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Killing and Geodesic Lightlike Hypersurfaces of

Indefinite Sasakian Manifolds

Fortuné Massamba

Abstract

In this paper, we study a lightlike hypersurface of indefinite Sasakian manifold,

tangent to the structure vector field ξ. Theorems on parallel and Killing distributions

are obtained. Necessary and sufficient conditions have been given for lightlike

hypersurface to be mixed totally geodesic, D-totally geodesic, D ⊥< ξ >-totally

geodesic and D′-totally geodesic. We prove that, if the screen distribution of lightlike

hypersurface M of indefinite Sasakian manifold is totally umbilical, the D ⊥< ξ >-

geodesibility of M is equivalent to the D ⊥< ξ >-parallelism of the distribution

TM⊥ of rank 1 (Theorem 4.20). Finally, we give the D ⊥< ξ >-version (Theorem

4.22) of the Theorem 2.2 ([11], page 88).
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1. Introduction

The general theory of degenerate submanifolds of semi-Riemannian (or Riemannian)
manifolds is one of the interesting topics of differential geometry. It is well known that
semi-Riemannian submanifolds have many similarities with their Riemannian case.

However, lightlike submanifolds [3] are different due to the fact that their normal
vector bundle intersects with the tangent bundle. Thus, the study becomes more difficult
and strikingly different from the study of non-degenerate submanifolds. This means that
one cannot use, in the usual way, classical submanifold theory to define any induced
object on a lightlike submanifold. To deal with this anomaly, lightlike submanifolds were
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introduced and presented in a book by Duggal and Bejancu [11]. They introduced a non-
degenerate screen distribution to construct a nonintersecting lightlike transversal vector
bundle of the tangent bundle. Several authors have studied a lightlike hypersurface of
semi-Riemannian manifold (see [2], [5], [8] and [17], and many more references therein).
There are a few papers of general lightlike submanifold of a semi-Riemannian [3], [11], [13].
Concerning the lightlike submanifolds of indefinite Sasakian manifolds, some aspects are
studied in [4] and many more references therein. The contact geometry has significant
use in differential equations, phase spaces of dynamical systems (see [14] and [16] for
examples), and the literature about its lightlike case is very limited. Some specific
discussions on this matter can be found in [8], [12], [15] and [19].

Physically, lightlike hypersurfaces are interesting in general relativity since they pro-
duce models of different types of horizons. For instance, the existence of Killing vector
fields has often used as the most effective symmetry. In fact, since the Einstein’s field
equations are a complicated set of nonlinear partial differential equations, many exact
solutions have been found by assuming one or more Killing vector fields (see [10] and [1]
for more details and many more references therein). In particular, Carter [9] used this in-
formation in the study of a null (lightlike) hypersuface which is also a Killing horizon. On
the Latter, the relationship between killing and geodesic notions is well specified. Light-
like hypersurfaces are also studied in the theory of electromagnetism (see, for instance
[1], Chapter 8).

All of these motivated us to continue studying the geometry of lightlike hypersur-
faces of indefinite Sasakian manifolds, tangent to the structure vector field with specific
attention to the Killing and Geodesic lightlike hypersurfaces.

This paper is organized as follows. In section 2, we recall some basic definitions and
formulas for indefinite Sasakian manifolds and lightlike hypersurface of semi-Riemannian
manifolds.

In section 3, for those lightlike hypersurfaces of indefinite Sasakian manifolds which
are tangential to the structure vector field, the decomposition of almost contact metric
is given.

In section 4 we study killing, geodesic lightlike hypersurfaces in indefinite Sasakian
manifolds and parallel vector field. Some characterization of D ⊥< ξ >-killing, D-
totally geodesic and mixed-totally geodesic lightlike hypersurfaces in indefinite Sasakian
manifolds, and D-parallel are given. We obtain a necessary and sufficient condition
for integrability of some distributions. We prove that, on the lightlike hypersurface M

of Indefinite Sasakian manifold such that the screen distribution is totally umbilical,
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the D ⊥< ξ >-geodesibility of M is equivalent to the D ⊥< ξ >-parallelism of the
distribution TM⊥ of rank 1. Finally, we give the D ⊥< ξ >-version of the Theorem 2.2
([11], page 88) and discuss the effect of the screen distribution on different results found.

2. Preliminaries

2.1. Indefinite Sasakian manifolds

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact structure

(φ, ξ, η), i.e. φ is a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form
satisfying

φ
2

= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0 and rankf = 2n. (2.1)

Then (φ, ξ, η, g) is called a normal contact metric structure on M if (φ, ξ, η) is an almost
contact structure on M and g is a semi-Riemannian metric on M such that for any vector
field X , Y on M

g(ξ, ξ) = ε = ±1, η(X) = εg(ξ, X), g(φ X, φY ) = g(X, Y ) − ε η(X) η(Y )

dη(X, Y ) = g(φX, Y ), (∇Xφ)Y = g(X, Y )ξ − ε η(Y )X, (2.2)

where ∇ is the Levi-Civita connection for a semi-Riemannian metric g. In this case,
we call M an indefinite Sasakian manifold. From the first equation of (2.2), ξ is never
a lightlike vector field on M . Sasakian manifolds with indefinite metrics have been first
considered by Takahashi [18]. Their importance for physics have been point out by Duggal
[10].

According to the causal character of ξ [10], we have two classes of Sasakian manifolds.
Thus in case ξ is spacelike (ε = 1 and the index of g is an even number ν = 2r),
(respectively, timelike, ε = −1 and the index of g is an odd number ν = 2r + 1) we
say that M is called a space-like almost contact metric manifold (respectively, time-like
almost contact metric manifold).

Takahashi [18] shows that it suffices to consider those indefinite almost contact mani-
folds with spacelike ξ (see [6] for more information). Hence, from now on, we shall restrict
ourselves to the case of ξ a spacelike unit vector (that is g(ξ, ξ) = 1).

(φ, ξ, η, g) on M is called an almost contact metric structure if an almost contact

structure (φ, ξ, η) satisfies the three conditions from above in (2.2). In this case [4]

(∇Xφ)Y = g(X, Y )ξ − η(Y )X. (2.3)

327



MASSAMBA

implies ∇Xξ = −φ(X), ξ is killing vector field, (∇Xη)Y = g(φ X, Y ).
Throughout the paper, all manifolds are supposed to be paracompact and smooth. We
denote Γ(E) the smooth sections of the vector bundle E.

