
Turk J Math

32 (2008) , 373 – 391.

c© TÜBİTAK

Dual Quaternions in Spatial Kinematics in an

Algebraic Sense

Bedia Akyar

Abstract

This paper presents the finite spatial displacements and spatial screw motions by

using dual quaternions and Hamilton operators. The representations are considered

as 4 × 4 matrices and the relative motion for three dual spheres is considered in

terms of Hamilton operators for a dual quaternion. The relation between Hamilton

operators and the transformation matrix has been given in a different way. By

considering operations on screw motions, representation of spatial displacements is

also given.
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1. Introduction

The matrix representation of spatial displacements of rigid bodies has an important
role in kinematics and the mathematical description of displacements. Veldkamp and
Yang-Freudenstein investigated the use of dual numbers, dual numbers matrix and dual
quaternions in instantaneous spatial kinematics in [9] and [10], respectively. In [10], an
application of dual quaternion algebra to the analysis of spatial mechanisms was given. A
comparison of representations of general spatial motion was given by Rooney in [8]. Hiller-
Woernle worked on a unified representation of spatial displacements. In their paper [7],
the representation is based on the screw displacement pair, i.e., the dual number extension
of the rotational displacement pair, and consists of the dual unit vector of the screw axis

AMS Mathematics Subject Classification: 53A17, 53A25, 70B10.
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and the associate dual angle of the amplitude. Chevallier gave a unified algebraic approach
to mathematical methods in kinematics in [4]. This approach requires screw theory, dual
numbers and Lie groups. Agrawal [1] worked on Hamilton operators and dual quaternions
in kinematics. In [1], the algebra of dual quaternions is developed by using two Hamilton
operators. Properties of these operators are used to find some mathematical expressions
for screw motion. The expressions of finite spatial displacements and finite infinitesimal
displacements by using dual orthogonal matrices of the Lie algebra of dual numbers and
exponentials were given by Akyar-Köse in [2].

In the present paper, the spatial motion of a point on a dual sphere is given by using
dual quaternions and Hamilton operators. The aim is to find an aspect of Hamilton
operators for dual quaternions to screw motions. It is well-known that the set of oriented
lines corresponds to the set of all unit dual vector quaternions so a dual quaternion can
be used to write the spatial motion associated with screws. One can extend the Hamilton
operators for any quaternion to the ones for any dual quaternion. The point in the
present paper is to obtain the relation between Hamilton matrices and the transformation
matrix in a different way. We are considering dual spherical motions and combining the
Hamilton matrices with the transformation matrix. That is why we may write the finite
screw motion in terms of the transition matrix for Hamilton operators. We take 3 dual
unit spheres and give the relations among them in view of spherical motion. Although the
necessary 3 × 3 dual transition matrices are already given in [2], in the present work we
express the relative motion in terms of Hamilton operators and give the relation among
the Hamilton matrices for the transformation matrices. Furthermore, we give the rates
of changes of the points on the dual spheres in terms of Hamilton operators for dual
quaternions. By considering the instantaneous screw axes of the motions with respect to
each other, we give the derivative of Hamilton matrices for a dual quaternion in terms
of the Hamilton matrices for the derivative of the same dual quaternion. At the end of
the work, we give an aspect of representation of spatial displacements by using the Lie
bracket and write the velocity in terms of the Lie bracket of Hamilton operators for dual
quaternions.

2. Dual Quaternions

Definition 2.1 A dual number â has the form a + εa′, where a, a′ ∈ R and ε2 = 0. Dual
numbers denoted by Δ form an abelian ring with unity and divisors of zero.
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Definition 2.2 An ordinary quaternion is defined as

q = a0 + a1i + a2j + a3k,

where a0, a1, a2, a3 ∈ R and 1, i, j, k of q may be interpreted as the four basis vectors of
a Cartesian set of coordinates; and they satisfy the non-commutative multiplication rules
i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. An ordinary quaternion
may be defined as a pair (s, v), where s is the scalar part (Sc) and v is the vector part of
q. The set of quaternions, H, is a real space with zero 0 = (0, 0) under the usual addition
and a multiplication by a scalar defined by

q1 + q2 = (s1 + s2, v1 + v2), λ(s, v) = (λs, λv), λ ∈ R, (1)

respectively. It is a skew field with unity e = (1, 0) under the usual addition and multi-
plication. The latter is defined by

q1.q2 = (s1.s2 − v1.v2, s1v2 + s2v1 + v1 ∧ v2). (2)

Here, ”.” denotes the scalar multiplication and ”∧” denotes the vectorial multiplication
of vectors. Finally, it is an associative algebra over R under all the operations (1) and
(2).

Definition 2.3 A dual quaternion q̂ is defined by

q̂ = â0 + â1i + â2j + â3k.

