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A Condition for Warped Product Semi-Invariant
Submanifolds to be Riemannian Product
Semi-Invariant Submanifolds in Locally Riemannian
Product Manifolds

Mehmet Atceken

Abstract

In this article, we give a necessary and sufficient condition for warped product
semi-invariant submanifolds to be Riemannian product semi-invariant submanifolds
in a locally Riemannian product manifold whose factor manifolds are real space

form.
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1. Introduction

It is well-known that the notion of warped products plays some important role in dif-
ferential geometry as well as physics. The geometry of warped product was introduced by
B.Y. Chen and it has been studied in the different manifold types by many geometers[see
references).

Recently, B.Y. Chen have introduced the notion of CR-warped product in Kaehlerian
manifolds and showed that there exist no warped product CR-submanifolds in the form
M = M, x ¢ Mr in Kaehlerian manifolds. Therefore, he considered warped product CR-
submanifolds in the form M = My x¢ M, which is called CR-warped product, where
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M is an invariant submanifold and M| is an anti-invariant submanifold of Kaehlerian
manifold M 5].

We note that CR-warped products in Kaehlerian manifold correspond to semi-invariant
warped products in Riemannian product manifolds. Recently, we showed that there exist
no warped product semi-invariant submanifolds in the form M = My x ¢ M, in contrast
to Kaehlerian manifolds [1, 5]. So, in the remainder of this paper we consider warped
product semi-invariant submanifolds in the form M = M, x; My, where M, is an
anti-invariant submanifold and My is an invariant submanifold of Riemannian product
manifold M and it is called warped product semi-invariant submanifold in the rest of this

paper.

2. Preliminaries

Let M be a Riemannian manifold and M be an isometrically immersed submanifold
in M. Then the formulas of Gauss and Weingarten for submanifold M in M are given,

respectively, by

VxY =VxY +h(X,Y) (1)
and

VxV = -AvX + ViV, (2)

for any vector fields X,Y tangent to M and V normal to M, where V, V denote the
Levi-Civita connections on M, M, respectively, V' is the normal connection in T'M*,
Ay is the shape operator of M with respect to V and h is also the second fundamental

form of M. Moreover, the second fundamental form A and shape operator A are related
by

g(AVXa Y) :g(h(XaY)aV)a (3)

where g denotes the Riemannian metric on M as well as M.

Moreover, the equations of Gauss and Codazzi are given, respectively, by

RX,Y)Z = R(X,Y)Z+ Anx.2)Y — Any.yX + (Vxh) (Y, Z)
- (Vyh)(X,2) (4)
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and
{R(‘XvaY')Z}l = (th)(Y; Z) _(th)(Xa Z), (5)

for any X,Y,Z and W tangent to M, where R and R denote the Riemannian curva-
ture tensors of M and M, respectively, and {R(X,Y)Z}* is the normal component of

R(X,Y)Z.

The covariant derivative of h is defined by
(Vxh)(Y,Z) = Vxh(Y, Z) = W(VxY, Z) = h(Y,VxZ). (6)

Now, let M; and M be two Riemannian manifolds with Riemannian metrics ¢g; and
go, respectively, and f > 0 be a smooth function on M;. We consider the product manifold
M; x My with its projections 7 : My x My — M; and i : My X Ms — M. The warped
product M = M; x ¢ My is a manifold M; x M; equipped with the Riemannian metric

tensor such that
9(X,Y) = g1 (m X, 7.Y) + (for)>ga (1. X, n.Y) (7)

for any X,Y € T'(T'M), where T'(TM) means the set of all differentiable vector fields on
M and * the symbol stands for differential. Thus we have g = g; + f2gs.

The function f is called warping function of the warped product manifold M =
My x ¢ M. If warping function is constant, then warped product is called Riemannian
product. Furthermore, if we denote the Levi-Civita connection on M by V, then we have

the following proposition for the warped product manifold.