2.2. Lightlike hypersurfaces of semi-Riemannian manifolds

Let (M, g) be a (2n + 1)-dimensional semi-Riemannian manifold with index s, 0 < s <

2n+1 and let (M, g) be a hypersurface of M , with g = g|M . We say that M is a lightlike

hypersurface of M if g is of constant rank 2n−1 (see [11]). We consider the vector bundle
TM⊥ whose fibers are, for any p ∈ M ,

TpM⊥ =
{
Yp ∈ TpM : gp(Xp, Yp) = 0, ∀Xp ∈ TpM

}
. (2.4)

Thus, a hypersurface M of M is lightlike if and only if TM⊥ is a distribution of rank 1
on M . Let S(TM) be the complementary distribution of TM⊥ in TM , which is called a
screen distribution. From [11], we know that it is non-degenerate. Thus we have direct
orthogonal sum decomposition

TM = S(TM) ⊥ TM⊥. (2.5)

Since S(TM) is non-degenerate with respect to g, there exists a complementary orthogo-
nal vector subbundle S(TM)⊥ to S(TM) in TM over M . Hence, we have the orthogonal
decomposition

TM = S(TM) ⊥ S(TM)⊥. (2.6)

The existence of S(TM) is secured since M is paracompact. Our results will be based
on a choice of S(TM). The following normalization result is known.

Theorem 2.1 [11] Let (M, g, S(TM)) be a lightlike hypersurface of M . Then, there
exists a unique vector bundle N(TM) of rank 1 over M such that for any non-zero
section E of TM⊥ on a coordinate neighborhood U ⊂ M , there exist a unique section N

of N(TM) on U satisfying

g(N, E) = 1 and g(N, N) = g(N, W ) = 0, ∀W ∈ Γ(S(TM)|U ).

Hence, N is not tangent to M and {E, N} is a local field of frames of S(TM)⊥. Moreover
we have a one-dimensional vector subbundle N(TM) of TM over M , which is locally
spanned by N . Then we set

S(TM)⊥ = TM⊥ ⊕ N(TM), (2.7)
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where the decomposition is not orthogonal. Thus we have the following decomposition
of TM :

TM = S(TM) ⊥ S(TM)⊥ = S(TM) ⊥ (TM⊥ ⊕ N(TM)) = TM ⊕ N(TM). (2.8)

Let (M, g, S(TM)) be a lightlike hypersurface of M . If ∇ be the Levi-Civita connec-
tion on M , by using the decomposition (2.5) and (2.8), we have

∇XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM), (2.9)

and ∇XV = −AV X + ∇⊥
XV, ∀X, Y ∈ Γ(TM), V ∈ Γ(N(TM)), (2.10)

where ∇XY , AV X ∈ Γ(TM) and h(X, Y ), ∇⊥
XV ∈ Γ(N(TM)). ∇ is a symmetric linear

connection on M called an induced linear connection, ∇⊥ is a linear connection on the
vector bundle N(TM). h is a Γ(N(TM))-valued symmetric bilinear form and AV is the
shape operator of M concerning V .

We can also obtain the local version of these formulas for a pair {E, N} verifying the
properties of the Theorem 2.1. Thus, from the decomposition (2.8), the local Gauss and
Weingarten formulas are given by

∇XY = ∇XY + B(X, Y )N, ∀X, Y ∈ Γ(TM |U), (2.11)

and ∇XN = −ANX + τ (X)N, ∀X ∈ Γ(TM |U), (2.12)

where B, AN and τ are called the local second fundamental form, the local sharp operator
and the transversal 1-form, respectively, for the lightlike immersion of M in M . It is easy
to check that τ is a differential 1-form, AN is a tensor field of type (1, 1) and ∇ is a torsion-
free linear connection on M . It is important to mention that the second fundamental
form B is independent of the choice of screen distribution; in fact, from (2.11) and (2.12)
we obtain

B(X, Y ) = g(∇XY, E), ∀X, Y ∈ Γ(TM |U).

The 1-form τ on U is defined by

τ (X) = g(∇⊥
XN, E), ∀X ∈ Γ(TM |U). (2.13)

Tensors fields B and AN are not related by g, and therefore, in general AN is not
symmetric with respect to g. The 1-form τ , in general, does not vanish on M as it is
in the nondegenerate case. The induced linear connection ∇ is not a metric connection.
More precisely, we obtain from (2.11) and the fact that ∇ is a metric connection,

(∇Xg)(Y, Z) = B(X, Y )θ(Z) + B(X, Z)θ(Y ) (2.14)
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for any X, Y ∈ Γ(TM), where θ is a differential 1-form locally defined on M by

θ(X) := g(X, N), ∀X ∈ Γ(TM). (2.15)

Denote P as the projection morphism of TM on S(TM) with respect to the orthogonal
decomposition TM = S(TM) ⊥ TM⊥. Taking into account this decomposition, we
obtain the following local Gauss and Weingarten formulas with respect to S(TM):

∇XPY = ∇∗
XPY + C(X, PY )E, ∀X ∈ Γ(TM |U ), (2.16)

and ∇XE = −A∗
EX − τ (X)E, ∀X ∈ Γ(TM |U), (2.17)

where C, A∗
E and ∇∗ are called the local second fundamental form, the local shape

operator and the induced connection on S(TM). For more details about these geometric
elements, see [11]. C is not symmetric, in general, on Γ(M) × Γ(S(TM)) and A∗

E is a
tensor field of type (1, 1) on M . The following identities are valid:

g(ANX, PY ) = C(X, PY ), g(ANX, N) = 0, (2.18)

and g(A∗
EX, PY ) = B(X, PY ), g(A∗

EX, N) = 0, (2.19)

for any X, Y ∈ Γ(TM). From g(∇XE, E) = 0, we get

B(X, E) = 0, ∀X ∈ Γ(TM). (2.20)

The induced connection ∇ is torsion-free, but not necessarily metric connection. Also,
on the geodesibility of M , we know the following result which does not depend on the
screen distribution.

Theorem 2.2 ([11], page 88) Let (M, g, S(TM)) be a lightlike hypersurface of a semi-
Riemannian manifold (M, g). Then the following assertions are equivalent:

(i) M is totally geodesic.

(ii) h (or equivalently B) vanishes identically on M .

(iii) A∗
W vanishes identically on M , for any W ∈ Γ(TM⊥).

(iv) The connection ∇ induced by ∇ on M is torsion-free and metric.

(v) TM⊥ is a parallel distribution with respect to ∇.

