ∈ Rand m ∈ M implies
that either m ∈ Nor rnM ⊆ N for some positive integer n.

A proper submodule Nof an R−module M is primary compactly packed (pcp) if for
each family {Pα}α∈λof primary submodules of Mwith N ⊆ ∪

α∈λ
Pα, ∃β ∈ λ such that

N ⊆ Pβ. A module M is said to be pcp if every proper submodule of M is pcp.
Now we give the following definition.

Definitions 2.2 A proper submodule N of M is primary finitely compactly packed (pfcp)
if for each family {Pα}α∈λ of primary submodules of M with N ⊆ ∪

α∈λ
Pα, ∃α1, α2, ..., αn ∈

λ such that N ⊆
n
∪

i=1
Pαi. A module M is said to be pfcp if every proper submodule of M

is pfcp.

Remark 2.3 It is clear from the definitions that every pcp module is pfcp module; how-
ever, the converse is not true, as illustrated in the following first example.
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Examples 2.4 1) Let V be a vector space with dimension greater than 2 over the field
F = Z/2Z.

Then every submodule of V is prime, so every submodule of V is primary. Let e1 and
e2 be distinct vectors of a basis for V . Let V1 = e1F, V2 = e2F, V3 = (e1 + e2)F and let
L = V1 + V2 . Then L = {0, e1, e2, e1 + e2}. Thus V1, V2 and V3 are primary submodules

of V with the property that L ⊆
3
∪

i=1
Vi, but L �⊂ Vi, ∀i ∈ {1, 2, 3}. Thus Lis pfcp, however

Lis not pcp.
2) If M is an R-module that contains only a finite number of primary submodules,

then M is pfcp module.

Theorem 2.5 Let M be an R-module in which every finite family of primary submodules
of M is totally ordered by inclusion; then M is pcp if and only if M is pfcp.

Proof.
(→) Trivial
(←) Let N ⊆

⋃

α∈λ

Pα, where Pαis primary submodule for each α. Since M is pfcp,

there exist α1, α2, ..., αnsuch that N ⊆
n⋃

i=1
Pαi. Since the family {Pαi}n

i=1 of primary

submodules of M is totally ordered by inclusion, there exists β ∈ {α1, α2, ..., αn} such

that
n⋃

i=1
Pαi = Pβ. Thus M is pcp. �

We remember now the Primary Avoidance Theorem for modules, which was proved in
[3].

Theorem 2.6 (The Primary Avoidance Theorem for Modules)
Let Mbe an R-module, L1, L2, ..., Ln a finite number of submodules of Mand L a

submodule of M such that L ⊆ L1 ∪ L2 ∪ ... ∪ Ln. Assume that at most two of the
L′

is, i = 1, 2, ..., n are not primary and that (Lj : M) �⊂
√

(Lk : M) whenever j �= k. Then
L ⊆ Lk for some k ∈ {1, 2, ..., n}.

The following Theorem follows immediately from the Primary Avoidance Theorem for
modules.

Theorem 2.7 If M is an R-module with the property that for each submodule L of
M if L ⊆ L1 ∪ L2 ∪ ... ∪ Ln in which at most two of the L′

is are not primary, and

(Lj : M) �⊂
√

(Lk : M) whenever j �= k, then M is pcp if and only if M is pfcp.
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3. Important Results on Primary Finitely Compactly Packed modules

The following Theorem was proved in [1] for pcp modules, we prove that it is also
satisfied for pfcp modules.

Theorem 3.1 If M is pfcp module which has at least one maximal submodule, then M

satisfies the ACC on primary submodules.

Proof. Let N1 ⊆ N2 ⊆ ... be an ascending chain of primary submodules of M and
let L =

⋃

i

Ni. If L = M and H is a maximal submodule of M , then H ⊂
⋃

i

Ni. Since

M is pfcp, ∃n1, n2, ..., nk such that H ⊆
k⋃

j=1

Nnj . Since N1 ⊆ N2 ⊆ ... is an ascending

chain, ∃m ∈ {1, 2, ..., k} such that
k⋃

j=1

Nnj = Nnm = Nr for some r ∈ {1, 2, 3, ...}. Since

H is maximal, H = Nr . Since Nr ⊆ Nr+i ⊆
⋃

i

Ni, ∀i = 1, 2, ... and Nr is maximal, then

Nr+i =
⋃

i

Ni = M , which is impossible. Thus L must be a proper submodule of M. Now

since M is pfcp, ∃n1, n2, ..., ns such that L ⊆
r⋃

j=1
Nnj . Since N1 ⊆ N2 ⊆ ... is an ascend-

ing chain, ∃m ∈ {1, 2, ..., r} such that
r⋃

j=1
Nnj = Nnm = Nk for some k ∈ {1, 2, 3, ...}.