Proposition 2.1 Let M = M; x; My be a warped product manifold. If X, Y € T'(T'M)
and V,W € T'(TMs), then we have

(1) VxY e T(T M) is the lift of VxY on My; and

(2) VxV =VyX = X(In f)V;

(3) VyW = VoW — S8V graqf

where, VM2 is the Levi-Civita connection on Ma[7].

Let M be a m-dimensional Riemannian manifold with Riemannian metric g and
{e1,€2,...,em} be an orthonormal frame on M. For a smooth function ¢ on M, the
Gradient grade, the Hessian H? and the Laplacian A¢ of ¢ are defined, respectively, by

g(gradg, X) = X¢ (8)
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H?(X,Y)=XY¢— (VxY)p=g(Vxgrads,Y) 9)
and
Dp =Y {(Verer) — exerd} (10)
k=1

for any vector fields X,Y tangent to M. From (9) and (10), it is easily seen that the
Laplacian is negative of the Hessian as a specific case.
Let M be a compact orientable Riemannian manifold without boundary. Then we

have
/ A¢pdV =0, (11)
M

where dV is the volume element of M[10].
A real space form is a connected Riemannian manifold of constant sectional curvature

¢, denoted by M (c). Then the Riemannian curvature tensor of M(c) is given by
R(X,Y)Z = e{g(X, 2)Y — g(Y, Z)X} (12)

for any vector fields X, Y, Z tangent to M.

Let M be an m-dimensional manifold with a tensor F' of type (1,1) such that F? = I,
F # 71 then M is said to be an almost product manifold with almost product structure
F. If an almost product manifold M has a Riemannian metric g such that g(FX,Y) =
g(X,FY), for any X,Y € ['(TM), then M is called an almost Riemannian product
manifold. We denote the Levi-Civita connection on M by V with respect to g. If
(VxF)Y =0, for any X,Y € I'(TM), then M is called a locally Riemannian product
manifold [10].

Let M be a Riemannian manifold with almost Riemannian product structure F and
M be an isometrically immersed submanifold in M. For each 2 € M, we denote by D,
the maximal invariant subspace of the tangent space T, M of M. If the dimension of D,

is the same for all x in M, then D, gives an invariant distribution on M.

Definition 2.1 M is called a semi-invariant submanifold of a locally Riemannian prod-

uct manifold M if there exist two orthogonal distributions D1 and Do on M such that
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1) TM has the orthogonal direct sum TM = Dy @& Do;
2) The distribution Dy is invariant, i.e., F(D1) = Dy;
8) The distribution Dy is anti-invariant, i.e., F(Dy) C TM*.

Furthermore, let M = M; x M, be a locally Riemannian product manifold. If the
factor manifolds My and M have constant sectional curvatures ¢; and c2, denoted M, (c1)
and M, (c2), respectively, then the Riemannian curvature tensor of locally Riemannian
product manifold M = Mj(c1) X Ma(cg) is given by

RX,Y)Z = —(a+ea){gY,2)X —g(X,2)Y +g(FY,Z)FX — g(FX, Z)FY}

+ ~ler— e){g(Y. Z)FX — g(X, Z)FY + g(FY, 2)X — g(FX, Z)Y} (13)

N N e

for any vector fields X, Y, Z tangent to M10].
Let M be a semi-invariant submanifold of a locally Riemannian product manifold M.

From the definition we have
TM =D & D*. (14)

We denote the orthogonal complementary subbundle of F(D+) in TM* by v, then

we have direct sum
TM+ =F(DY) ov. (15)

It is easily to see that v is an invariant subbundle of I'(T'M) with respect to F. Moreover,

for any vector field X tangent to M we put
FX=TX +wX, (16)

where T X and wX are the tangent part and normal part of F'X, respectively. Also, for

any vector field V' normal to M we put
FV =BV +CV, (17)

where BV and C'V are the tangent part and normal part of F'V, respectively. According
to the decomposition (15), we consider the projections Py and Py of TM LonF (Dl) and

v, respectively, then we can write the second fundamental form h of M as

hX,Y) =h(X,Y)+ ho(X,Y) (18)
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for any X,Y € T'(T'M), where we have put
hi(X,Y) = Pih(X,Y) and ha(X,Y) = Poh(X,Y).