(vi) TM⊥ is a killing distribution on M .

It turns out that if (M, g) is not totally geodesic, there is no connection that is, at the same
time, torsion-free and metric connection. But there is no unicity of such a connection in
case there is any.
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3. Lightlike hypersurfaces of indefinite Sasakian manifolds

Let (M, φ, ξ, η, g) be an indefinite Sasakian manifold and (M, g) be its lightlike hy-
persurface, tangent to the structure vector field ξ (that is, ξ ∈ TM). If E is a local section

of TM⊥, then g(φE, E) = 0, and φE is tangent to M . Thus φ(TM⊥) is a distribution

on M of rank 1 such that φ(TM⊥) ∩ TM⊥ = {0}. This enables us to choose a screen

distribution S(TM) such that it contains φ(TM⊥) as vector subbundle. We consider

local section N of N(TM). Since g(φN, E) = −g(N, φ E) = 0, we deduce that φ N is

also tangent to M and belongs to S(TM). On the other hand, since g(φ N, N) = 0, we

see that the components of φ N with respect to E vanishes. Thus φ N ∈ Γ(S(TM)).
From the third equation of (2.2) with ε = 1 we have

g(φN, φE) = 1. (3.21)

Therefore, φ(TM⊥) ⊕ φ(N(TM)) (direct sum but not orthogonal) is a nondegenerate
vector subbundle of S(TM) of rank 2.

It is known [8] that if M is tangent to the structure vector field ξ, then ξ belongs to

S(TM). Using this, and since g(φE, ξ) = g(φN, ξ) = 0, there exists a nondegenerate
distribution D0 of rank 2n − 4 on M such that

S(TM) =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >, (3.22)

where < ξ >= Span{ξ}.

Proposition 3.1 Let M be a lightlike hypersurface of an indefinite Sasakian manifold
M with ξ ∈ TM . Then, the distribution D0 is an invariant with respect to φ, that is,
φ(D0) = D0.

Proof. For any X ∈ Γ(D0) and Y ∈ Γ(TM), we have g(φX, Y ) = −g(X, φY ). For

Y = φE, we obtain g(φX, φE) = g(X, E) − η(X)η(E) = 0. Thus φX ⊥ φ(TM⊥). On

the other hand we have g(φX, E) = −g(X, φE) = 0 for any E ∈ Γ(TM⊥). Hence

φX ⊥ TM⊥. Also, we have g(φX, ξ) = 0 and g(φX, φN) = g(X, N)− η(X)η(N) = 0 for

any N ∈ Γ(N(TM)). Thus φX ⊥
{{

φ(TM⊥) ⊕ φ(N(TM))
}
⊥ TM⊥ ⊥< ξ >

}
. Finally

we derive g(φX, N) = −g(X, φN) = 0, and by summing up these results we deduce

φX ⊥
{{

φ(TM⊥) ⊕ φ(N(TM))
}
⊥ TM⊥ ⊥< ξ > ⊕N(TM)

}
,
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that is φ(D0) = D0, which proves our assertion. �

Moreover, from (2.6), (2.7), (2.8) and (3.22) we obtain the decomposition

TM =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ TM⊥, (3.23)

and TM =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ N(TM)). (3.24)

Example 3.2 Let R
7 be the 7-dimensional real number space. We consider x =

(xi)1≤i≤7 as cartesian coordinates on R
7 and define with respect to the natural field

of frames
{

∂
∂xi

}
1≤i≤7

a tensor field φ of type (1, 1) by its matrix:

φ(
∂

∂x1
) = − ∂

∂x2
, φ(

∂

∂x2
) =

∂

∂x1
+ x4

∂

∂x7
, φ(

∂

∂x3
) = − ∂

∂x4
,

φ(
∂

∂x4
) =

∂

∂x3
+ x6

∂

∂x7
, φ(

∂

∂x5
) = − ∂

∂x6
, φ(

∂

∂x6
) =

∂

∂x5
, φ(

∂

∂x7
) = 0. (3.25)

The differential 1-form η is defined by η = dx7 − x4dx1 − x6dx3. The vector field ξ

is defined by ξ = ∂
∂x7

. It is easy to check (2.1) and thus (φ, ξ, η) is an almost contact

structure on R
7. Finally we define metric g by

g = (x2
4 − 1)dx2

1 − dx2
2 + (x2

6 + 1)dx2
3 + dx2

4 − dx2
5 − dx2

6 + dx2
7 − x4dx1 ⊗ dx7

− x4dx7 ⊗ dx1 + x4x6dx1 ⊗ dx3 + x4x6dx3 ⊗ dx1 − x6dx3dx7 − x6dx7dx3 (3.26)

with respect to the natural field of frames. It is easy to check that g is a semi-Riemannian
metric and (φ, ξ, η, g) given by (3.25)–(3.26) is a Sasakian structure on R

7.

We define now a hypersurface M of (R7, φ, ξ, η, g), with ξ ∈ TM , by M = {x ∈ R
7:

x5 = x4}. Thus the tangent space TM is spanned by {Ui}1≤i≤6, where U1 = ∂
∂x1

, U2 =
∂

∂x2
, U3 = ∂

∂x3
, U4 = ∂

∂x4
+ ∂

∂x5
, U5 = ∂

∂x6
, U6 = ξ and the 1-dimensional distribution TM⊥

of rank 1 is spanned by E, where E = ∂
∂x4

+ ∂
∂x5

. It follows that TM⊥ ⊂ TM . Then

M is an 6-dimensional lightlike hypersurface of R
7. Also, the transversal bundle N(TM)

is spanned by N = 1
2

(
∂

∂x4
− ∂

∂x5

)
. On the other hand, by using the almost contact

structure of R
7 and also by taking into account the decomposition (3.23), the distribution

D0 is spanned by
{
F, φF

}
, where F = U2, φF = U1 + x4ξ and the distributions < ξ >,

φ(TM⊥) and φ(N(TM)) are spanned by ξ, φE = U3−U5+x6ξ, φN = 1
2(U3+U5+x6ξ),

respectively. Hence M is lightlike hypersurface of R
7.
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Let M(φ, ξ, η, g) be an indefinite manifold and (M, g) be its lightlike hypersurface
with ξ ∈ TM . Now, we consider the distributions on M

D := TM⊥ ⊥ φ(TM⊥) ⊥ D0, D′ := φ(N(TM)). (3.27)

Then D is invariant under φ and

TM = D ⊕ D′ ⊥< ξ > . (3.28)

Now we consider the local lightlike vector fields U := −φ N, V := −φ E. Then, from
(3.28), any X ∈ Γ(TM) is written as

X = RX + QX + η(X)ξ, QX = u(X)U, (3.29)

where R and Q are the projection morphisms of TM into D and D′, respectively, and u

is a differential 1-form locally defined on M by u(X) := g(X, V ). Applying φ to (3.29)

and (2.1) (note that φ
2
N = −N), we obtain

φ X = φ X + u(X)N, (3.30)

where φ is a tensor field of type (1, 1) defined on M by φ X := φ RX, X ∈ Γ(TM).

