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Abstract

In this paper, we first study some characterizations of left min-abel ring, strongly

left min-abel ring and left MC2 ring. Next, we discuss and generalize some well

known results for a ring whose simple singular left modules are nil- injective. Finally,

as a byproduct of these results we are able to show that if R is a left GMC2 left

Goldie ring whose every simple singular left R− module is Y J− injective, then R is

a finite product of simple left Goldie ring.
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Introduction

Throughout this paper R denotes an associative ring with identity, and R−modules
are unital. For a ∈ R, r(a) and l(a) denote the right annihilator of a and the left
annihilator of a, respectively. We write J(R), Zl(R), N(R), N1(R) and Sl(R) for the
Jacobson radical, the left singular ideal, the set of nilpotent elements, the set of non-
nilpotent elements and the left socle of R, respectively. An element k ∈ R is called left
minimal if Rk is a minimal left ideal of R. An element e ∈ R is called left minimal
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idempotent if e is a left minimal element and e2 = e. An idempotent e ∈ R is called left
(resp, right) semicentral if ae = eae (resp, ea = eae) for all a ∈ R.

A ring R is called left min-abel if every left minimal idempotent element of R is left
semicentral and R is said to be NI [9, 20] if N(R) is an ideal of R. A ring R is called
2-prime if N(R) coincides with its prime radical. Clearly, a 2-prime ring is NI.

A ring R is called strongly left min-abel if for every left minimal idempotent element
e ∈ R, Re = eR.

Since an abelian ring (that is, every idempotent of a ring R is central) is strongly left
min-abel, a ZI ring (cf. [13, 14]) (that is, ab = 0 implies aRb = 0 for all a, b ∈ R) and
so a ZC ring (cf. [13]) (that is, ab = 0 implies ba = 0 for all a, b ∈ R) is strongly left
min-abel because a ZC ring is ZI and a ZI ring is Abelian.

Recall that a ring R is left MC2 [17] if for left minimal element k ∈ R, Rk is a
summand in RR, whenever Rk is projective as left R− module.

Recall that a ring R is left PS [16] if for every left minimal element k ∈ R, l(k) is a
summand of RR, in other word, Rk is a projective in RR. [16] proved that R is a left PS

ring if and only if Sl(R) ∩ Zl(R) = 0.
A ring R is said to be left universally mininjective [17] if for every left minimal element

k ∈ R, Rk is a summand of RR. For convenience, these rings are also called left DS by
author in [4]. In [17] it is proved that R is left universally mininjective if and only if
Sl(R) ∩ J(R) = 0. And, in [4], a lot of characterization of left universally mininjective
rings are given. For example, R is left universally mininjective if and only if R is left PS

and left MC2.

Call a ring R strongly left DS if for every left minimal element k ∈ R, k2 �= 0.
Obviously, reduced rings (that is, a2 = 0 implies a = 0 for all a ∈ R) are strongly left
DS.

Call a ring R left GMC2 if for any a ∈ R, any left minimal idempotent e ∈ R, aRe = 0
implies eRa = 0. Clearly, a left GMC2 ring is left MC2.

Left R− module M is called p− injective [10, 11] if, for any 0 �= a ∈ R, and any left
R− homomorphism of Ra into M extends to one of R into M . And M is said to be Y J−
injective [6, 7, 8, 19] if for any 0 �= a ∈ R, there exists a positive integer n such that
an �= 0 and any left R− homomorphism of Ran into M extends to one of R into M .

Call a left R− module M nil− (resp, Gnp−) injective if for each nilpotent element
(resp, non-nilpotent element) k ∈ R, there exists a positive integer n such that kn �= 0
and any left R− morphism Rkn −→ M extends to R.
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Call a left R− module M Jcp− (resp, np− [12]) injective if for each k /∈ Zl(R) (resp,
k ∈ N1(R)), any left R− morphism Rk −→ M extends to R.

Examples of these modules include left p− injective modules and Y J− injective
modules. R is called left nil− (resp, Jcp− , np− and Gnp−) injective ring if RR is
nil− (resp, Jcp−, np− and Gnp−) injective.

A ring R is called left weakly continuous [18] if J(R) = Zl(R), R/J(R) is regular and
idempotents can be lifted modulo J(R). Every regular ring is left weakly continuous.
Clearly, R is a regular ring if and only if R is a left weakly continuous left nonsingular
ring.

