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Abstract

In this article, we give a necessary and sufficient condition for warped product

semi-invariant submanifolds to be Riemannian product semi-invariant submanifolds

in a locally Riemannian product manifold whose factor manifolds are real space

form.
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1. Introduction

It is well-known that the notion of warped products plays some important role in dif-

ferential geometry as well as physics. The geometry of warped product was introduced by

B.Y. Chen and it has been studied in the different manifold types by many geometers[see

references].

Recently, B.Y. Chen have introduced the notion of CR-warped product in Kaehlerian

manifolds and showed that there exist no warped product CR-submanifolds in the form

M = M⊥ ×f MT in Kaehlerian manifolds. Therefore, he considered warped product CR-

submanifolds in the form M = MT ×f M⊥, which is called CR-warped product, where
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MT is an invariant submanifold and M⊥ is an anti-invariant submanifold of Kaehlerian

manifold M̄ [5].

We note that CR-warped products in Kaehlerian manifold correspond to semi-invariant

warped products in Riemannian product manifolds. Recently, we showed that there exist

no warped product semi-invariant submanifolds in the form M = MT ×f M⊥ in contrast

to Kaehlerian manifolds [1, 5]. So, in the remainder of this paper we consider warped

product semi-invariant submanifolds in the form M = M⊥ ×f MT , where M⊥ is an

anti-invariant submanifold and MT is an invariant submanifold of Riemannian product

manifold M and it is called warped product semi-invariant submanifold in the rest of this

paper.

2. Preliminaries

Let M̄ be a Riemannian manifold and M be an isometrically immersed submanifold

in M̄ . Then the formulas of Gauss and Weingarten for submanifold M in M̄ are given,

respectively, by

∇̄XY = ∇XY + h(X, Y ) (1)

and

∇̄XV = −AV X + ∇⊥
XV, (2)

for any vector fields X, Y tangent to M and V normal to M , where ∇̄, ∇ denote the

Levi-Civita connections on M̄ , M , respectively, ∇⊥ is the normal connection in TM⊥,

AV is the shape operator of M with respect to V and h is also the second fundamental

form of M . Moreover, the second fundamental form h and shape operator A are related

by

g(AV X, Y ) = g(h(X, Y ), V ), (3)

where g denotes the Riemannian metric on M as well as M̄ .

Moreover, the equations of Gauss and Codazzi are given, respectively, by

R̄(X, Y )Z = R(X, Y )Z + Ah(X,Z)Y − Ah(Y,Z)X + (∇̄Xh)(Y, Z)

− (∇̄Y h)(X, Z) (4)
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and

{R̄(X, Y )Z}⊥ = (∇̄Xh)(Y, Z) − (∇̄Y h)(X, Z), (5)

for any X, Y, Z and W tangent to M , where R̄ and R denote the Riemannian curva-

ture tensors of M̄ and M , respectively, and {R̄(X, Y )Z}⊥ is the normal component of

R̄(X, Y )Z.

The covariant derivative of h is defined by

(∇̄Xh)(Y, Z) = ∇⊥
Xh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ). (6)

Now, let M1 and M2 be two Riemannian manifolds with Riemannian metrics g1 and

g2, respectively, and f > 0 be a smooth function on M1. We consider the product manifold

M1 ×M2 with its projections π : M1×M2 −→ M1 and η : M1×M2 −→ M2. The warped

product M = M1 ×f M2 is a manifold M1 × M2 equipped with the Riemannian metric

tensor such that

g(X, Y ) = g1(π∗X, π∗Y ) + (foπ)2g2(η∗X, η∗Y ) (7)

for any X, Y ∈ Γ(TM), where Γ(TM) means the set of all differentiable vector fields on

M and ∗ the symbol stands for differential. Thus we have g = g1 + f2g2.

The function f is called warping function of the warped product manifold M =

M1 ×f M2. If warping function is constant, then warped product is called Riemannian

product. Furthermore, if we denote the Levi-Civita connection on M by ∇, then we have

the following proposition for the warped product manifold.