Again, applying φ to (3.30) and using (2.1), we also have

φ2 X = −X + η(X)ξ + u(X)U, X ∈ Γ(TM). (3.31)

Now applying φ to the equation (3.31) and since φU = 0, we obtain φ3 + φ = 0, which
shows that φ is an f-structure [20] of constant rank.

As it was proved in Bejancu-Duggal [1] any nondegenerate real hypersuface of an
indefinite almost Hermitian manifold M inherits an almost contact metric structure.
However, this is not the case for a lightlike hypersurface of the indefinite Sasakian
manifold. More precisely, by (2.3) and (3.30) we derive

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) − u(Y )v(X) − u(X)v(Y ), (3.32)

for any X, Y ∈ Γ(TM), where v is a 1-form locally defined on M by v(X) = g(X, U), ∀X ∈
Γ(TM).

Lemma 3.3 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M with
ξ ∈ TM . Then for any X, Y ∈ Γ(TM)

∇Xξ = −φX (3.33)

(∇Xu)Y = −B(X, φ Y ) − u(Y )τ (X), (3.34)

(∇Xφ)Y = g(X, Y )ξ − η(Y )X − B(X, Y )U + u(Y )ANX. (3.35)
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Proof. These expressions are derived by straightforward calculation. �

4. Killing and geodesic lightlike hypersurfaces of indefinite Sasakian mani-
folds

This section is devoted to some geometric aspects of lightlike hypersurfaces (M, g) of

indefinite Sasakian manifolds (M, φ, ξ, η, g), with ξ ∈ TM , by using the Lie derivative
and the definitions of Killing, totally geodesic and parallel.

Definition 4.1 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M .

(a) M is D or D ⊥< ξ >-totally geodesic ( respectively, D′-totally geodesic) if its
second fundamental form h satisfies h(X, Y ) = 0 (equivalently B(X, Y ) = 0), for
any X, Y ∈ Γ(D) or Γ(D ⊥< ξ >) (respectively, X, Y ∈ Γ(D′));

(b) M is mixed totally geodesic if its second fundamental form h satisfies h(X, Y ) = 0
(equivalently, B(X, Y ) = 0), for any X ∈ Γ(D ⊥< ξ >) and Y ∈ Γ(D′).

In connection with the item (b) of this definition, the mixing between < ξ > and
the subbundle D′ in term of mixed totally geodesic can not be possible because of
B(ξ, U) = −1. So, only D and D′ can be mixed in our case.

Proposition 4.2 Let M be a lightlike hypersurface of an indefinite Sasakian manifold
M with ξ ∈ TM . The Lie derivative with respect to the vector field V is given by, for
any X, Y ∈ Γ(TM),

(LV g)(X, Y ) = X.u(Y ) + Y.u(X) + u([X, Y ])− 2g(h(X, φY ), E). (4.36)

Proof. From a straightforward calculation, we have, for any X, Y ∈ Γ(TM),

g(h(X, φY ), E) = g(∇XφY, E) = X.g(Y, V ) − g(Y, [X, V ]) − g(Y,∇V X)

= X.g(Y, V ) − g(Y, [X, V ]) − V.g(Y, X) + g(∇V Y, X)

= X.g(Y, V ) − g(Y, [X, V ]) − V.g(Y, X) + g([V, Y ], X) + g(∇Y V, X)

= X.g(Y, V ) − (LV g)(X, Y ) + Y.g(X, V ) − g(V,∇Y X)

= X.u(Y ) − (LV g)(X, Y ) + Y.u(X) + u([X, Y ]) − g(h(X, φY ), E).

Thus the proof follows from this equation. �
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Definition 4.3 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M .

(a) A distribution Ξ on M is a Killing distribution if (LXg)(Y, Z) = 0, for any X ∈ Γ(Ξ)
and Y , Z ∈ Γ(TM).

(b) A distribution Ξ on M is a D or D ⊥< ξ >-Killing distribution ( respectively,
D′-Killing distribution) if (LXg)(Y, Z) = 0, for any X ∈ Γ(Ξ) and Y , Z ∈ Γ(D) or
Γ(D ⊥< ξ >) (respectively, Y , Z ∈ Γ(D′)).

Lemma 4.4 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M with
ξ ∈ TM . Then, for any X, Y ∈ Γ(TM)

g(h(X, φY ), E) = u(∇XY ). (4.37)

Proof. For any X, Y ∈ Γ(TM)

g(h(X, φY ), E) = g(∇XφY, E) = g(φ(∇XY ), E) = −g(∇XY, φE) = u(∇XY ), ,

which completes the proof. �

Expression (4.37) is equivalent to the expression (3.34) and can be deduced from the

definition of φ.

Definition 4.5 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M .

(a) A vector field W is parallel with respect to the connection ∇ if ∇XW = 0, for any
X ∈ Γ(TM).

(b) A vector field W is D or < ξ > or D ⊥< ξ >-parallel (respectively, D′-parallel)
with respect to the connection ∇ if ∇XW = 0, for any X ∈ Γ(D) or < ξ > or
X ∈ Γ(D ⊥< ξ >) (respectively, for any X ∈ Γ(D′)).

We note, from this definition, that a parallel vector field with respect to a connection
is not necessary D ⊥< ξ >-parallel or D′-parallel vector field. On the other hand, a
D ⊥< ξ >-parallel ( D and < ξ >-parallel) and D′-parallel vector field is a parallel
vector field. This because of the following relation, for a linear connection ∇ and for any
X ∈ Γ(TM) (X = RX + u(X)U + η(X)ξ)

∇RX+u(X)U+η(X)ξ (·) = ∇RX+η(X)ξ (·) + u(X)∇U (·)
= ∇RX(·) + η(X)∇ξ(·) + u(X)∇U (·). (4.38)
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Lemma 4.6 The spacelike vector field ξ is D′-parallel with respect to the induced con-
nections ∇.