Hence N1 ⊆ N2 ⊆ ... ⊆ Nk = Nk+1 = .... Therefore the ACC is satisfied for primary
submodules. �

Since every finitely generated module and every multiplication module has a proper
maximal submodule , see[2], then we have the following Corollary.

Corollary 3.2 Let M be a pfcp R−module. If M is a finitely generated or a multiplication
R−module, then M satisfies the ACC on primary submodules.

Theorem 3.3 If M is an R−module with the property that every non empty family of
primary submodules of M is totally ordered by inclusion, and suppose that M satisfies
the ACC on primary submodules; then M is pfcp.

Proof. Let N be a submodule of M with the property that N ⊆
⋃

α∈λ

Pα, where Pαis

primary submodule of M for each α. Then by the hypothesis {Pα} is totally ordered by

318



ASHOUR

inclusion and satisfies the ACC on primary submodules, therefore there exists β ∈ λ such
that

⋃
Pα ⊆ Pβ. Hence N ⊆ Pβ for some β ∈ λ. Thus M is pcp. Hence M is pfcp. Recall

the following definitions (see[10]). �

Definitions 3.4 A ring R is Bezout if every finitely generated ideal of R is principal. A
module M is called a Bezout module if every finitely generated submodule is cyclic.

Theorem 3.5 Let Mbe a multiplication R−module. If one of the following conditions
holds:

i) R is a Bezout ring.

ii) M is a Bezout module.

iii) M is a cyclic module.

Then M is pfcp if and only if every primary submodule of M is pfcp.

Proof. The necessity is trivial. To prove the sufficiency, suppose that every primary

submodule of M is pfcp. Let N be a proper submodule of M with the property that
N ⊆

⋃

α∈λ

Qα, where Qαis primary submodule of M for each α. We have two cases:

Case1:
⋃

α∈λ

Qα = M. Since N is a proper submodule of a multiplication module, then

by [2], there exists a primary submodule Q that contains N.By the assumption Qis pfcp.

Thus N ⊆ Q ⊆ M =
⋃

α∈λ

Qα. Since Q is pfcp, ∃α1, α2, ..., αn such that Q ⊆
n⋃

i=1

Qαi that

is N ⊆
n⋃

i=1
Qαi . Hence N is pfcp. Therefore M is pfcp.

Case 2:
⋃

α∈λ

Qα ⊂ M. Then by [3], there exists a primary submodule Qsuch that

N ⊆ Q ⊆
⋃

α∈λ

Qα and by the hypothesis Qis pfcp. Thus ∃α1, α2, ..., αr such that

N ⊆ Q ⊆
r⋃

i=1
Qαi. Thus N is pfcp. Hence M is pfcp. �
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4. S -Avoidance Theorem for Modules

In this section we introduce the S-Avoidance Theorem for modules and prove some
results ons-prime submodules.

We start with the following definitions.

Definitions 4.1

• A proper idealP of a ring Ris called an s-prime ideal of R if for any elements a, b

∈R such that a b ∈ P and b /∈ P, then a2 ∈ P.

• A proper submodule N of an R-moduleM is called an s-prime submodule of M if for
any r ∈R and x /∈ N with the property that r x ∈ N, then r2 M ⊆ N.

Now we prove the following result.

Proposition 4.2 If N is an s−prime submodule of an R-module M , then
(N:M )= { r- r ∈R , r M ⊆ N } is an s-prime ideal of R.

Proof. Let a b ∈ (N : M), where a, b ∈ R and b /∈ (N:M), then b M �⊆ N. Thus there
exists m ∈ M such that b m /∈ N. But a ( b m ) ∈ N and N is an s−prime submodule of
M . Thus a2 M ⊆ N. Hence a2 ∈ (N : M). Therefore (N : M) is an s−prime ideal of R. �

Proposition 4.2. can be generalized as follows.