3. Warped Product Submanifolds In Locally Riemannian Product Manifolds

Next we will give the following lemma for later use.

Lemma 3.1 Let M = M, x¢ My be a warped product submanifold of a locally Rieman-
nian product manifold M = My (c1) x Ma(cz). Then we have

2(01 +e)|XIPIVIP = [hX V)P = H™ (¥, Y) [ X]* ~ | X]*(Y In(f))?
= 9(n(X, X), (Y, Y)) (19)
for any X e T(TMr) and Y e T(TM,).
Proof.  From (5), Proposition 2.1(3) and Levi-Civita connection V connection, we
have
g(R(X,Y)FX,FY) = g(Vxh)(Y,FX)— (Vyh)(X,FX),FY)
= 9

Vxh(Y,FX) - h(VxY,FX) - h(VxFX,Y), FY)

Vih(X,FX) - h(VyX,FX) - h(VyFX,X), FY)

Vxh(Y,FX),FY)—g(h(VxY,FX),FY)
h(VxFX,Y), —g9(Vyh(X,FX),FY)

+ g(MVyX,FX),FY)+g(h(VyFX,X),FY)

= Xg(hMY,FX),FY) - g(h(Y,FX),VxFY)

— g(W(VxFX,Y),FY)—Yg(h(X,FX),FY)

+ g(MX,FX),VyFY)+g(h(VyFX,X),FY) (20)

)

for any X e T(TMr) and Y € T(TM ).
On the other hand, taking account of M being a locally Riemannian product manifold

and M = M, xy My is a warped product, then we have
g(h(Y,FX),FY) = g(VyFX,FY)=g(VyX,Y)=g(VyX,Y)
= Yhnfg(X,Y)=0 (21)
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g(VxFX,FY)=g(VxX,Y)=—g(VxY, X)
Y In fg(X, X). (22)

Moreover, considering the ambient space is locally Riemannian product, with Proposition

2.1(3), and using M , is totally geodesic in M we get

g(h(X,FX),FVyY)

g
g(FVxFX — FVxFX,h(Y,Y))

g(FVxFX — FVxFX,VyY)

g(VxX,h(Y,Y)) +g(X, FX)g(

g(VXX, VyY) +

g(h(X,FX),Fh(Y,Y) + FVyY)

(
(Fh(X, FX),h(Y,Y)) + g(Fh(X, FX),VyY)
(
(

Fgradf
f

,h(Y,Y))

g(VxX,VyY) —g(FVxFX,VyY)

g(h(Y.Y), h(X, X)) + }g(X, FX)g(h(Y,Y), Fgradf)

%g(x, FX)g(gradf, FVyY)

a(h(X, X), h(Y,Y)) + }g@c FX)g(h(Y,Y), Fgradf)

}g<x,x>g<vyxgradf>. (23)

Furthermore, using (1), (2), taking account of A and h being symmetric, we infer

g(h(Y,Y),gradf) =

which implies that

g(h(Y,Y), Fgradf) = 0.

9(VyY, Fgradf) = g(Vy FY,gradf) = —g(AryY, grad f)

Y (Y, Fgradf) — g(Y,Vy Fgradf) = —g(Vygradf, FY)
—g(h(Y, gradf), FY) = —g(Vgraas FY,Y)

g(Apygradf,Y), (24)

(25)
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Thus equation (23) becomes

grad f
7 )
= g(h(X,X),h(Y,Y)) = g(X, X)(VyY)In f. (26)

g(h(X,FX),FVyY) = g(h(X,X) h(Y)Y)) - g(X, X)g(VyY.