In other words, this may also be given as q̂ = q+εq′ , where q and q′ are real and pure
dual quaternion components, respectively. The set of dual quaternions is denoted by
H and we may write [q, q′] ∈ H. Under the usual operations (addition, multiplication by
a scalar) defined by

q̂1 + q̂2 = (q1 + q2, q1
′ + q2

′), λ(q, q′) = (λq, λq′), λ ∈ R,

(H, +) is an abelian group and Δ is an abelian ring with the unity e. H is a Δ-module
and it is an associative algebra under the usual quaternion multiplication defined by

q̂1.q̂2 = (q1.q2, q1q2
′ + q2q1

′).
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Though we omit ”.”, we still mean the usual multiplication. There is no difference between
writing â1i or iâ1, since εi = iε. The properties of the units for real and dual parts of the
quaternion are obtained by the rules of ordinary algebra.

The scalar part of a dual quaternion q̂ is Sq̂ = â0.
The dual vector part of a dual quaternion q̂ is V q̂ = â1i + â2j + â3k.
The Hamilton conjugate of a dual quaternion q̂ is

q̂∗ = â0 − (â1i + â2j + â3k).

The norm of a dual quaternion q̂ is

N(q̂) = q̂q̂∗ = q̂∗q̂ = â2
0 + â2

1 + â2
2 + â2

3 = qq∗ + ε(qq′∗ + q′q∗).

This is, in general, not a real number but a dual number. If N(q̂) = 1 then q̂ is called a
dual unit quaternion.

Definition 2.4 The scalar product of two dual quaternions p̂ and q̂ is defined by

(p̂, q̂) :=
1
2
(p̂∗q̂ + q̂∗p̂) =

1
2
(p̂q̂∗ + q̂p̂∗)

= â0b̂0 + â1b̂1 + â2b̂2 + â3b̂3 = (q̂, p̂),

where p̂ = p+εp′ and q̂ = q+εq′. If p̂ and q̂ are dual quaternions, then the quaternion
multiplication is given by

p̂q̂ = (â0b̂0 − â1b̂1 − â2b̂2 − â3b̂3) + (â1b̂0 + â0b̂1 − â3b̂2 + â2b̂3)i

+ (â2b̂0 + â3b̂1 + â0b̂2 − â1b̂3)j + (â3b̂0 − â2b̂1 + â1b̂2 + â0b̂3)k.

The quaternion multiplication is in general not commutative. We may consider a dual
quaternion as a tetrad of dual numbers which can also be written in a column matrix
form as

q̂ = [â0 â1 â2 â3]T ,

where

q =

⎛
⎜⎜⎜⎜⎝

a0

a1

a2

a3

⎞
⎟⎟⎟⎟⎠ , q′ =

⎛
⎜⎜⎜⎜⎝

a′
0

a′
1

a′
2

a′
3

⎞
⎟⎟⎟⎟⎠

are 4 × 1 column vectors.
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Definition 2.5 The vector product of two dual quaternions p̂ and q̂ is defined by

p̂ × q̂ =
1
2
(p̂q̂− q̂p̂).

3. Dual Unit Quaternions and Spherical Displacements

A dual unit vector quaternion corresponds to a directed line. We may consider a dual
quaternion as

q̂ = q + εq′ = a0 + a1i + a2j + a3k + ε(a0
′ + a1

′i + a2
′j + a3

′k).

There is a 1-1 correspondence between the set of oriented lines and the set of all unit
dual vector quaternions, that is, a0 = a0

′ = 0 (see [2]). Then we get q = a1i + a2j + a3k
and q′ = a1

′i + a2
′j + a3

′k. The vector quaternions q and q′ may be interpreted as the
vectors of an unambiguously determined line L having q as its direction vector and passing
through the point p = q×q′. This line becomes an oriented line. The Plücker coordinates
of an arbitrary line q̂ in space are (a1, a2, a3, a1

′, a2
′, a3

′). The dual quaternion can be
used to express the spatial transformations associated with screws. A screw motion is
described as dual angular displacement about a dual vector axis. Here the dual angular
displacement consists of a rotation (the real part of the dual angle) about the screw axis
and a translation (the dual part of the dual angle) along the screw axis. That is, the dual
vector screw axis consists of a direction (the real part of the dual vector) and its moment
(the dual part of the dual vector) about the origin.

4. Hamilton Operators

We can recall some definitions of Hamilton operators as follows.

Definition 4.1 Let q be a real quaternion then Hamilton operators
+

H,
−
H are respectively

defined as

+

H (q) =

⎛
⎜⎜⎜⎜⎝

a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0

⎞
⎟⎟⎟⎟⎠
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and

−
H (q) =

⎛
⎜⎜⎜⎜⎝

a0 −a1 −a2 −a3

a1 a0 a3 −a2

a2 −a3 a0 a1

a3 a2 −a1 a0

⎞
⎟⎟⎟⎟⎠ .

The multiplication of the two dual quaternions p̂ and q̂

p̂q̂ =
+

H (p̂)q̂ =
−
H (q̂)p̂ (3)

follows from the definition of
+

H and
−
H and it is very useful to prove several identities

([1]). Here
+
H and

−
H are seen as left (or right) translations.