Proposition 4.3 If N is an s−prime submodule of an R-module M , then
(N : M)1/n = { r- r ∈R , rn M ⊆ N } is an s-prime ideal of Rfor any positive integer

n.

Proof. Let n be a positive integer. Let a b ∈ (N : M)1/n, where a, b ∈ R and
b /∈ (N:M)1/n, then bn M �⊆ N. Thus there exists m ∈ M such that bn m /∈ N. But

an(bn m ) ∈ N and N is an s−prime submodule of M . Thus a2n M ⊆ N. Hence a2 ∈
(N : M)1/n. Therefore (N : M)1/n is an s−prime ideal of R. �

Now we recall the following definition, see[5].

Definitions 4.4 Let L, L1, L2 , . . . , Ln be submodules of an R−module M. We call a
covering L ⊆ L1 ∪ L2∪ . . . ∪ Ln efficient if no Lk is superfluous ( i.e. we cant find k

such that L ⊆ Lk, k ∈ {1, 2, ...n}). Analogously we shall say that L = L1 ∪ L2∪ . . . ∪
Ln is an efficient union if non of the Lk’s may be excluded.
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Remark 4.5

• Any cover or union consisting of submodules of M can be reduced to an efficient
one called an efficient reduction by deleting any unnecessary submodules.

• A covering of a submodule by two submodules of a module is never efficient. Thus
L ⊆ L1 ∪ L2∪ . . . ∪ Ln may be possibly an efficient covering only when n = 1 or
n > 2, see [7].

The next result was proved for ideals in [7] and Lu in [9] pointed out that the same
result is also remains valid if ideals are replaced with subgroups of any group as in the
following Lemma.

Lemma 4.6 Let L = L1 ∪ L2∪ . . . ∪ Ln be an efficient union of submodules of an

R−module M for n >1. Then
n⋂

j = 1
j �= k

Lj =
n⋂

j=1

Lj for all k, 1≤ k ≤ n.

Now we can prove the following Proposition.

Proposition 4.7 Let L ⊆ L1 ∪ L2∪ . . . ∪ Ln be an efficient covering of submodules of
an R−module M where n >1. If (Lj : M) �⊆ (Lk : M)1/n for n =1,2 and 4, for every
j �=k, then no Lk for k ∈ { 1,2,. . . ,n } is an s−prime submodule of M.

Proof. Since L ⊆ L1 ∪ L2∪ . . . ∪ Ln is an efficient covering ,
L = ( L ∩ L1) ∪ ( L ∩ L2)∪ . . . ∪ ( L ∩ Ln) is an efficient union. Hence for every

k ∈ { 1,2,. . . ,n }, there exists an element ek ∈ L – Lk. Moreover by Lemma 4.6. ,
n⋂

j = 1
j �= k

(L ∩Lj) ⊆ (L ∩ Lk). Now if j �=k, then (Lj : M) �⊆ (Lk : M)1/n for every

n =1,2 and 4. Thus there exists an element sj ∈ (Lj : M) but sj /∈ (Lk : M)1/n

for every n =1,2 and 4. Suppose that Lk is an s−prime submodule of M for some
k ∈ {1, 2, ..., n},then by Proposition 4.3 (Lk : M)1/n is an s−prime ideal of R for any

positive integer n.Therefore s =
n∏

j = 1
j �= k

sj ∈ (Lj : M), but s /∈ (Lk : M)1/2. Conse-

quently, sek ∈ L ∩ Lj for each j �=k. We will prove that sek /∈ L ∩ Lk. Suppose for
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contrary that sek ∈ L ∩ Lk , thensek ∈ Lk.Since ek /∈ Lk and Lk is an s−prime sub-
module of M, then s2M ⊆ Lk. Thus s ∈ ( Lk : M)1/2 which is a contradiction. Thus

sek /∈ L ∩ Lk . Therefore
n⋂

j = 1
j �= k

(L ∩ Lj) �⊂ (L ∩ Lk), but this contradicts Lemma 4.6.

Hence no Lk is s−prime. �

Now we are ready to introduce and prove the S−Avoidance Theorem for modules.