Proof. Using (3.33), we have ∇Uξ = φU = 0 which completes the proof. �

Theorem 4.7 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M

with ξ ∈ TM . Then, the distribution M is D ⊥< ξ >-totally geodesic if and only if the
distribution D ⊥< ξ > is D ⊥< ξ >-parallel with respect to the induced connection ∇.

Proof. Suppose that M is D ⊥< ξ >-totally geodesic; then, for any X, Y ∈
Γ(D ⊥< ξ >), B(X, Y ) = 0. So, u(∇XY ) = g(h(X, φY ), E) = B(X, φRY ) = 0, since

φY = φY = φRY ∈ Γ(D) ⊂ Γ(D ⊥< ξ >). Conversely, suppose that D ⊥< ξ >

is D ⊥< ξ >-parallel. For X, Y ∈ Γ(D ⊥< ξ >), B(X, Y ) = B(X, RY + η(Y )ξ) =
B(X, RY )+η(Y )B(X, ξ) = B(X, RY )−η(Y )u(X). Since the distribution D is invariant

under φ, there is Z ∈ Γ(D) such that RY = φZ(= φZ). Thus, B(X, Y ) = B(X, φZ) =

g(h(X, φZ), E) = u(∇XZ) = 0, which completes the proof. �

Theorem 4.8 Let M be an indefinite Sasakian manifold and M be a mixed totally
geodesic lightlike hypersurface of M with ξ ∈ TM . Then, the distributions D ⊥< ξ >

and D are D′-parallel with respect to the induced connection ∇.

Proof. Since D ⊂ D ⊥< ξ > is invariant under φ, for any Y ∈ Γ(D ⊥< ξ >)

(Y = RY + η(Y )ξ), u(∇UY ) = g(h(U, φY ), E) = B(U, φRY ) = 0. That is, ∇UY ∈
Γ(D ⊥< ξ >). Hence D ⊥< ξ > is D′-parallel with respect to ∇. On the other
hand, u(∇URY ) = u(∇UY ) = 0, that is ∇URY ∈ Γ(D ⊥< ξ >). So we have
∇URY = R∇URY + η(∇URY )ξ. The component of ∇URY in the direction of ξ is
given by η(∇URY ) = g(∇URY, ξ) = −g(RY,∇Uξ) = −g(RY, φU) = 0, since ∇ is a
torsion-free metric connection and φU = 0. Thus ∇URY = R∇URY ∈ Γ(D) and the
proof is complete. �

Proposition 4.9 Let M be a lightlike hypersurface of an indefinite Sasakian manifold
M with ξ ∈ TM . Suppose that the distribution D ⊥< ξ > is parallel with respect to the
induced connection ∇. If the vector field V is parallel with respect to the connection ∇,
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then, for any X ∈ Γ(TM), Y ∈ Γ(D ⊥< ξ >),

(LV g)(X, Y ) = 0. (4.39)

Proof. From (4.36) we have, for any X ∈ Γ(TM), Y ∈ Γ(D ⊥< ξ >) (Y =

RY + η(Y )ξ), (LV g)(X, Y ) = Y.u(X) − u([Y, X]), since u(Y ) = 0 and g(h(X, φY ), E) =
u(∇XY ) = 0. If the vector field V is parallel with respect to the connection ∇, then, for
any X ∈ Γ(TM), Y ∈ Γ(D ⊥< ξ >),

0 = g(∇Y V, X) = Y.g(V, X) − g(V,∇Y X)

= Y.g(V, X) − g(V, [Y, X]) − g(V,∇XY )

= Y.g(V, X) − g(V, [Y, X]) = Y.u(X) − u([Y, X]).

From this expression, we complete the proof. �

It is known that lightlike submanifolds whose screen distribution is integrable have
interesting properties. Therefore, we investigate the integrability of the screen distribu-
tion.

Proposition 4.10 Let M be an indefinite Sasakian manifold and M be a D ⊥< ξ >-
totally geodesic lightlike hypersurface of M with ξ ∈ TM . Then, for any X, Y ∈ Γ(D ⊥<

ξ >)

(LV g)(X, Y ) = −(LV g)(Y, X). (4.40)

Moreover, the distribution D ⊥< ξ > is integrable if and only if φ(TM⊥) is a D ⊥< ξ >-
Killing distribution on M .

Proof. Since M is a D ⊥< ξ >-totally geodesic lightlike hypersurface of M , from The-
orem 4.7, the distribution is D ⊥< ξ > is D ⊥< ξ >-parallel. So, the expression (4.36)
becomes (LV g)(X, Y ) = u([X, Y ]), for any X, Y ∈ Γ(D ⊥< ξ >) and the equivalence
follows from the latter. �

Theorem 4.11 Let M be an indefinite Sasakian manifold and M be a D ⊥< ξ >-totally
geodesic lightlike hypersurface of M with ξ ∈ TM . Then, if the vector field V is parallel,
then, the distribution D ⊥< ξ > is integrable and φ(TM⊥) is a D ⊥< ξ >-Killing
distribution on M .
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Proof. The proof follows from the equivalences (LV g)(X, Y ) = g(∇Y V, X) = g(∇Y V, X) =
u([X, Y ]), for any X, Y ∈ Γ(D ⊥< ξ >) by using the proof of the Theorem 4.7 and Propo-
sition 4.9. �

Theorem 4.12 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M

with ξ ∈ TM . Then the distribution D ⊥< ξ > is integrable if and only if the tensor field
φ of type (1, 1) is symmetric with respect to the local second fundamental form B in the
of direction of D ⊥< ξ >, that is

B(X, φY ) = B(φX, Y ), (4.41)

for any X, Y ∈ Γ(D ⊥< ξ >).

Proof. Since ∇ is the Levi-Civita connection we have , for any X, Y ∈ Γ(D ⊥< ξ >),

g([X, Y ], φE) = g(∇XY, φE) − g(∇Y X, φE)

= g(∇Y φX, E) − g(∇XφY, E)

= g(h(φX, Y ) − h(X, φY ), E)

= B(X, φY ) − B(φX, Y ).

The Assertion follows from this equation. �

Theorem 4.13 Let M be an indefinite Sasakian manifold and M be a D ⊥< ξ >-totally
geodesic lightlike hypersurface of M with ξ ∈ TM . Then φ(TM⊥) is a D ⊥< ξ >-Killing
distribution.