Proposition 2.1 Let M = M1 ×f M2 be a warped product manifold. If X, Y ∈ Γ(TM1)

and V, W ∈ Γ(TM2), then we have

(1) ∇XY ∈ Γ(TM1) is the lift of ∇XY on M1; and

(2) ∇XV = ∇V X = X(ln f)V ;

(3) ∇V W = ∇M2
V W − g(W,V )

f gradf

where, ∇M2 is the Levi-Civita connection on M2[7].

Let M̄ be a m-dimensional Riemannian manifold with Riemannian metric g and

{e1, e2, ..., em} be an orthonormal frame on M̄ . For a smooth function φ on M̄ , the

Gradient gradφ, the Hessian Hφ and the Laplacian �φ of φ are defined, respectively, by

g(gradφ, X) = Xφ (8)
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Hφ(X, Y ) = XY φ − (∇XY )φ = g(∇Xgradφ, Y ) (9)

and

�φ =
m∑

k=1

{(∇ekek)φ − ekekφ} (10)

for any vector fields X, Y tangent to M̄ . From (9) and (10), it is easily seen that the

Laplacian is negative of the Hessian as a specific case.

Let M̄ be a compact orientable Riemannian manifold without boundary. Then we

have
∫

M̄

�φdV = 0, (11)

where dV is the volume element of M̄ [10].

A real space form is a connected Riemannian manifold of constant sectional curvature

c, denoted by M̄(c). Then the Riemannian curvature tensor of M̄(c) is given by

R(X, Y )Z = c{g(X, Z)Y − g(Y, Z)X} (12)

for any vector fields X, Y, Z tangent to M̄ .

Let M̄ be an m-dimensional manifold with a tensor F of type (1,1) such that F 2 = I,

F �= ∓I then M̄ is said to be an almost product manifold with almost product structure

F . If an almost product manifold M has a Riemannian metric g such that g(FX, Y ) =

g(X, FY ), for any X, Y ∈ Γ(TM̄), then M̄ is called an almost Riemannian product

manifold. We denote the Levi-Civita connection on M̄ by ∇ with respect to g. If

(∇̄XF )Y = 0, for any X, Y ∈ Γ(TM̄), then M̄ is called a locally Riemannian product

manifold [10].

Let M̄ be a Riemannian manifold with almost Riemannian product structure F and

M be an isometrically immersed submanifold in M̄ . For each x ∈ M , we denote by Dx

the maximal invariant subspace of the tangent space TxM of M . If the dimension of Dx

is the same for all x in M , then Dx gives an invariant distribution on M .

Definition 2.1 M is called a semi-invariant submanifold of a locally Riemannian prod-

uct manifold M̄ if there exist two orthogonal distributions D1 and D2 on M such that
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1) TM has the orthogonal direct sum TM = D1 ⊕ D2;

2) The distribution D1 is invariant, i.e., F (D1) = D1;

3) The distribution D2 is anti-invariant, i.e., F (D2) ⊂ TM⊥.

Furthermore, let M̄ = M̄1 × M̄2 be a locally Riemannian product manifold. If the

factor manifolds M̄2 and M̄2 have constant sectional curvatures c1 and c2, denoted M̄1(c1)

and M̄2(c2), respectively, then the Riemannian curvature tensor of locally Riemannian

product manifold M̄ = M̄1(c1) × M̄2(c2) is given by

R(X, Y )Z =
1
4
(c1 + c2){g(Y, Z)X − g(X, Z)Y + g(FY, Z)FX − g(FX, Z)FY }

+
1
4
(c1 − c2){g(Y, Z)FX − g(X, Z)FY + g(FY, Z)X − g(FX, Z)Y } (13)

for any vector fields X, Y, Z tangent to M̄ [10].

Let M be a semi-invariant submanifold of a locally Riemannian product manifold M̄ .