In section 1, we introduce some rings characterized by minimal left ideals, give some
characterizations of these rings, study the relations among these rings. Such as Theorem
1.2: R is a left quasi-duo ring if and only if R is a left min-abel MELT ring; Theorem
1.8: R is a strongly left min-abel ring if and only if R is a left min-abel left MC2 ring;
And Theorem 1.11: R is a strongly left DS ring if and only if R is a left PS strongly left
min-abel ring.

In section 2, we investigate the rings whose simple singular modules are nil− injective,
generalize some known results appeared in [6, 7, 8, 11]. As a byproduct of these results
the author shows that if R is a left GMC2 left Goldie ring whose every simple singular
left R− module is Y J− injective, then R is a finite product of simple left Goldie rings.

1. Characterizations of left min-abel rings

Theorem 1.1 The following conditions are equivalent for a ring R:
(1) R is a left min-abel ring.
(2) For every left minimal element k ∈ R, k2 = 0 always implies kRk = 0.
(3) For every left minimal element e2 = e ∈ R, ae = 0 implies aRe = 0 for all a ∈ R.

(4) For every left minimal element e2 = e ∈ R, we have eke = ke for all left minimal
elements k ∈ R.

(5) For every left minimal element e2 = e ∈ R, we have eke = ke for all left minimal
elements k ∈ R with k2 = 0.

(6) For every left minimal element e2 = e ∈ R, fe = 0 implies fRe = 0 for all
f2 = f ∈ R.

(7) For every left minimal element e2 = e ∈ R, Re ⊆ eR.
(8) For every left minimal element e2 = e ∈ R, R(1 − e) is an ideal of R.
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Proof. (1) =⇒ (2). Suppose that kRk �= 0, then Rk = Re where e2 = e ∈ R. By
(1), e is left semi-central, so k = ke = eke. Write e = ck, c ∈ R, then k = eke = ckke =
ck2e = 0 by hypothesis, which is a contradiction. Hence kRk = 0.

(2) =⇒ (1). Assume that e2 = e ∈ R is a left minimal element. Write h = ae − eae

for an a ∈ R. If h �= 0, then h is a left minimal element with he = h, eh = 0, h2 = 0. By
(2), hRh = 0. But Rh = Rhe ⊆ Re, so Rh = Re because Re is a minimal left ideal of
R. Hence Re = ReRe = RhRh = 0, which is a contradiction. Thus h = 0, which implies
that R is a left min-abel ring.

(1) =⇒ (3). Since R is a left min-abel ring, Re = eRe. Hence, by hypothesis
aRe = aeRe = 0.

(3) =⇒ (1). Since (1 − e)e = 0, (1 − e)Re = 0 by (3). Hence (1 − e)ae = 0 for all
a ∈ R, so ae = eae for all a ∈ R, which implies R is a left min-abel ring.

(1) =⇒ (4) =⇒ (5) are evidently.

(5) =⇒ (1). Assume that e2 = e ∈ R is a left minimal element, write h = ae− eae for
an a ∈ R. If h �= 0, then h is a left minimal element with he = h, eh = 0, h2 = 0. By (5),
ehe = he. Hence h = he = ehe = 0, which is a contradiction. Thus h = 0, which implies
that R is left min-abel.

Clearly, an idempotent e ∈ R is left semicentral if and only if Re ⊆ eR. Hence
(1) ⇐⇒ (6) ⇐⇒ (7) ⇐⇒ (8). �

According to [14], a ring R is left quasi-duo if every maximal left ideal of R is an
ideal, and R is MELT if every essential maximal left ideal of R is an ideal. In terms of
left min-abel rings, we have the following theorem.

Theorem 1.2 R is a left quasi-duo ring if and only if R is a left min-abel MELT ring.

Proof. Assume that R is a left min-abel MELT ring and M is any maximal left ideal of
R. If M is essential, then, certainly, M is an ideal of R. Otherwise, M = Re, e2 = e ∈ R,
then 1 − e is a left minimal idempotent, so M = Re is an ideal of R by Theorem 1.1.
This implies that R is left quasi-duo.

Conversely, if R is a left quasi-duo ring, then R is MELT ring. Now let e2 = e ∈ R

be any left minimal element, then R(1−e) = l(e) is a maximal left ideal of R, so R(1−e)
is an ideal. By Theorem 1.1, R is left min-abel. �
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Corollary 1.3 The following conditions are equivalent for a MELT ring R:
(1) R is a left quasi-duo ring.
(2) For each left minimal element h, Rh + R(hc − 1) = R for all c ∈ R.
(3) For each left minimal nilpotent element h, Rh + R(hc − 1) = R for all c ∈ R.