Proof. From expression (4.36) and the proof of Theorem 4.12, we have for any X, Y ∈
Γ(D ⊥< ξ >), (LV g)(X, Y )−(LV g)(Y, X) = 2

(
u([X, Y ]) − g(h(X, φY ) − h(φX, Y ), E)

)
=

0. Applying the result of Proposition 4.10, we obtain (LV g)(X, Y ) = (LV g)(Y, X) =

−(LV g)(X, Y ), that is (LV g)(X, Y ) = 0. That is, φ(TM⊥) is a D ⊥< ξ >-Killing distri-
bution on M . �

It is well known that the second fundamental form and the shape operators of a non-
degenerate hypersurface (in general, submanifold) are related by means of the metric
tensor field. Contrary to this, we see from (2.16) and (2.17), in the case of lightlike
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hypersurfaces, the second fundamental forms on M and their screen distribution S(TM)
are related to their respective shape operators AN and A∗

E . As the shape operator is
an information tool in studying the geometry of submanifolds, their studying turns out
very important. Next, we study these operators and give their implications in lightlike
hypersurface of an indefinite Sasakian manifold M with ξ ∈ TM .

Lemma 4.14 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M

with ξ ∈ TM . Then, for any X ∈ Γ(TM)

B(X, U) = C(X, V ) = u(ANX), (4.42)

B(X, V ) = u(A∗
EX), (4.43)

and ∇∗
XV = φ(A∗

EX) − C(X, V )E − τ (X)V. (4.44)

Proof. The equality B(X, U) = C(X, V ) is trivial and comes from the definition of B

and the fact that the ∇ is a Levi-Civita connection:

C(X, V ) = g(AN X, V ) = u(ANX),

and B(X, V )N = ∇XV −∇XV = −∇XφE + ∇XφE

= −(∇Xφ)E − φ(∇XE) + ∇∗
XφE + C(X, φE)E

= −φ(∇XE) + ∇∗
XφE + C(X, φE)E

= φ(A∗
EX) + τ (X)φE + ∇∗

XφE + C(X, φE)E,

that is, (B(X, V ) − u(A∗
EX)) N = φ(A∗

EX) − τ (X)V + ∇∗
XφE + C(X, φE)E.

The right hand side of this equation belongs to Γ(TM), while the left hand side belongs to
Γ(N(TM)). So we have B(X, V ) = u(A∗

EX) and φ(A∗
EX) = τ (X)V +∇∗

XV +C(X, V )E,
that is, ∇∗

XV = φ(A∗
EX) − C(X, V )E − τ (X)V. �

Theorem 4.15 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M

with ξ ∈ TM . Then, M is mixed totally geodesic if and only if, for any X ∈ Γ(D ⊥< ξ >),

ANX ∈ Γ(φ(TM⊥) ⊥ D0 ⊥< ξ >). (4.45)

Proof. By definition, M is mixed totally geodesic if and only if, for any X ∈
Γ(D ⊥< ξ >), B(X, U) = 0. From (4.42) we obtain u(ANX) = g(ANX, V ) = 0. i.e.
ANX ∈ Γ(D ⊥< ξ >). Since g(ANX, N) = 0, that is, ANX has no component in

Γ(TM⊥), so we have ANX ∈ Γ(φ(TM⊥) ⊥ D0 ⊥< ξ >). The converse is clear. Thus x
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the proof. �

Theorem 4.16 Let M be a lightlike hypersurface of an indefinite Sasakian manifold
M with ξ ∈ TM . Then, M is D ⊥< ξ >-totally geodesic if and only if, for any
X ∈ Γ(D ⊥< ξ >),

A∗
EX ∈ Γ(φ(TM⊥)). (4.46)

Proof. By the definition, M is D ⊥< ξ >-totally geodesic if and only if, for any X,
Y ∈ Γ(D ⊥< ξ >), B(X, Y ) = g(h(X, Y ), E) = 0. In particular, for any X ∈ Γ(D ⊥<

ξ >) and Y = V , B(X, V ) = 0. From (4.43) we obtain u(A∗
EX) = g(A∗

EX, V ) = 0,

i.e. A∗
EX ∈ Γ(D ⊥< ξ >). Since g(A∗

EX, N) = 0, that is, A∗
EX has no component

in Γ(TM⊥), so A∗
EX ∈ Γ(φ(TM⊥) ⊥ D0 ⊥< ξ >). If A∗

EX ∈ Γ(D0 ⊥< ξ >) and
given that D0 ⊥< ξ > is nondegenerate, then there exists Z ∈ Γ(D0 ⊥< ξ >) such that
g(A∗

EX, Z) �= 0. From (2.11) and (2.17) we obtain

g(A∗
EX, Z) = −g(∇XE, Z) = −X.g(E, Z) + g(E,∇XZ)

= g(E,∇XZ) + B(X, Z)g(E, N) = 0.

Thus A∗
EX /∈ Γ(D0 ⊥< ξ >). Finally A∗

EX ∈ Γ(φ(TM⊥)). Conversely, suppose that,

for any X ∈ Γ(D ⊥< ξ >), A∗
EX ∈ Γ(φ(TM⊥)). Let BD⊥<ξ> = {E, φE, ξ, Fi, i =

1, 2, ...,2n − 4} be a local orthonormal field of frames of D ⊥< ξ > such that D0 =
Span{Fi, i = 1, 2, ..., 2n− 4}. Now, we want to show that B(X, .) vanishes in each el-
ement of BD⊥<ξ>. For any X ∈ Γ(D ⊥< ξ >) (X = RX + η(X)ξ), u(A∗

EX) = 0,

i.e. B(X, V ) = 0. B(X, ξ) = g(∇Xξ, E) = −g(φX, E) = −g(φRX, E) = 0, since

D is invariant under φ. B(X, Fi) = g(∇XFi, E) = −g(Fi,∇XE) = g(Fi, A
∗
EX) = 0,

since D0 ⊥ φ(TM⊥). Let Y be an element of Γ(D ⊥< ξ >). Locally, we have

Y = θ(Y )E +v(Y )V +η(Y )ξ +
∑

i
g(Y,Fi)
g(Fi,Fi)

Fi ∈ Γ(D ⊥< ξ >), with g(Fi, Fi) �= 0 because

of the nondegeneracy of D0. So B(X, Y ) = θ(Y )B(X, E)+v(Y )B(X, V )+η(Y )B(X, ξ)+∑
i

g(Y,Fi)
g(Fi,Fi)

B(X, Fi) = 0. Hence M is D ⊥< ξ >-totally geodesic. �

The expressions of the shape operators AN and A∗
E can be computed explicitly in the

following way. According to decomposition (3.23), we consider a local field of frames on
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M , i.e.{
φE, φN, ξ, E, Fi

}
1≤i≤2n−4

(4.47)

on U ⊂ M , where {Fi}1≤i≤2n−4 is an orthonormal field of frames of D0.