From the definition we have

TM = D ⊕ D⊥. (14)

We denote the orthogonal complementary subbundle of F (D⊥) in TM⊥ by ν , then

we have direct sum

TM⊥ = F (D⊥) ⊕ ν. (15)

It is easily to see that ν is an invariant subbundle of Γ(TM̄) with respect to F . Moreover,

for any vector field X tangent to M we put

FX = TX + ωX, (16)

where TX and ωX are the tangent part and normal part of FX, respectively. Also, for

any vector field V normal to M we put

FV = BV + CV, (17)

where BV and CV are the tangent part and normal part of FV , respectively. According

to the decomposition (15), we consider the projections P1 and P2 of TM⊥ on F (D⊥) and

ν , respectively, then we can write the second fundamental form h of M as

h(X, Y ) = h1(X, Y ) + h2(X, Y ) (18)
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for any X, Y ∈ Γ(TM), where we have put

h1(X, Y ) = P1h(X, Y ) and h2(X, Y ) = P2h(X, Y ).

3. Warped Product Submanifolds In Locally Riemannian Product Manifolds

Next we will give the following lemma for later use.

Lemma 3.1 Let M = M⊥ ×f MT be a warped product submanifold of a locally Rieman-

nian product manifold M̄ = M̄1(c1) × M̄2(c2). Then we have

1
4
(c1 + c2)‖X‖2‖Y ‖2 = ‖h(X, Y )‖2 − H ln f (Y, Y )‖X‖2 − ‖X‖2(Y ln(f))2

− g(h(X, X), h(Y, Y )) (19)

for any X ∈ Γ(TMT ) and Y ∈ Γ(TM⊥).

Proof. From (5), Proposition 2.1(3) and Levi-Civita connection ∇ connection, we

have

g(R̄(X, Y )FX, FY ) = g((∇̄Xh)(Y, FX) − (∇̄Y h)(X, FX), FY )

= g(∇⊥
Xh(Y, FX) − h(∇XY, FX) − h(∇XFX, Y ), FY )

− g(∇⊥
Y h(X, FX) − h(∇Y X, FX) − h(∇Y FX, X), FY )

= g(∇̄Xh(Y, FX), FY ) − g(h(∇XY, FX), FY )

− g(h(∇XFX, Y ), FY ) − g(∇̄Y h(X, FX), FY )

+ g(h(∇Y X, FX), FY ) + g(h(∇Y FX, X), FY )

= Xg(h(Y, FX), FY ) − g(h(Y, FX), ∇̄XFY )

− g(h(∇XFX, Y ), FY ) − Y g(h(X, FX), FY )

+ g(h(X, FX), ∇̄Y FY ) + g(h(∇Y FX, X), FY ) (20)

for any X ∈ Γ(TMT ) and Y ∈ Γ(TM⊥).

On the other hand, taking account of M̄ being a locally Riemannian product manifold

and M = M⊥ ×f MT is a warped product, then we have

g(h(Y, FX), FY ) = g(∇̄Y FX, FY ) = g(∇̄Y X, Y ) = g(∇Y X, Y )

= Y lnfg(X, Y ) = 0 (21)
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and

g(h(X, FX), FY ) = g(∇̄XFX, FY ) = g(∇XX, Y ) = −g(∇XY, X)

= −Y ln fg(X, X). (22)

Moreover, considering the ambient space is locally Riemannian product, with Proposition

2.1(3), and using M⊥, is totally geodesic in M we get

g(h(X, FX), F ∇̄Y Y ) = g(h(X, FX), Fh(Y, Y ) + F∇Y Y )

= g(Fh(X, FX), h(Y, Y )) + g(Fh(X, FX),∇Y Y )

= g(F ∇̄XFX − F∇XFX, h(Y, Y ))

+ g(F ∇̄XFX − F∇XFX,∇Y Y )

= g(∇̄XX, h(Y, Y )) + g(X, FX)g(
F gradf

f
, h(Y, Y ))

+ g(∇̄XX,∇Y Y ) − g(F∇XFX,∇Y Y )

= g(h(Y, Y ), h(X, X)) +
1
f

g(X, FX)g(h(Y, Y ), F gradf)

+ g(∇XX,∇Y Y ) +
1
f

g(X, FX)g(gradf, F∇Y Y )

= g(h(X, X), h(Y, Y )) +
1
f

g(X, FX)g(h(Y, Y ), F gradf)

− 1
f

g(X, X)g(∇Y Y, gradf). (23)