In the (20), our assertion becomes

g(h(Y,FX),VxFY) = g(h(Y,FX),Fh(X,Y)+ FVxY)

= g(h(Y,FX),Fh(X,Y)) 4+ g(h(Y, FX),Y In f(FX))
= g(Fh(Y,FX),h(X,Y))

= g(FVyFX — FVyFX, h(X,Y))

= g(VyX,h(X,Y)) =Y In fg(X, h(X,Y))

= X, V)% (27)
Also, considering (21) and Proposition 2.1(3), we arrive at

d
g(W(VxFX,Y),FY) gradf

g((VXTFX —

9(X,FX),Y),FY)
= g(h(VY"FX,Y),FY)

- g9(X, FX)%g(h(gradf, Y),FY)

e FX)}g(h(gradf, Y), FY), (28)

and here, taking account of (25) we get

g(h(gra’dfa Y)a FY) = g(vygra’dfa FY) = _g(vY FK gra'df)
—g(VyY, Fgradf) = —g(h(Y,Y), Fgradf) = 0. (29)
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Substituting these equations into (20), consider (22) again and using (8) and (9), we

find

g(R(X,Y)FX,FY)

—[IR(X, Y)II* + Y((Y In f)g(X, X))

g(h(X, X), h(Y,Y)) = (X, X)(VyY)In f

Y In fg(h(X, FX), FY)

—[Ih(X, Y)II* + V(Y In fg(X, X))

g(h(X, X), h(Y,Y)) = g(X, X)(VyY)In f

(Y'In f)?9(X, X)

—[|R(X, V)| + Y (Y In f)g(X, X) + Y (9(X, X))Y In f
g(h(X, X), h(Y,Y)) — (VyY)In fg(X, X)

(Y'In f)?9(X, X)

— WX, V)| + V(Y In f)g(X, X) + 2V In fg(Vy X, X)
g(h(X,Y), h(X,Y)) — (VyY)In fg(X, X)

(Y'In f)?9(X, X)

~[IR(X,Y)[* + Y (Y In f)g(X, X) + (Y In f)*g(X, X)
g(h(X, X), h(Y,Y)) — (VyY)In fg(X, X)

—[Ih(X, V) + H™ (Y, Y)g(X, X) + (Y In f)’g(X, X)

g9(h(X, X), h(Y,Y)). (30)

Taking account (13) and (30), we conclude that

1 1
- @+ IXIPIVIZ = J (e — )Y [P(FX, X) = —[|a(X, V)]

+ H™(Y,Y)g(X, X) + (YIn f)?g(X, X) + g(h(X, X), h(Y,Y)). (31)

Here g(FX,X) = 0 can be choosen. Because, in the locally Riemannian product
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manifolds, choosing the vector fields 7. X and 7.X which have the same length, then

from (7), X and FX be orthogonal vector which gives our assertion and (31) becomes

1
XY = Jle+ ) XPIY*+ B (Y, Y)g(X, X)
+ (YIn f)?9(X, X) + g(h(X, X), h(Y,Y)). (32)
This completes proof of the lemma. g

Theorem 3.1 Let M = M, x5 Mr be a compact orientiable warped product semi-
invariant submanifold in a locally Riemannian product manifold
M = Mj(c1) x Ma(cz). Then M is a Riemannian product submanifold if and only if

Z (th)Q = Z Z Z hfzh% cl + 02) (33)

1i=1 k=1 j=114i=1 k=1

q p S S
j=

where hf = g(h(e?,e;), Ni) and {e1,e2,...,ep}, {e',€?,....;e?} and {Ni, No, ..., N5} are
orthonormal bases for T(TMy ), T'(TMr) and T'(v), respectively.