Since
+

H ,
−
H are linear in their elements, it follows that

+
H (q) = a0

+
H (1) + a1

+
H (i) + a2

+
H (j) + a3

+
H (k)

−
H (q) = a0

−
H (1) + a1

−
H (i) + a2

−
H (j) + a3

−
H (k).

We extend the definition of the Hamilton operators to dual quaternions by setting

+

H (q̂) =
+

H (q) + ε
+

H (q′),

−
H (q̂) =

−
H (q) + ε

−
H (q′).

Theorem 4.2 [1] If p̂ and q̂ are two dual quaternions and
+

H,
−
H are the operators as

defined before, then we have the following identities:

(i)
+

H (p̂q̂) =
+

H (p̂)
+

H (q̂)

(ii)
−
H (p̂q̂) =

−
H (q̂)

−
H (p̂)

(iii)
+
H (

−
H (p̂)q̂) =

+
H (q̂)

+
H (p̂)

(iv)
−
H (

+

H (p̂)q̂) =
−
H (q̂)

−
H (p̂)

(v)
+

H (p̂)
−
H (q̂) =

−
H (q̂)

+

H (p̂).
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Proof. Since the first four identities are clear, we can only consider the proof of (v)
which follows by using (3) two times. That is, ∀r ∈ H, p̂r̂q̂ may be written in two
different ways:

p̂r̂q̂ =
+

H (p̂)r̂q̂ =
+

H (p̂)
−
H (q̂)r̂

p̂r̂q̂ =
−
H (q̂)p̂r̂ =

−
H (q̂)

+

H (p̂)r̂.

So one gets (v). �

5. Dual Matrices

Definition 5.1 A matrix Â is called an orthogonal dual matrix (ogdm) if ÂT Â =

ÂÂT = âI, where â is a dual number and I is the identity matrix. If â = 1, then a matrix
Â is called an orthonormal dual matrix (ondm). The row vectors (column vectors) of a
dual matrix are mutually orthogonal dual unit vectors, that is, the scalar product of two
different row (column) vectors is zero, otherwise 1. The set of orthonormal dual n × n

matrices is denoted by Ô(n). We denote the set of special orthonormal dual matrices by

ŜO(n) = {Â ∈ Ô(n) | detÂ = 1}.

The space Mn(Δ) of all n × n matrices over the ring Δ, forms a Lie algebra under the

Lie bracket operation [A, B] = AB−BA for A, B ∈ Mn(Δ). The Lie algebra of ŜO(n)
is isomorphic to the Lie algebra of vectors with the Lie bracket taken to be the vector
product.

Definition 5.2 The symplectic group is defined by

Sp(n) = {A ∈ Mn(H) | AxAy = xy for all x, y ∈ H
n}.

Sp(1) is the group of all quaternions of unit length. That is, Sp(1) = {q ∈ H | N(q) = 1}.

If we define Sk−1 = {x ∈ R
k | ‖x‖ = 1} to be the unit (k − 1)-sphere, one can see that

Sp(1) = S3, that is, Sp(1) is the unit 3-sphere in R
4; here R

4 is identified with H. Define
a map ρ : S3 → SO(3) for q ∈ S3 and α ∈ H by ρ(q)(α) = qαq∗. Here, we do a left
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translation by q and a right translation by q∗. In fact ρ(q) ∈ O(4). Note that, ρ(q∗) is
the inverse of ρ(q) in the group O(4). Moreover real quaternions commute with all other
quaternions. That is, if Scα = α, then ρ(q)α = qαq∗ = q∗qα = α. If α is in Span{i, j, k}
then one can show that ρ(q)α is also in Span{i, j, k}. These two observations imply that
ρ(q) maps the 3-space spanned by i, j, k to itself. Thus ρ(q) can be considered as an
element of O(3). By detρ(q) = 1, we identify ρ(q)|Span{i,j,k} with an element in SO(3).

Proposition 5.3 [1] ρ : S3 → SO(3) is a surjective homomorphism and Kerρ = {1,−1}.

In order to give a relation between an ondm and the Hamilton operators, we will need
the following theorems.

Theorem 5.4 [1] Matrices generated by operators
+

H and
−
H are orthogonal matrices,

i.e.,

i)
+

H (q̂)T
+

H (q̂) =
+

H (q̂)
+

H (q̂)T = N(q̂)I,

ii)
−
H (q̂)T

−
H (q̂) =

−
H (q̂)

−
H (q̂)T = N(q̂)I and

iii)
+

H (q̂) and
−
H (q̂) are orthonormal dual matrices if and only if q̂ is a unit dual

quaternion, that is, N(q̂) = 1.

Theorem 5.5 [1] Let Â be a 3× 3 orthonormal dual matrix with â.k = a.k + εa′
.k as its

k-th column vector. Then there exists one and only one vector a such that

a × a.k = a′
k, k = 1, 2, 3.