Furthermore, using (1), (2), taking account of A and h being symmetric, we infer

g(h(Y, Y ), gradf) = g(∇̄Y Y, F gradf) = g(∇̄Y FY, gradf) = −g(AFY Y, gradf)

= Y (Y, F gradf) − g(Y, ∇̄Y F gradf) = −g(∇̄Y gradf, FY )

= −g(h(Y, gradf), FY ) = −g(∇̄gradfFY, Y )

= g(AFY gradf, Y ), (24)

which implies that

g(h(Y, Y ), F gradf) = 0. (25)
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Thus equation (23) becomes

g(h(X, FX), F ∇̄Y Y ) = g(h(X, X), h(Y, Y )) − g(X, X)g(∇Y Y,
gradf

f
)

= g(h(X, X), h(Y, Y )) − g(X, X)(∇Y Y ) ln f. (26)

In the (20), our assertion becomes

g(h(Y, FX), ∇̄XFY ) = g(h(Y, FX), Fh(X, Y ) + F∇XY )

= g(h(Y, FX), Fh(X, Y )) + g(h(Y, FX), Y lnf(FX))

= g(Fh(Y, FX), h(X, Y ))

= g(F ∇̄Y FX − F∇Y FX, h(X, Y ))

= g(∇̄Y X, h(X, Y )) − Y lnfg(X, h(X, Y ))

= ‖h(X, Y )‖2. (27)

Also, considering (21) and Proposition 2.1(3), we arrive at

g(h(∇XFX, Y ), FY ) = g(h(∇MT

X FX − gradf

f
g(X, FX), Y ), FY )

= g(h(∇MT

X FX, Y ), FY )

− g(X, FX)
1
f

g(h(gradf, Y ), FY )

= −g(X, FX)
1
f

g(h(gradf, Y ), FY ), (28)

and here, taking account of (25) we get

g(h(gradf, Y ), FY ) = g(∇̄Y gradf, FY ) = −g(∇̄Y FY, gradf)

= −g(∇̄Y Y, F gradf) = −g(h(Y, Y ), F gradf) = 0. (29)
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Substituting these equations into (20), consider (22) again and using (8) and (9), we

find

g(R̄(X, Y )FX, FY ) = −‖h(X, Y )‖2 + Y ((Y ln f)g(X, X))

+ g(h(X, X), h(Y, Y )) − g(X, X)(∇Y Y ) lnf

+ Y ln fg(h(X, FX), FY )

= −‖h(X, Y )‖2 + Y (Y ln fg(X, X))

+ g(h(X, X), h(Y, Y )) − g(X, X)(∇Y Y ) lnf

− (Y lnf)2g(X, X)

= −‖h(X, Y )‖2 + Y (Y ln f)g(X, X) + Y (g(X, X))Y ln f

+ g(h(X, X), h(Y, Y )) − (∇Y Y ) lnfg(X, X)

− (Y lnf)2g(X, X)

= −‖h(X, Y )‖2 + Y (Y ln f)g(X, X) + 2Y lnfg(∇Y X, X)

+ g(h(X, Y ), h(X, Y )) − (∇Y Y ) ln fg(X, X)

− (Y lnf)2g(X, X)

= −‖h(X, Y )‖2 + Y (Y ln f)g(X, X) + (Y lnf)2g(X, X)

+ g(h(X, X), h(Y, Y )) − (∇Y Y ) lnfg(X, X)

= −‖h(X, Y )‖2 + H ln f(Y, Y )g(X, X) + (Y ln f)2g(X, X)

+ g(h(X, X), h(Y, Y )). (30)

Taking account (13) and (30), we conclude that

− 1
4
(c1 + c2)‖X‖2‖Y ‖2 − 1

4
(c1 − c2)‖Y ‖2g(FX, X) = −‖h(X, Y )‖2

+ H ln f(Y, Y )g(X, X) + (Y lnf)2g(X, X) + g(h(X, X), h(Y, Y )). (31)

Here g(FX, X) = 0 can be choosen. Because, in the locally Riemannian product
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manifolds, choosing the vector fields π∗X and η∗X which have the same length, then

from (7), X and FX be orthogonal vector which gives our assertion and (31) becomes