Proof. (1) =⇒ (2). This is a direct result of [13, Theorem 3.2].
(2) =⇒ (3) is evident.
(3) =⇒ (1). Assume that e2 = e ∈ R is a left minimal element. If there exists an a ∈ R

such that h = ae − eae �= 0, then Rh = Re, he = h, eh = 0, h2 = 0. Let e = ch, c ∈ R.
By hypothesis, Rh + R(hc − 1) = R. Write 1 = dh + u(hc − 1), where d, u ∈ R. Clearly,
h = dh2 + u(hc− 1)h = u(hch−h) = u(he−h) = u(h− h) = 0, which is a contradiction.
This implies that e is left semicentral in R, so R is a left min-abel ring. By Theorem 1.2,
R is a left quasi-duo ring. �

Theorem 1.4 (1) If N(R) ⊆ J(R), then R is a left min-abel ring.
(2) Let A be an ideal of R such that R/A is a left min-abel ring. If A contains no left

mininal idempotent of R, then R is a left min-abel ring.

Proof. (1) Assume that e2 = e ∈ R is a left minimal element. Write h = ae − eae for
an a ∈ R. If h �= 0, then h is a left minimal element with he = h, eh = 0, h2 = 0 and so
h ∈ N(R) ⊆ J(R). Hence e ∈ J(R) because Rh = Re, which is a contradiction. Thus
h = 0, which implies that R is a left min-abel ring.

(2) We denote a + A ∈ R/A = R̄ by ā where a ∈ R. Assume that e2 = e ∈ R is a left
minimal element, then e /∈ A. We claim that ē is a left minimal idempotent of R/A. In
fact, if a ∈ R such that ae /∈ A, then Rae = Re because ae �= 0 and Re is a minimal left
ideal of R. write e = bae, b ∈ R, then R̄ē = R̄b̄āē = R̄āē , so ē is a left minimal element
of R̄. Let h = be − ebe for b ∈ R. If h �= 0, then h is a left minimal element of R with
he = h, eh = 0, h2 = 0, Re = Rh and so h /∈ A. Hence 0̄ �= h̄ = b̄ē − ēb̄ē = 0̄, which is a
contradiction. Thus h = 0, which implies that R is a left min-abel ring. �

Remark: From (1) of Theorem 1.4, if N(R) is a one-sided ideal of R, then R is a left
min-abel ring. In particular, NI-rings are left min-abel rings.

By (2) of Theorem 1.4, we have the following corollary.
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Corollary 1.5 (1) If R/J(R) is a left min-abel ring, so is R.
(2) If R/Zl(R) is a left min-abel ring, so is R.
(3) Let B be a nil ideal of R such that R/B be a left min-abel ring, so is R.

Theorem 1.6 The following conditions are equivalent for a ring R:
(1) R is a left MC2 ring.
(2) For any left minimal elements k, g2 = g ∈ R, Rk ∼= Rg as left R− module always

implies Rk = Re, e2 = e ∈ R.
(3) For any left minimal elements k, g ∈ R with k2 = 0, g2 = g, Rk ∼= Rg as left R−

module always implies Rk = Re, e2 = e ∈ R.
(4) For any left minimal elements k, e2 = e ∈ R, kRe = 0 implies eRk = 0.

Proof. (1) =⇒ (2) Assume that R is a left MC2 ring and Rk ∼= Rg for left minimal
elements k, g2 = g ∈ R. Evidently, there exists an idempotent h ∈ R such that hk = k and
l(k) = l(h). If (Rk)2 = 0, then kR ⊆ l(k) = l(h). Hence kRh = 0, so hRk = 0 because h

is a left minimal idempotent. Consequently, hRh = 0 because hR ⊆ l(k) = l(h), which is
a contradiction. Hence (Rk)2 �= 0, which implies Rk = Re, e2 = e ∈ R.

(2) =⇒ (3) is evident.
(3) =⇒ (4) Let k, e2 = e ∈ R be left minimal elements with kRe = 0. If eRk �= 0,

then eak �= 0 for some a ∈ R. Clearly, the map Re −→ Reak by re �−→ reak implies that
it is an isomorphism. Since (eak)2 = eakeak = 0, by hypothesis, Reak = Rg, g2 = g ∈ R.
Hence Rg = RgRg = ReakReak = Rea(kRe)ak = 0, which is a contradiction. Therefore
eRk = 0.