Then any 3 × 3 orthonormal dual matrix can be represented as

Â = mat(a.1 + εa × a.1, a.2 + εa × a.2, a.3 + εa× a.3),

where A = (aik) is a real orthogonal matrix.

Theorem 5.6 [1] Let Â be a 4× 4 orthonormal dual matrix with â.k = a.k + εa′
.k as its

k-th column vector. Then there exist two vectors u and v (i.e. u0 = v0 = 0) such that
a′

.k = ua.k + a.kv, k = 0, 1, 2, 3 and the vectors u and v are unique.
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Let Â be written as Â = A + εA′. By using the orthonormality condition, we get
AAT = ATA = I, A′AT + AA′T = 0. Define A′AT = B. It is clear that B is a
skew-symmetric matrix. The matrix B can be written uniquely as

B =
+

H (u)+
−
H (v),

where u and v are two vectors, i.e., u0 = v0 = 0. If we consider a dual quaternion vector

û, we can define Hamilton matrices
+

H (û) and
−
H (û) which are skew-symmetric matrices.

Here these two matrices
+

H (û),
−
H (û) are generated by using the vector component of a

quaternion only and they are written as

+

H (V û) =

⎛
⎜⎜⎜⎜⎝

0 −û1 −û2 −û3

û1 0 −û3 û2

û2 û3 0 −û1

û3 −û2 û1 0

⎞
⎟⎟⎟⎟⎠ (4)

and

−
H (V û) =

⎛
⎜⎜⎜⎜⎝

0 −û1 −û2 −û3

û1 0 û3 −û2

û2 −û3 0 û1

û3 û2 −û1 0

⎞
⎟⎟⎟⎟⎠ (5)

respectively.

6. The Transformation Matrix

Let us consider a dual-quaternion vector x̂, that is, Dx̂ = 0. We assume that we are
given two triples of points on the dual unit sphere by means of two orthonormal trihedra
{̂i1, î2, î3} and {ê1, ê2, ê3}. So we may write any point on the dual sphere as a linear
combination of the orthonormal trihedra

X̂1 î1 + X̂2 î2 + X̂3 î3 = x̂1ê1 + x̂2ê2 + x̂3ê3. (6)

The column vectors X̂i and x̂j are the position vectors of x̂ with respect to the row

vectors {̂i1, î2, î3} and {ê1, ê2, ê3}, respectively, where i = 1, 2, 3 and j = 1, 2, 3. From
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(6), we get

X̂i = (̂iiê1)x̂1 + (̂iiê2)x̂2 + (̂iiê3)x̂3. (7)

By putting (̂iiêk) = âik, and introducing the dual matrix Â = (âik), where k = 1, 2, 3,

we see that (7) expresses that X̂ = Âx̂. Here Â is an orthogonal dual matrix, called

the transformation matrix, from the trihedron {ê1, ê2, ê3} onto {̂i1, î2, î3}. For further
information see [2]. The aim is to combine this matrix with Hamilton operators and see
the role of the Hamilton operators in dual motions. Before giving the relation between
Hamilton operators and dual motion, let us consider dual spherical motions.

7. Dual Spherical Motions

By using the notations given in the previous section, we suppose that {̂i1, î2, î3} is
fixed and the vectors ê1, ê2, ê3 of {ê1, ê2, ê3} are functions of a real parameter t. Then

{ê1, ê2, ê3} moves with respect to {̂i1, î2, î3} for a dual unit sphere K2 rigidly connected

with {ê1, ê2, ê3} and a dual unit sphere K1 rigidly connected with {̂i1, î2, î3}. Here K1 is
called the fixed and K2 the moving sphere. This motion is called a dual spherical motion
and denoted by K2/K1. If x̂ ∈ K2 coincides with X̂ ∈ K1 at t, we have X̂ = Âx̂, where

Â = (âik) = A + εA′ is an ondm.

8. The Relation Between Â and the Hamilton Operators

We have already written a unique skew-symmetric matrix B =
+

H (u)+
−
H (v) for

two vectors u and v in Theorem 5.6. We would like to get a relation between Â, given

in Theorem 5.6, and the Hamilton operators
+

H and
−
H for a dual quaternion. In other

words, we want to reduce
+
H (q̂)

−
H (q̂∗) from Â, u, v mentioned in Theorem 5.6.

The following theorem is motivated by Blaschkes’s book [3].

Theorem 8.1 There is a surjective map ρ̂ : Ŝp(1) → ŜO(3) with Kerρ̂ = {−1, 1}. More

precisely, there is a 1-1 correspondence between Â and
+

H (q̂)
−
H (q̂∗) for q̂ ∈ Ŝp(1), up

to sign.
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Proof. Let q̂ ∈ Ŝp(1). We wish to argue that Â defined by Âx̂ = q̂x̂q̂∗, x̂ ∈
Span{i, j, k}, is in ŜO(3). We can easily show that Â is in ŜO(3). The following

calculation shows that Â is in ŜO(4). Indeed,

ÂÂT =
+

H (q̂)
−
H (q̂∗)[

+

H (q̂)
−
H (q̂∗)]T = I.