Lemma 4.17 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M

with ξ ∈ TM . Then, for any X ∈ Γ(TM),

ANX =
2n−4∑
i=1

C(X, Fi)
g(Fi, Fi)

Fi + C(X, ξ)ξ + C(X, U)V + C(X, V )U, (4.48)

and A∗
EX =

2n−4∑
i=1

B(X, Fi)
g(Fi, Fi)

Fi + B(X, ξ)ξ + B(X, U)V + B(X, V )U. (4.49)

Proof. From the definition of lightlike hypersurface of an indefinite Sasakian man-
ifold through the local field of frames (4.47), we have, for any X ∈ Γ(TM), ANX =∑2n−4

i=1 λi Fi + γ ξ + δ E + α φE + β φN. From (2.12) and (2.17) we obtain λi g(Fi, Fi) =
g(AN X, Fi) = C(X, Fi). Since D0 is nondegenerate distribution on M , g(Fi, Fi) �= 0 and

we have λi = C(X,Fi)
g(Fi,Fi)

, and γ = g(ANX, ξ) = η(ANX) = C(X, ξ), δ = g(ANX, N) = 0,

α = −g(AN X, U) = −C(X, U), β = −g(AN X, V ) = −C(X, V ), which prove (4.48).
Similarly we obtain (4.49). �

Theorem 4.18 Let M be a lightlike hypersurface of an indefinite Sasakian manifold
M with ξ ∈ TM . Then, M is D ⊥< ξ >-totally geodesic if and only if, for any
X ∈ Γ(D ⊥< ξ >),

A∗
EX = u(ANX)V. (4.50)

Proof. The proof follows from the Theorem 4.16 and the expression (4.49). �

Lemma 4.19 Let M be a lightlike hypersurface of an indefinite Sasakian manifold M

with ξ ∈ TM . Then, for any X ∈ Γ(TM),

η(ANX) = − v(X), (4.51)

and η(A∗
EX) = −u(X). (4.52)
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Proof. With the aid of ∇Xξ = −φX, we have, for any X ∈ Γ(TM), η(ANX) =

g(N,∇Xξ) = −g(N, φX) and η(A∗
EX) = g(E,∇Xξ) = −g(E, φX). �

It is also well known, in general, that if the lightlike hypersurface (M, g) is totally
geodesic, from the Theorem 2.2, the induced connection ∇ on M is torsion-free and g-
metric, and, at the same time, the other items of the theorem 2.2 are satisfied too. But,
if the lightlike hypersurface M with ξ ∈ TM is D ⊥< ξ >-totally geodesic, one of the
equivalences in Theorem 2.2 is not satisfied in the direction of the distribution D ⊥< ξ >

(Theorem 4.18), for instance. We also know that, in general, the induced connection, say
∇, on M is not a Levi-Civita connection and depends on both g and a screen distribution
S(TM) of M . This means that only some privileged conditions on the screen distribution
of M could allow one to obtain a D ⊥< ξ >-version of the Theorem 2.2.

Now, we propose a way to heal this missing gap by using the following concept. Say
that the screen distribution S(TM) is totally umbilical if on any coordinates neighborhood
U ⊂ M , there exists a smooth function ρ such that

C(X, PY ) = ρg(X, PY ), ∀ X, Y ∈ Γ(TM|U ). (4.53)

If we assume that the screen distribution S(TM) of the lightlike hypersurface M with
ξ ∈ TM is totally umbilical, then it follows that C is symmetric on Γ(S(TM)|U ) and
hence according to Theorem 2.3 in [11], the distribution S(TM) is integrable. From the
definition of the second fundamental form C and (4.53), we obtain

ANX = ρPX and C(E, PX) = 0, ∀X ∈ Γ(TM|U ). (4.54)

Since φξ = 0, and by using (4.51), we have η(AN ξ) = ρg(ξ, ξ) = −v(ξ) = 0, which
implies ρ = 0, that is the screen distribution S(TM) is totally geodesic. We now have
the following theorem.

Theorem 4.20 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Sasakian
manifold (M, g), with ξ ∈ TM , such that S(TM) is totally umbilical. Then M is
D ⊥< ξ >-totally geodesic if and only if the distribution TM⊥ is D ⊥< ξ >-parallel.

Proof. Since the screen distribution S(TM) is totally umbilical, S(TM) is totally
geodesic, that is, for any X, Y ∈ Γ(S(TM)), C(X, Y ) = 0. In particular, for any

X ∈ Γ(φ(TM⊥) ⊥ D0 ⊥< ξ >), C(X, V ) = u(ANX) = 0. From the second equation of
(4.54), C(E, V ) = 0, then, for any X0 ∈ Γ(D ⊥< ξ >), u(ANX0) = 0. From the Theo-
rem 4.18, M is D ⊥< ξ >-totally geodesic if and only if, for any X0 ∈ Γ(D ⊥< ξ >|U ),
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A∗
EX0 = 0. To complete the proof of this Theorem, we need the following result. �

Lemma 4.21 For any X0 ∈ Γ(D ⊥< ξ >|U ), A∗
EX0 = 0 if and only if ∇X0Y0 ∈

Γ(TM⊥), for any Y0 ∈ Γ(TM⊥).