‖h(X, Y )‖2 =
1
4
(c1 + c2)‖X‖2‖Y ‖2 + H ln f (Y, Y )g(X, X)

+ (Y ln f)2g(X, X) + g(h(X, X), h(Y, Y )). (32)

This completes proof of the lemma. �

Theorem 3.1 Let M = M⊥ ×f MT be a compact orientiable warped product semi-

invariant submanifold in a locally Riemannian product manifold

M̄ = M̄1(c1) × M̄2(c2). Then M is a Riemannian product submanifold if and only if

q∑
j=1

p∑
i=1

s∑
k=1

(hk
ij)

2 =
q∑

j=1

p∑
i=1

s∑
k=1

hk
iih

k
jj +

pq

4
(c1 + c2), (33)

where hk
ij = g(h(ej , ei), Nk) and {e1, e2, ..., ep}, {e1, e2, ..., eq} and {N1, N2, ..., Ns} are

orthonormal bases for Γ(TM⊥), Γ(TMT ) and Γ(ν), respectively.

Proof. From (10) and (9), respectively, we have

�ln f = −
p∑

i=1

g(∇eigrad lnf, ei) −
q∑

j=1

g(∇ejgrad ln f, ej). (34)

Making use of ∇ being Levi-Civita connection and (9) we have

H ln f(ei, ei) = ei(ei lnf) − (∇eiei) lnf

= eig(ei, grad ln f) − g(∇eiei, grad lnf)

= g(∇eiei, grad lnf) + g(∇eigrad lnf, ei) − g(∇eiei, grad lnf)

= g(∇eigrad ln f, ei). (35)

Moreover, taking account of gradf ∈ Γ(TM⊥), Proposition 2.1(3) and consider (34), (35)

we arrive at
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�ln f = −
p∑

i=1

H ln f (ei, ei) −
q∑

j=1

g(∇ej grad ln f, ej)

= −
p∑

i=1

H ln f (ei, ei) −
q∑

j=1

{ejg(grad ln f, ej) − g(grad ln f,∇ejej)}

= −
p∑

i=1

H ln f (ei, ei) −
q∑

j=1

{ej g(gradf, ej)
f

−
g(gradf,∇eje

j)
f

}

= −
p∑

i=1

H ln f (ei, ei) −
q∑

j=1

{0 −
g(gradf,−g(ej , ej) 1

f gradf)

f
}

= −
p∑

i=1

H ln f (ei, ei) −
1
f2

q∑
j=1

g(ej , ej)g(gradf, gradf)

= −
p∑

i=1

H ln f (ei, ei) −
q

f2
‖gradf‖2 . (36)

Now, let {Fe1, F e2, ..., F ep, N1, N2, ..., Ns} be an orthonormal basis for TM⊥ =

F (TM⊥) ⊕ ν such that {Fe1, F e2, ..., F ep} and {N1, N2, ..., Ns} are orthonormal bases

for F (TM⊥) and ν , respectively. By direct calculations, we have

h(X, X) =
p∑

i=1

g(h(X, X), F ei)Fei +
s∑

j=1

g(h(X, X), Nj)Nj

= −
p∑

i=1

g(X, FX)(ei lnf)Fei +
s∑

j=1

g(h(X, X), Nj)Nj (37)

h(Y, Y ) =
p∑

k=1

g(h(Y, Y ), F ek)Fek +
s∑

l=1

g(h(Y, Y ), Nl)Nl. (38)

Here, since A is self-adjoint, we have

g(h(Y, Y ), F ek) = g(∇̄Y Y, F ek) = g(∇̄Y FY, ek) = −g(AFY Y, ek)

= −g(h(ek , Y ), FY ) = −g(∇̄ek Y, FY ) = −g(∇̄ekFY, Y )

= g(AFY ek, Y ) = 0,
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that is, h(Y, Y ) has no component in F (TM⊥). Thus we have

h(Y, Y ) =
s∑

l=1

g(h(Y, Y ), Nl)Nl. (39)