If x̂ is real then Âx̂ = x̂ and if x̂ ∈ Span{i, j, k} then Âx̂ ∈ Span{i, j, k}. We identify R
3

with Span{i, j, k} and since detÂ = 1, we get Â ∈ ŜO(3). Now, let Â ∈ ŜO(3). We want

to show that there exists q̂ ∈ Ŝp(1) such that Âx̂ = q̂x̂q̂∗, where x̂ ∈ Span{i, j, k}. We

need to find q̂ ∈ Ŝp(1) such that Â =
+

H (q̂)
−
H (q̂∗). Let q̂ = q + εq′, q, q′ ∈ H.

Â =
+

H (q̂)
−
H (q̂∗) =

+

H (q)
−
H (q∗) + ε[

+

H (q)
−
H (q′∗)+

+

H (q′)
−
H (q∗)].

Here the real and the dual parts of Â are

A =
+

H (q)
−
H (q∗)

A′ =
+

H (q)
−
H (q′∗)+

+

H (q′)
−
H (q∗), (8)

respectively. The first equation in (8) can be solved by using proposition 5.3, that is,
for every A, there exist two and only two normalized dual quaternions q and −q which
are mapped onto. On the other hand, by Theorem 5.6, there is a 1-1 correspondence
between Â and triples A, u, v. If A′ and A are orthonormal matrices, they are related

to vectors u, v by A′AT =
+

H (u)+
−
H (v). The second equation in (8) can be solved by

using A′AT =
+

H (u)+
−
H (v), where u and v are vectors. So we get

A′AT = [
+

H (q)
−
H (q′∗)+

+

H (q′)
−
H (q∗)][

+

H (q)
−
H (q∗)]T

=
+
H (q′q∗)+

−
H (qq′∗).

Thus u = q′q∗ and v = qq′∗. We can solve for q′, given u, v, q as

q′ = uq or q′ = v∗q.

This concludes the proof. �
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9. The Transformation Matrix for Hamilton Operators

The transformation law of real vectors, which is written in terms of quaternion form
X = qxq∗, can be replaced by the dual quaternions X̂ = q̂x̂q̂∗, where X̂ and x̂ are
dual vectors in dual unit moving and fixed spheres, respectively, and q̂ is a dual-unit-
quaternion, as in see Theorem 8.1. The advantage of dual-quaternions is obvious when
finite screw motion in terms of a screw-displacement pair is presented. We can write X̂

by using the Hamilton operators
+

H and
−
H as:

X̂ =
+

H (q̂)
−
H (q̂∗)x̂ =

−
H (q̂∗)

+

H (q̂)x̂.

The time derivative of X̂, dX̂
dt , is computed by using x̂ = q̂−1X̂q̂, which is equal to

x̂ =
+

H (q̂)T
−
H (q̂)X̂ =

−
H (q̂)

+

H (q̂∗)X̂. Then

dX̂
dt

=
+

H (
dq̂
dt

)
−
H (q̂∗)x̂+

−
H (

dq̂
dt

∗
)

+

H (q̂)x̂

=
+

H (
dq̂
dt

)
−
H (q̂∗)

−
H (q̂)

+

H (q̂∗)X̂+
−
H (

dq̂
dt

∗
)

+

H (q̂)
−
H (q̂)

+

H (q̂∗)X̂

=
+
H (

dq̂
dt

q̂∗)X̂+
−
H (q̂

dq̂
dt

∗
)X̂,

and q̂q̂∗ = 1 implies q̂dq̂
dt

∗
= −dq̂

dt
q̂∗. Therefore one concludes

dX̂
dt

=
+

H (
dq̂
dt

q̂∗)X̂−
−
H (

dq̂
dt

q̂∗)X̂.

This can also be written in terms of dual-quaternions as

dX̂
dt

= (
dq̂
dt

q̂∗)X̂ − X̂(
dq̂
dt

q̂∗)

= 2
.

q̂ q̂∗ × X̂

= ŵ × X̂,

where ŵ is the dual vector of velocity screw of a line (or the dual angular velocity of

instantaneous screw axis of the spherical motion) and it is given by ŵ = 2
.

q̂ q̂∗ or

equivalently ŵ = 2
+

H (
.

q̂)q̂∗.
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10. Relative Motion

Let K1, K2 and K3 be dual unit spheres moving with respect to each other, rigidly
connected with the bases {̂i1, î2, î3}, {ê1, ê2, ê3}, {r̂1, r̂2, r̂3}, respectively. Let x̂ ∈ K3

coincide at t with X̂ ∈ K1 and ξ̂ ∈ K2, respectively; so we write

X̂ = X̂T î = ξ̂T ê = x̂T r̂,

where

X̂ =

⎛
⎜⎝

X̂1

X̂2

X̂3

⎞
⎟⎠ , ξ̂ =

⎛
⎜⎝

ξ̂1

ξ̂2

ξ̂3

⎞
⎟⎠ , x̂ =

⎛
⎜⎝

x̂1

x̂2

x̂3

⎞
⎟⎠ ,

î =

⎛
⎜⎝

î1
î2
î3

⎞
⎟⎠ , ê =

⎛
⎜⎝

ê1

ê2

ê3

⎞
⎟⎠ and r̂ =

⎛
⎜⎝

r̂1

r̂2

r̂3

⎞
⎟⎠ .