Proof. Suppose, for any X0 ∈ Γ(D ⊥< ξ >|U ), A∗
EX0 = 0. Since the normal bundle

TM⊥ is a distribution on M of rank 1 and spanned by E, then, by straightforward
calculation, for any Y0 = θ(Y0)E ∈ Γ(TM⊥), ∇X0Y0 = (X0.θ(Y0) − θ(Y0)τ (X0))E ∈
Γ(TM⊥). So, the distribution TM⊥ is D ⊥< ξ >-parallel. Conversely, suppose the
distribution TM⊥ is D ⊥< ξ >-parallel. Then, for any X0 ∈ Γ(D ⊥< ξ >) and Y0 ∈
Γ(TM⊥

|U ), ∇X0Y0 ∈ Γ(TM⊥
|U ). Since TM⊥ is spanned by E, there exist a smooth functions

on M λ �= 0 such that ∇X0Y0 = λE. We have λ = g(∇X0Y0, N) = g(∇X0θ(Y0)E, N) =
X0 .θ(Y0)−θ(Y0)τ (X0). On the other hand, ∇X0Y0 = (X0.θ(Y0)−θ(Y0)τ (X0))E−A∗

EX0.
So, we have

∇X0Y0 = (X0.θ(Y0) − θ(Y0)τ (X0))E − A∗
EX0 = (X0.θ(Y0) − θ(Y0)τ (X0))E,

that is, A∗
EX0 = 0, for any X0 ∈ Γ(D ⊥< ξ >). This completes the proof. �

We can now state the D ⊥< ξ >-version of the Theorem 2.2 on the D ⊥< ξ >-
geodesibility of M .

Theorem 4.22 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Sasakian
manifold (M, g), with ξ ∈ TM , such that S(TM) is totally umbilical. Then the following
assertions are equivalent:

(i) M is D ⊥< ξ >-totally geodesic.

(ii) h (or equivalently B) vanishes identically on M in the direction of the D ⊥< ξ >.

(iii) A∗
W X = 0, for any W ∈ Γ(TM⊥) and X ∈ Γ(D ⊥< ξ >).

(iv) The connection ∇̂ = ∇|D⊥<ξ> induced by ∇ on M is torsion-tree and metric.

(v) TM⊥ is a D ⊥< ξ >-parallel distribution with respect to ∇.

(vi) TM⊥ is a D ⊥< ξ >-killing distribution on M .
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As the geometry of a lightlike hypersurface depends on the chosen screen distribution, it
is important to investigate the relationship between geometrical objects induced, studied
above, by two screen distributions. In this case, it is well known that the local second
fundamental form of M on U is independent of the choice of the screen distribution [11].

Recall the following four local transformation equations (see [11], page 87) of a change
in S(TM) to another screen S(TM)′:

W ′
i =

2n−1∑
j=1

W j
i (Wj − εjcjE), (4.55)

N ′ = N − 1
2

{
2n−1∑
i=1

εi(ci)2
}

E +
2n−1∑
i=1

ciWi, (4.56)

τ ′(X) = τ (X) + B(X, N ′ − N), (4.57)

∇′
XY = ∇XY + B(X, Y )

{
1
2

(
2n−1∑
i=1

εi(ci)2
)

E −
2n−1∑
i=1

ciWi

}
, (4.58)

where {Wi} and {W ′
i } are the local orthonormal basis of S(TM) and S(TM)′ with

respective transversal sections N and N ′ for the same null section E. ci and W j
i are

smooth functions, and {ε1, ..., ε2n−1} is the signature of the base {W1, ..., W2n−1}. The
relationship between the second fundamental forms C and C ′ of the screen distribution
S(TM) and S(TM)′, respectively, is given by (using (4.56) and (4.58)) the relation

C ′(X, PY ) = C(X, PY ) − 1
2
‖W‖2B(X, Y ) + g(∇XPY, W )

= C(X, PY ) − 1
2
g(∇XPY + B(X, Y )W, W )

= C(X, PY ) − 1
2
ω(∇XPY + B(X, Y )W ), (4.59)

where W =
∑2n−1

i=1 ciWi is the characteristic vector field of the screen change and ω

is the dual 1-form of W with respect to the induced metric g of M , that is ω(X) =
g(X, W ), ∀X ∈ Γ(TM). Therefore Theorem 4.20 and Theorem 4.22 are independent of
the screen distribution S(TM) if and only if

ω(∇XPY + B(X, Y )W ) = 0, ∀ X, Y ∈ Γ(TM). (4.60)

On the other hand, the Theorem 4.18, the expression (4.42) and (4.43) are independent
of the screen distribution S(TM).
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Before we discuss about the effect of the change of the screen distribution on the Lie
derivative (4.36), we need the following Lemma.

Lemma 4.23 The Lie derivative (4.36) is rewritten as

(LV g)(X, Y ) = (∇Xu)Y + (∇Y u)X, ∀X, Y ∈ Γ(TM). (4.61)

Proof. By straightforward calculation, we have

(∇Xu)Y + (∇Y u)X = X.u(Y ) + Y.u(X) − u(∇XY ) − u(∇Y X)

= X.u(Y ) + Y.u(X) + u([X, Y ]) − 2u(∇XY ).

¿From (4.36) and (4.37), we complete the proof. �

First we ask the following question: Is the Lie derivative LV (4.36) independent of
the choice of a screen distribution S(TM)? The answer is negative. Indeed, we prove the
following with respect to a change in S(TM).

Proposition 4.24 The Lie derivatives LV and L′
V of the screen distributions S(TM)

and S(TM)′, respectively, are related through the relation:

(L′
V g)(X, Y ) = (LV g)(X, Y ) − B(u(X)Y + u(Y )X, W ). (4.62)

Proof. Using (3.34), (4.57) and the fact that the local second fundamental form is
independent of the choice of a screen distribution, we get

(L′
V g)(X, Y ) = (∇′

Xu)Y + (∇′
Y u)X

= −B′(X, φY ) − B′(Y, φX) − u(X)τ ′(Y ) − u(Y )τ ′(X)

= −B(X, φY ) − B(Y, φX) − u(X)τ (Y ) − u(X)B(Y, W )

−u(Y )τ (X) − u(Y )B(X, W )

= (LV g)(X, Y ) − u(X)B(Y, W ) − u(Y )B(X, W )

= (LV g)(X, Y ) − B(u(X)Y + u(Y )X, W ),

which is the desired formula. �

¿From this Proposition, we have the following result.
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Theorem 4.25 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Sasakian
manifold (M, g) with ξ ∈ TM . Then, the Lie derivative LV is unique, that is, LV is
independent of S(TM), if and only if, the second fundamental form h (or equivalently B)
of M vanishes identically on M .

Proof. The proof follows form (4.58) and Theorem 2.2. �
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(1969), 271-290.

[19] Takahashi, T.: A Note on Certain Hypersurfaces of Sasakian manifolds, Kodai Math. Sem.

Rep. 21, 510-516 (1969).

[20] Yano, K., Kon, M.: Structures on manifolds, Ser. Pure Math. 3 (Singapore: World Scien-

tific) 1984.

[21] Yano, K., Kon, M.: CR-submanifolds of Kählerian and Sasakian manifolds, Progr. Math.
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