(4) =⇒ (1) Let k ∈ R be a left minimal element and RRk be projective. Then
l(k) = R(1 − e) where e2 = e ∈ R is a left minimal element. Hence k = ek. By (4),
kRe �= 0, so RkRe = Re. Consequently, Re = RkRe = RkRkRe and so (Rk)2 �= 0. Since
Rk is a minimal left ideal of R, Rk = Rg, g2 = g ∈ R. This shows that Rk is a direct
summand of RR. So R is a left MC2 ring. �

Theorem 1.7 The following conditions are equivalent for a ring R:
(1) R is a left MC2 ring.
(2) Every left minimal idempotent element is right minimal.
(3) For each left minimal idempotent e ∈ R, r(Re ∩ l(a)) = (1 − e)R + aR always

holds for all a ∈ R.
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Proof. (1) =⇒ (2) Assume that e2 = e ∈ R is a left minimal element. Let a ∈ R

with ea �= 0, then, clearly, Re ∼= Rea. Hence, by Theorem 1.6, Rea = Rg, g2 = g ∈ R.
Write g = cea, c ∈ R, then ea = eag = eacea. Let h = eac, then h2 = h and eaR = hR.
So l(e) = l(ea) = l(h), and so eR = rl(e) = rl(h) = hR = eacR ⊆ eaR ⊆ eR. Hence
eR = eaR, which implies eR is a minimal right ideal and so e is a right minimal element.

(2) =⇒ (3). Assume that a ∈ R. If ea = 0, then Re∩l(a) = Re, aR ⊆ r(e) = (1−e)R.
Hence r(Re ∩ l(a)) = r(Re) = (1 − e)R = (1 − e)R + aR. If ea �= 0, then r(e) + aR = R

because e is a right minimal element and aR � r(e). Since Re is a minimal left ideal and
ea �= 0, Re ∩ l(a) = 0. Hence r(Re ∩ l(a)) = r(0) = R = r(e) + aR = (1 − e)R + aR.

(3) =⇒ (1). Assume k, e2 = e ∈ R are left minimal elements with kRe = 0. If
eRk �= 0, then eak �= 0 for some a ∈ R. Hence Re ∩ l(ak) = 0 because Re is a min-
imal left ideal, so, by hypothesis, R = r(0) = r(Re ∩ l(ak)) = (1 − e)R + akR. Write
1 = (1 − e)u + akv, u, v ∈ R, then e = (1 − e)ue + akve = (1 − e)ue. Consequently,
e = ee = e(1 − e)ue = 0, which is a contradiction. Hence eRk = 0, which implies that R

is a left MC2 ring. �

Theorem 1.8 The following conditions are equivalent for a ring R:
(1) R is a strongly left min-abel ring.
(2) R is a left min-abel left MC2 ring.
(3) Rkl = Rlk for any left minimal elements k, l of R.

Proof. (1) =⇒ (2) Clearly, R is a left min-abel ring R by Theorem 1.1. Now let
k, e2 = e ∈ R be left minimal elements with kRe = 0, but eRk �= 0. Then ke = 0 and
eak �= 0 for some a ∈ R. Since eak ∈ eR = Re, eak = eake = 0, which is a contradiction.
So eRk = 0 and then R is a left MC2 ring.

(2) =⇒ (3) Assume that e2 = e ∈ R is any left minimal element. Since R is a left
min-abel ring, e is left semicentral. We claim that e is right semicentral. Otherwise there
exists a b ∈ R such that h = eb − ebe �= 0. Then eh = h, he = 0, h2 = hh = heh = 0
and RRh ∼=R Re. Since R is a left MC2 ring, Rh = Rg, g2 = g ∈ R. Since R is a left
min-abel ring, g is left semicentral. Hence h = hg = ghg. Write g = ch, c ∈ R. Then
h = ghg = chhg = ch2g = 0, which is a contradiction. Hence e is right semicentral
and so e is central. Now let k, l ∈ R be left minimal elements. If kl = 0, then lk = 0.
Otherwise Rk = Rlk. Write k = clk, c ∈ R. Then k = clk = clclk, which implies
(Rl)2 �= 0. Hence Rl = Re, e2 = e ∈ R. Therefore Rk = Rlk = Rek = Rke = Re
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because e is central. Hence 0 = Rkl = Rel = Rle = Re, which is a contradiction. Hence
lk = 0 and so Rkl = 0 = Rlk. If kl �= 0, then, by a similarly proof of above, we have
lk �= 0. Hence Rl = Rkl and Rk = Rlk. Therefore Rk = Rlk = Rklk ⊆ RkRk and so
Rk = Rg, g2 = g ∈ R. Thus Rl = Rkl = Rgl = Rlg = Rg because g is central. Hence
Rkl = Rg = Rk = Rlk.