By observing ê = ÂT î, r̂ = B̂T î, r̂ = ĈT ê, that is, ÂT î := {ÂT î1, ÂT î2, ÂT î3},
B̂T î := {B̂T î1, B̂T î2, B̂T î3}, ĈT ê := {ĈT ê1, ĈT ê2, ĈT ê3}, and introducing the dual

matrices Â = (âik), B̂ = (b̂ik) and Ĉ = (ĉik), we may express that X̂ = Âξ̂, X̂ = B̂x̂ and

ξ̂ = Ĉx̂. The necessary transformation matrices are already given in [2] with aid of 3× 3
dual matrices. Now we want to give the relative motion in terms of Hamilton operators.
We have already written the transition matrix with Hamilton operators in the previous
section. We may replace the 3×3 matrices Â, B̂ and Ĉ with the corresponding Hamilton
operators for dual quaternions by Theorem 8.1. Let us write the transition matrices for
X̂, x̂ and ξ̂ as

X̂ = q̂21ξ̂ = q̂21q̂32x̂ = q̂31x̂, (9)

where q̂21, q̂31 and q̂32 are the corresponding transition matrices in the dual spherical
motions K2/K1, K3/K1 and K3/K2, respectively. In other words,

q̂21 =
+

H (q̂Â)
−
H (q̂∗

Â
), q̂31 =

+

H (q̂B̂)
−
H (q̂∗

B̂
) and q̂32 =

+

H (q̂Ĉ )
−
H (q̂∗

Ĉ
). Then we

substitute the value of ξ̂ in X̂, we get

X̂ =
+

H (q̂Â)
−
H (q̂∗

Â
)[

+

H (q̂Ĉ)
−
H (q̂∗

Ĉ
)x̂] =

+

H (q̂Âq̂Ĉ)
−
H (q̂∗

Ĉ
q̂∗

Â
)x̂.
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Thus from (9), we get

+

H (q̂B̂)
−
H (q̂∗

B̂
) =

+

H (q̂Âq̂Ĉ)
−
H ((q̂Âq̂Ĉ)∗). (10)

We can write the sets of bases ê, î and r̂ in terms of Hamilton operators

r̂ = q̂T
32ê = q̂T

32q̂
T
21 î. (11)

The derivative of ê given in (11) becomes

dê
dt

= [
−
H (

dq̂∗
Â

dt
)T

+

H (q̂Â)T +
+

H (
dq̂Â

dt
)T

−
H (q̂∗

Â
)T ]̂i. (12)

By substituting î =
+

H (q̂Â)
−
H (q̂∗

Â
)ê in (12), we get

dê
dt

= [
−
H (q̂∗

Â

dq̂Â

dt
)+

+

H (
dq̂∗

Â

dt
q̂Â)]ê,

which follows from
+

H (q̂Â)T =
+

H (q̂∗
Â
),

+

H (q̂∗
Â
q̂Â) = I,

−
H (q̂∗

Â
q̂Â) = I

+

H (dq̂Â

dt )T =
+

H (
dq̂∗

Â

dt ) and
−
H (

dq̂∗
Â

dt )T =
−
H (dq̂Â

dt ).

Let Ω̂Â =
−
H (q̂∗

Â

dq̂Â

dt )+
+

H (
dq̂∗

Â

dt q̂Â). Thus dê
dt = Ω̂Âê, here Ω̂Â, is a 4 × 4 dual

skew-symmetric matrix defined in terms of Hamilton operators
+

H (V ) and
−
H (V ) given

in (4) and (5). From now on, we will use the notation Ω̂−̂ for the Hamilton operators
−
H (q̂∗

−̂
dq̂−̂
dt )+

+

H (
dq̂∗

−̂
dt q̂−̂). Let us compute the rate of change of r̂ with respect to K1:

dr̂
dt

= [
−
H (

dq̂∗
B̂

dt
)T

+

H (q̂B̂)T +
+

H (
dq̂B̂

dt
)T

−
H (q̂∗

B̂
)T ]̂i. (13)

By substituting î =
+

H (q̂B̂)
−
H (q̂∗

B̂
)r̂ in (13), we get

dr̂
dt

= [
−
H (q̂∗

B̂

dq̂B̂

dt
)+

+

H (
dq̂∗

B̂

dt
q̂B̂)]r̂.