Theorem 4.8 (The S−Avoidance Theorem for Modules)
Let Mbe an R-module, L1, L2, ..., Ln a finite number of submodules of Mand let L be

a submodule of M such that L ⊆ L1 ∪ L2 ∪ ... ∪ Ln. Assume that at most two of the
L′

is, i = 1, 2, ..., n are not s−prime and that (Lj : M) �⊆ (Lk : M)1/n for every n =1,2
and 4 for every j �=k. Then L ⊆ Lk for some k ∈ {1, 2, ..., n}.
Proof. For the given covering L ⊆ L1 ∪ L2 ∪ ... ∪ Ln, let

L ⊆ Li1 ∪ Li2∪ . . . ∪ Lim be its efficient reduction. Then 1 ≤ m ≤ n and m �= 2.
If m > 2, then there exists at least one Lij to be s−prime. In view of Proposition

4.7. this is impossible. Hence m = 1,namely L ⊆ Lk for some k ∈ {1, 2, ..., n}. �

Now, we remember the following definition.

Definitions 4.9 Let L1, L2, ..., Ln be submodules of an R−module M. Let L1 + e1, L2 +
e2, ..., Ln+en be ncosets in M. We call a covering L ⊆ (L1 +e1)∪(L2+e2)∪ ...∪(Ln+en)
efficient if no coset is superfluous ( i.e., we cant find k such that L ⊆ Lk + ek, k ∈
{1, 2, ...n}).

Remark 4.10 If ek = e for every k ∈ {1, 2, ...n}, then the above covering in Definitions
4.9. is equivalent to L− e ⊆ L1 ∪L2 ∪ ...∪Ln and this is a coset efficiently covered by a
union of submodules.

The following Lemma was proved by C.Gottlieb in 1994, see [5].

Lemma 4.11 Let L ⊆ (L1 + e1) ∪ (L2 + e2) ∪ ...∪ (Ln + en) be
efficient covering of a submodule L by cosets, where n ≥ 2. Then
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L ∩ (
n⋂

j = 1
j �= k

Lj) ⊆ Lk, but L �⊂ Lk for all k.

Proposition 4.12 Let L + e ⊆ L1 ∪ L2 ∪ ...∪ Ln be an efficient covering with n ≥ 2.

If (Lj : M) �⊆ (Lk : M)1/n for every n =1,2 and 4, for every j �=k, then no Lk for
k ∈ { 1,2,. . . ,n } is an s−prime submodule of M.

Proof. By Lemma 4.11. L∩(
n⋂

j = 1
j �= k

Lj) ⊆ Lk, but L �⊂ Lk. Put I = (
n⋂

j = 1
j �= k

Lj : M).

Then IL ⊆ (L∩(
n⋂

j = 1
j �= k

Lj)) ⊆ Lk. Suppose Lk is an s−prime submodule of M for some

k, then we have the following two cases:
Case 1: either L ⊆ Lk, which is impossible; or

Case 2: I = (
n⋂

j = 1
j �= k

Lj : M) =
n⋂

j = 1
j �= k

(Lj : M) ⊆ (Lk : M)1/2, and this implies

that
(Lj : M) ⊆ (Lk : M)1/n for some n =1,2 or 4 for some j �=k, because as in

Proposition 4.3. (N : M)1/n is an s-prime ideal of Rfor any positive integer n.

However, this case is also impossible.
Hence no Lk is an s−prime submodule of M. �

Theorem 4.13 Let L + e ⊆ L1 ∪ L2 ∪ ...∪Lnbe a covering such that at most two of the
L′

is, i = 1, 2, ..., n are not s−prime and that (Lj : M) �⊆ (Lk : M)1/n for every
n =1,2 and 4 for every j �=k. Then the submodule L + eR ⊆ Lk for some k ∈

{1, 2, ..., n}.
Proof. For the given covering L + e ⊆ L1 ∪ L2 ∪ ... ∪ Ln let

L+e ⊆ Li1 ∪Li2 ∪ ...∪Lim be its efficient reduction. Then 1 ≤ m ≤ n. and m �= 2. If
m � 2, then there exists at least one Lij , 1 ≤ j ≤ m to be s−prime. In view of Proposi-
tion 4.12. this is impossible. Hence m = 1, namely L + e ⊆ Lk for some k ∈ {1, 2, ..., n}.
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This implies that L + eR ⊆ Lk as e = 0 + e ∈ L + e ⊆ Lk. �
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