(3) =⇒ (1). Let e be a left minimal idempotent of R. Then e is right right semicen-
tral. For if there exists an a ∈ R such that h = ea − eae �= 0, then h = eh, he = 0. By
(3), Rh = Reh = Rhe = 0 which is a contradiction. Hence e is right semicentral. Fur-
thermore, e is left semicentral. In fact, if there exists a b ∈ R such that t = be− ebe �= 0,
then te = t, et = 0. Hence Rt = Rte = Ret = 0, which is a contradiction. Hence e is left
semicentral. Therefore Re = eR which implies that R is a strongly left min-abel ring. �

From the proof of (2) =⇒ (3) of Theorem 1.8, we can see that R is strongly left
min-abel if and only if every left minimal idempotent is central in R. In fact, we can
show that a left minimal idempotent of a ring R is right semicentral if and only if it is
central. Hence we have the following theorem.

Theorem 1.9 The following conditions are equivalent for a ring R:
(1) R is a strongly left min-abel ring.
(2) For every left minimal element e2 = e ∈ R, ea = 0 implies eRa = 0 for all a ∈ R.
(3) For every left minimal element e2 = e ∈ R, ef = 0 implies eRf = 0 for all

f2 = f ∈ R.
(4) For every left minimal element e2 = e ∈ R, we have eke = ek for all left minimal

element k ∈ R.
(5) For every left minimal element e2 = e ∈ R, we have eke = ek for all left minimal

element k ∈ R with k2 = 0.
(6) R is a left min-abel left GMC2 ring.

Theorem 1.10 Let R be a left min-abel ring, then the following are equivalent:
(1) R is a left MC2 ring.
(2) Every nonsingular simple left R− module is injective.
(3) Every simple projective left R− module is injective.
(4) Every simple projective left R− module is p− injective.
(5) Every simple projective left R− module is nil− injective.
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(6) Every simple projective left R− module is mininjective.

Proof. (1) =⇒ (2). Assume that R is left MC2. Now let W be a nonsingular simple
left R− module. Then RW is projective and W ∼= R/K, where K is a maximal left
ideal of R and since RR/K is projective, then R = K ⊕ U , where U = Re, e2 = e ∈ R,
is a minimal left ideal of R. If L is a proper essential left ideal of R, f : L −→ U

a non-zero left R− homomorphism, then L/N ∼= U , where N = kerf is a maximal
left subideal of L. Now L = N ⊕ V , where V (∼= U) is a minimal left ideal of R.
Since R is a left MC2 ring, V = Rg, where g2 = g ∈ R. Since R is left min-
abel left MC2 ring, g is central by the remark above Theorem 1.9. Now for any
y ∈ L, let y = d + ag, where d ∈ N, a ∈ R. Then dg = gd ∈ N ∩ V = 0, so
f(y) = f(d + ag) = f(ag) = f(dg) + f(ag) = f((d + ag)g) = (d + ag)f(g) = yf(g).
Hence RU is injective, and so is RW .

(2) ⇐⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6) are obvious.

(6) =⇒ (1) Assume that k, e2 = e are left minimal elements of R with kRe = 0. If
eRk �= 0, then there exists an a ∈ R such that eak �= 0. Since Reak ∼= Re as left R−
module, RReak is mininjective. It is easy to show that there exists a c ∈ R such that
eak = eakceak. Since kce ∈ kRe = 0, eak = 0, which is a contradiction. Hence eRk = 0.
By Theorem 1.6, R is a left MC2 ring. �

Call an ideal I of ring R children [1], if for any a, b ∈ R, and for every x ∈ I, there
exists elements s, t ∈ I such that x = at+sb+st. Obviously 0 and ideals which are direct
summand of R as left R− modules, are children ideals [1].

Theorem 1.11 The following conditions are equivalent for a ring R:

(1) R is a strongly left DS ring.

(2) R is a left universally mininjective left min-abel ring.

(3) R is a left PS strongly left min-abel ring.

(4) Every minimal left ideal of R is a children ideal.