Similarly, the rate of change of r̂ with respect to K2 is

δr̂
dt

= [
−
H (q̂∗

Ĉ

dq̂Ĉ

dt
)+

+

H (
dq̂∗

Ĉ

dt
q̂Ĉ)]r̂.
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The rate of change of x̂ with respect to K1 is

dx̂
dt

= (
dx̂T

dt
+ x̂T [

−
H (q̂∗

B̂

dq̂B̂

dt
)+

+

H (
dq̂∗

B̂

dt
q̂B̂)])r̂, (14)

and the rate of change of x̂ with respect to K2 is given by

δx̂
dt

= (
dx̂T

dt
+ x̂T [

−
H (q̂∗

Ĉ

dq̂Ĉ

dt
)+

+
H (

dq̂∗
Ĉ

dt
q̂Ĉ)])r̂.

If x̂ is fixed on K2 then δx̂
dt

= 0 so dx̂T

dt
= x̂T [

+

H (q̂∗
Ĉ

dq̂Ĉ

dt
)−

−
H (q̂∗

Ĉ

dq̂Ĉ

dt
)]. Let us substitute

this in (14), we obtain the velocity of x̂ fixed on K2 as

df x̂
dt

= x̂T ([
+

H (q̂∗
Ĉ

dq̂Ĉ

dt
)−

−
H (q̂∗

Ĉ

dq̂Ĉ

dt
)]− [

+

H (q̂∗
B̂

dq̂B̂

dt
)−

−
H (q̂∗

B̂

dq̂B̂

dt
)])r̂. (15)

We may express the difference in (15) only in terms of Hamilton operators for the
matrices Â and Ĉ. By deriving (10), we get

d(
+
H (q̂B̂)

−
H (q̂∗

B̂
)) =

+
H (

dq̂B̂

dt
)

−
H (q̂∗

B̂
)+

−
H (

dq̂∗
B̂

dt
)

+
H (q̂B̂)

=
+

H (
dq̂Â

dt
)

+

H (q̂Ĉ )
−
H (q̂∗

Â
)

−
H (q̂∗

Ĉ
)

+
+
H (q̂Â)

+
H (

dq̂Ĉ

dt
)

−
H (q̂∗

Â
)

−
H (q̂∗

Ĉ
)

+
+

H (q̂Â)
+

H (q̂Ĉ)
−
H (q̂∗

Â
)

−
H (

dq̂∗
Ĉ

dt
) (16)

+
+

H (q̂Â)
+

H (q̂Ĉ)
−
H (

dq̂∗
Â

dt
)

−
H (q̂∗

Ĉ
).

We know that Ω̂B̂ =
+

H (
dq̂∗

B̂

dt q̂B̂)+
−
H (q̂∗

B̂

dq̂B̂

dt ). So if we multiply d(
+

H (q̂B̂)
−
H (q̂∗

B̂
))

given in (16) by
+

H (
dq̂∗

B̂

dt )
−
H (dq̂B̂

dt ) on the left, we get Ω̂B̂ . That is,

+
H (

dq̂∗
B̂

dt
)

−
H (

dq̂B̂

dt
)d(

+
H (q̂B̂)

−
H (q̂∗

B̂
)) = Ω̂B̂ .

Thus we get

d(
+

H (q̂B̂)
−
H (q̂∗

B̂
)) =

−
H (

dq̂∗
B̂

dt
)

+

H (
dq̂B̂

dt
)Ω̂B̂ . (17)
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By doing some calculations and using the fact that B̂ = ÂĈ, which implies q̂B̂ = q̂Âq̂Ĉ ,
one can find:

Ω̂B̂ − Ω̂Ĉ = 2
−
H ((q̂Âq̂Ĉ)∗

dq̂Â

dt
q̂Ĉ)[1+

+
H ((q̂Âq̂Ĉ )∗

dq̂Â

dt
q̂Ĉ)]

+ 2
+

H ((
dq̂Â

dt
q̂Ĉ)∗q̂Âq̂Ĉ)[1+

−
H ((q̂Â

dq̂Ĉ

dt
)∗

dq̂Â

dt
q̂Ĉ)]

+ 2
−
H (q̂∗

Ĉ

dq̂Ĉ

dt
)[1+

+
H ((

dq̂Â

dt
q̂Ĉ)∗q̂Â

dq̂Ĉ

dt
)]

+ 2
+

H (
dq̂Ĉ

dt

∗
q̂Ĉ)[1+

−
H ((q̂Â

dq̂Ĉ

dt
)∗

dq̂Â

dt
q̂Ĉ)]

−
+

H (q̂∗
Ĉ

dq̂Ĉ

dt
)+

−
H (q̂∗

Ĉ

dq̂Ĉ

dt
),

which implies that

df x̂
dt

= x̂T [2
−
H ((q̂Âq̂Ĉ)∗

dq̂Â

dt
q̂Ĉ)[1+

+

H ((q̂Âq̂Ĉ )∗
dq̂Â

dt
q̂Ĉ)]

+ 2
+

H ((
dq̂Â

dt
q̂Ĉ)∗q̂Âq̂Ĉ)[1+

−
H ((q̂Â

dq̂Ĉ

dt
)∗

dq̂Â

dt
q̂Ĉ)]

+ 2
−
H (q̂∗

Ĉ

dq̂Ĉ

dt
)[

3
2
+

+

H ((
dq̂Â

dt
q̂Ĉ)∗q̂Â

dq̂Ĉ

dt
)]

+ 2
+
H (

dq̂Ĉ

dt

∗
q̂Ĉ )[

1
2
+

−
H ((q̂Â

dq̂Ĉ

dt
)∗

dq̂Â

dt
q̂Ĉ )]]r̂.