Thus from (37) and (39), we have

g(h(X, X), h(Y, Y )) =
s∑

k=1

s∑
j=1

g(h(X, X), Nj)g(h(Y, Y ), Nk)g(Nj , Nk)

=
s∑

k=1

g(h(X, X), Nk)g(h(Y, Y ), Nk)

=
s∑

k=1

g(ANk X, X)g(ANk Y, Y ). (40)

In the same way, we have

‖h(X, Y )‖2 =
p∑

i=1

g(h(X, Y ), F ei)g(h(X, Y ), F ei)

+
s∑

k=1

g(h(X, Y ), Nk)g(h(X, Y ), Nk)

=
s∑

k=1

g(h(X, Y ), Nk)g(h(X, Y ), Nk). (41)

Let X = e1, e2, ..., eq and Y = e1, e2, ..., ep be in (32) and taking account of (36), then we

infer

�ln f = −1
p

s∑
k=1

p∑
i=1

q∑
j=1

(hk
ij)

2 +
1
q

s∑
k=1

p∑
i=1

q∑
j=1

hk
iih

k
jj

+
p

4
(c1 + c2) −

q2

f2
‖gradf‖2 + q

p∑
i=1

(ei lnf)2 . (42)
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On the other hand, we can easily see that

p∑
i=1

(ei ln f)2 =
p∑

i=1

(g(grad ln f, ei))2 =
p∑

i=1

(g(
gradf

f
, ei))2 =

1
f2

p∑
i=1

g(gradf, ei)2

=
1
f2

‖gradf‖2

and hence (42) becomes

�ln f = −1
p

s∑
k=1

p∑
i=1

q∑
j=1

(hk
ij)

2 +
1
q

s∑
k=1

p∑
i=1

q∑
j=1

hk
iih

k
jj +

p

4
(c1 + c2)

+
(1 − q)

f2
‖gradf‖2. (43)

From (11) and (43) we conclude

∫
M

{−1
p

s∑
k=1

p∑
i=1

q∑
j=1

(hk
ij)

2 +
1
q

s∑
k=1

p∑
i=1

q∑
j=1

hk
iih

k
jj +

p

4
(c1 + c2)

+
(1 − q)

f2
‖gradf‖2}dV = 0. (44)

Here if (33) is satisfied, (44) implies that gradf = 0 which is equivalent to f is a

constant function on M⊥ because q �= 1. Thus M is a Riemannian product.

Conversely, if M is a Riemannian product, then we have

g(∇ZX, Y ) = g(∇̄ZFX, FY ) = g(h(Z, FX), FY ) = 0,

for any X ∈ Γ(TMT ), Y ∈ Γ(TM⊥) and Z ∈ Γ(TM), which implies that h(Z, FX) ∈
Γ(ν). Then our assertion is valid. �
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ATÇEKEN

References

[1] Atceken, M.: Warped Product Semi-Slant Submanifolds in a Locally Riemannian Product

Manifold. Bulletin of the Australian Mathematical Society (in press).

[2] Bejancu, A.: Geometry of CR-Submanifolds. Kluwer, Dortrecht (1986).

[3] Chen, B.Y.: CR-Submanifolds of a Kaehler Manifold. J.Differential Geometry, 16, 305-322

(1981).

[4] Chen, B.Y.: CR-Submanifolds of a Kaehler Manifold. J. Differential Geometry, 16, 493-509

(1981).

[5] Chen, B.Y.: Geometry of Warped Product CR-Submanifolds in Kaehler Manifolds. Monatsh.

Math.133, 177-195 (2001).

[6] Chen, B.Y.: CR-Warped Products in Complex Projective Spaces with Compact Holomorphic

Factor. Monatsh. Math.141,177-184 (2004).

[7] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983).

[8] Senlin, X. and Yilong, N.: Submanifolds of Product Riemannian Manifold. Acta Mathemat-

ica Scientia, 20(B), 213-218 2000, pp.

[9] Shahid, M.N.: CR-Submanifolds of Kaehlerian product manifold. Indian J.Pure and App.

Math. 23(12): 873-879 (1992).

[10] Yano, K. and Kon,M.: Structures on Manifolds. World Scientific (1984).

Mehmet ATÇEKEN
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