Proof.  From (10) and (9), respectively, we have

P q
Aln f = — Zg(ve%grad Inf,e)— Zg(vejgrad In f,e’). (34)
=1

i=1
Making use of V being Levi-Civita connection and (9) we have

H™ (e;,e;) = eile;Inf) — (Ve,eq)Inf
= eig(ei,gradln f) — g(Ve,e;, gradln f)
= g(Ve,ei,gradln f) + g(Ve,gradIn f, e;) — g(Ve,e;, gradIn f)
= g(Vggradln f,e;). (35)

Moreover, taking account of gradf € T'(T'M ), Proposition 2.1(3) and consider (34), (35)

we arrive at
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q

P
—ZHlnf(@ia ;) — Zg(vejgradlnf, ej)

Aln f

P q
— Z Hlnf(ei, e;) — Z{ejg(gradln f.el) — g(gradln f, Vejej)}

=1

14 q . .
_ iy oy N yidEradfie?)  glgradf, Vee’)
;H (eisei) JZ:I{ 7 7 }

—zp:Hlnf(ei,ez zq: g(gradf, - (jj,ej)%gradf)}

P q
1 Z
— E Hln f(ei; e'L - f_ eJ eJ gra’df’ gradf)

P
n q
—ZHI Teirer) — Fl\gradfl\Q-

(36)

Now, let {Fey, Fes, ..., Fey, N1, No, ..., N5} be an orthonormal basis for TM+ =
F(T'M,) @ v such that {Feq, Fes, ..., Fep} and {N1, Na, ..., Ny} are orthonormal bases

for F(T'M,) and v, respectively. By direct calculations, we have

> g(h(X, X), Fe;)Fe;+ > g(h(X, X), N;j)N;

i=1 j=1

h(X, X)

p s
=3 g(X, FX)(ein f)Fe; + 3 g(h(X, X), N;)N;
i=1 j=1

p
Zg h(Y,Y) FekFek—i—Zg (Y,Y), N))N;.
k=1 =1

Here, since A is self-adjoint, we have
g(h(Y,Y), Fer) = g(VyY,Fer) =g(VyFY,ex) = —g(ApyY, ex)
g(AFYeka Y) = 0)
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that is, h(Y,Y") has no component in F(TM, ). Thus we have

S
WY, Y) =Y g(h(Y,Y), N)Ni. (39)
=1
Thus from (37) and (39), we have

S S

Zzg(h(XaX)a Nj)g(h(K Y), Nk)g(Nja Ni)

k=1j=1

g9(h(X, X), h(Y,Y))

S

= g9(h(X, X), Ni)g(h(Y,Y), Ni)

k=1
S
= g(ANanX)g(ANkKY)' (40)
k=1
In the same way, we have
P
WX Y)P = Y g(h(X,Y), Fe)g(h(X,Y), Fe;)
i=1

+ g(h(XaY)aNk)g(h(XaY)aNk)
k=1

= g(M(X,Y), Ni)g(h(X,Y), N). (41)
k=1

Let X =e',e?,...,e?and Y = ey, €9, ..., €, be in (32) and taking account of (36), then we

infer
1S P 1S
Alnf = == "3 S ()P +=D D> hihg
PiDim = 1 == =1
+ 2(01—1—02) fQngade +qz e; In f)? (42)
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On the other hand, we can easily see that

P

Y (e f)? =) (glgradinf,e:))® = Z(g(g, e;))? = 7 >_gleradf,e;)?

i=1 i=1 i=1

1
Fl\gradfl\2

and hence (42) becomes

S S

1 p q 1 p q
Alnf = —=3"3"N k)24 Zthzhﬁj =(c1 4 ¢2)
p k=11:=1 j=1 q k=1 1i=1 j=1
1-g¢g
b LD g, (13)
f
From (11) and (43) we conclude
s p q 1 s p q
JRED 30 3D UHETED 90 9) ST RS [CRTS
M k=14i=1 j=1 950 =1
1-g¢g
+ ( 7 )ngade?}dV =0. (44)

Here if (33) is satisfied, (44) implies that gradf = 0 which is equivalent to f is a

constant function on M, because ¢ # 1. Thus M is a Riemannian product.

Conversely, if M is a Riemannian product, then we have
o(V2X,Y) = g(VzFX,FY) = g(h(Z,FX),FY) = 0,

for any X € T(TMr), Y € T(TM,) and Z € T'(T'M), which implies that h(Z, FX) €

I'(v). Then our assertion is valid. O
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