Now, we define a matrix Ŵ as Ŵ = e
+
H(

dq̂∗
Â

dt q̂Â)+
−
H(q̂∗

Â

dq̂
Â

dt ) which is an orthogonal

dual matrix, since
+

H (q̂)T =
+

H (q̂∗) and
−
H (q̂)T =

−
H (q̂∗). We will denote this by

Ŵ = eΩ̂Â . The matrix Ŵ defined before turns out to be the matrix
+

H (q̂B̂)
−
H (q̂∗

B̂
)

follows from (9) , that is,
+

H (q̂B̂)
−
H (q̂∗

B̂
) = eΩ̂Â for a dual quaternion; then we may

write the motion K3/K1 as X̂ = eΩ̂Â x̂. Note that
+

H (
dq̂∗

Â

dt q̂Â)−
+

H (dq̂Â

dt q̂∗
Â
) = 0 and

−
H (q̂∗

Â

dq̂Â

dt )−
−
H (q̂Â

dq̂Â

dt

∗
) = 0 for a dual vector quaternion. So one can get the formula

for the displacement in terms of dual quaternions as

X̂ =
∞∑

k=0

[
+

H (
dq̂∗

Â

dt q̂Â)+
−
H (q̂∗

Â

dq̂Â

dt )]k

k!
x̂.
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11. Representation of Spatial Displacements in H

One can see [4],[5] and [10] to read more about operations on screws and further
information.

Lemma 11.1 The velocity for a rigid body motion can be given by using Lie bracket as

dX̂
dt

= [ŵ, X̂].

Proof. We want to prove

d

dt
exp(

+

H (
dq̂∗

Â

dt
q̂Â)+

−
H (q̂∗

Â

dq̂Â

dt
))x̂ =

[
ŵ, exp(

+

H (
dq̂∗

Â

dt
q̂Â)+

−
H (q̂∗

Â

dq̂Â

dt
))x̂

]
(18)

for a fixed X̂, here ŵ = 2 ˙̂qÂq̂∗
Â
. This is the velocity for a rigid body motion. We have

X̂ =
+

H (q̂Â)
−
H (q̂∗

Â
)x̂

˙̂X =
+

H ( ˙̂qÂq̂∗
Â

)X̂−
−
H ( ˙̂q∗

Â
q̂∗

Â
)X̂.

We can write X̂ in terms of dual quaternions as ˙̂X = ( ˙̂qÂq̂∗
Â
)X̂ − X̂( ˙̂qÂq̂∗

Â
), which can

also be written as
˙̂X = 2( ˙̂qÂq̂∗

Â
) × X̂,

since ˙̂qÂq̂∗
Â

is a dual vector. We have seen that ˙̂X = ŵ × X̂. Since x̂ is an arbitrary
vector, we get

ŵ = 2 ˙̂qÂq̂∗
Â

(19)

or

ŵ = 2
+

H ( ˙̂qÂ)q̂∗
Â

= 2
−
H (q̂∗

Â
) ˙̂qÂ

and

˙̂qÂ =
1
2
ŵq̂ and ˙̂qÂ =

1
2

+

H (ŵ)q̂ =
1
2

−
H (q̂)ŵ.

389



AKYAR

In order to prove (18), we consider the derivation d
dt(q̂x̂q̂∗) then by using (19) we get

(18) as

dX̂
dt

=
d

dt
(q̂Âx̂q̂∗

Â
) =

+

H ( ˙̂qÂq̂∗
Â

)X̂−
−
H ( ˙̂q∗

Â
q̂∗

Â
)X̂

= 2
+

H ( ˙̂qÂ)q̂∗
Â
× X̂ = ˙̂qÂq̂∗

Â
X̂ − X̂ ˙̂qÂq̂∗

Â

=
1
2
(ŵX̂ − X̂ŵ) = [ŵ, X̂] = [ŵ, e

+
H(

dq̂∗
Â

dt q̂Â)+
−
H(q̂∗

Â

dq̂
Â

dt )x̂].

�

12. Conclusion

Hamilton operators for dual quaternions to screw motions have been given in a differ-
ent aspect. It leads us to give the relation between Hamilton matrices and the transition
matrices. The relative motion has been expressed in terms of Hamilton operators and
the relation among the Hamilton matrices for the transition matrices has been given.
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