Proof. (1) =⇒ (2) Evidently, R is a left universally mininjective ring. Now assume
that e2 = e ∈ R is a left minimal element: write h = ae − eae for a ∈ R. If h �= 0, then
h is a left minimal element with he = h, eh = 0. Hence h2 = hh = heh = 0. This is
impossible because R is a strongly left DS ring. Hence h = 0 and so e is left semicentral.
This implies that R is a left min-abel ring.
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(2) =⇒ (3) By [17], R is a left PS ring. By [4], R is a left MC2 ring. By Theorem
1.8, R is a strongly left min-abel ring.

(3) =⇒ (4) Assume that k is a left minimal element of R. Since R is a left PS ring,

RRk is projective. Hence l(k) = R(1 − e) where e2 = e ∈ R is a left minimal element.
Since R is a strongly left min-abel ring, e is central. Hence k = ek = ke, Rk = Re, so Rk

is an ideal of R and is a direct summand as a left R− module. By [1], Rk is a children
ideal.

(4) =⇒ (1) Let Rk be a minimal left ideal of R, then Rk is a children ideal by hypoth-
esis. Hence there exist t, s ∈ Rk such that k = kt + sk + st. If (Rk)2 = 0, then kRk = 0
and so k2 = 0. Since kt ∈ kRk, sk ∈ Rk2, st ∈ RkRk, kt = sk = st = 0. Hence k = 0,
which is a contradiction. Consequently, (Rk)2 �= 0, then Rk = Re, e2 = e ∈ R. Since
Rk = Re is an ideal, e is right semi-central. Hence e is central, so k = ke = ek ∈ Rk2,
which implies that k2 �= 0. Hence R is a strongly left DS ring. �

The following example implies that there exists a left min-abel ring which is not
strongly left min-abel.

Let F be a division ring and R =

(
F F

0 F

)
. Then Sl(R) =

(
F F

0 0

)
is

projective, so R is a left PS ring. Since J(R) =

(
0 F

0 0

)
, J(R)∩Sl(R) =

(
0 F

0 0

)
�=

0. By [17], R is not left universally mininjective ring. By [4], R is not left MC2 ring.

On the other hand R/J(R) ∼=
(

F 0
0 F

)
is reduced, so R/J(R) and then R is a left

min-abel ring by Theorem 1.4. By Theorem 1.8, R is not a strongly left min-abel ring.

2. Certain rings whose simple singular modules are nil− injective

The following theorem is a corollary of [5, Corollary 3.2(1)].

Theorem 2.1 The following conditions are equivalent for a ring R:
(1) R is a regular ring.
(2) R is a left weakly continuous ring whose simple singular left R− modules are nil−

injective.
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Note that Y J− injective modules defined in this paper also called GP− injective in
[6]. In fact, GP− injective modules were first given by Roger Yue Chi Ming in his paper
”On regular rings and Artinian rings (II)” published in Riv. Math. Univ. Parma 11,
101-109 (1985). Hence the following corollary generalizes [6, Theorem 2].

Corollary 2.2 (1) [6, Theorem 2] R is regular if and only if R is left weakly continuous
whose simple singular left R− modules are Y J− injective.

(2) Let R be a ring whose simple singular left R− module is nil− injective, then
Zl(R) = 0 if and only if Zl(R) ⊆ J(R).

In [18, Lemma 2.3 ] it is shown that if R is a left C2 ring, then Zl(R) ⊆ J(R). Hence
if R is a right Kasch ring [18] or R is a left Jcp− injective ring, then Zl(R) ⊆ J(R)
because right Kasch rings and left Jcp− injective rings are all left C2 ring.

In [12, Proposition 5] it is shown that if R is left np− injective, then Zl(R) ⊆ J(R).

Certainly, if R is a semiperfect ring, then Zl(R) ⊆ J(R).
W. K. Nicholson and Sanchez Campos [15, Proposition 28] point out that, if R is a

left morphic ring (see [15]), then Zl(R) ⊆ J(R).

If every left R− monic f : R −→ R is epic, then Zl(R) ⊆ J(R). In fact, if a ∈ Zl(R),
then l(1 − a) = 0. Hence the left R− map f : R −→ R via f(x) = x(1 − a), x ∈ R is
monic. Hence f is an epic, and so 1 = b(1−a), b ∈ R. This implies that a ∈ J(R) because
Zl(R) is an ideal of R. Hence we have the following corollary.

Corollary 2.3 Let R be a ring whose simple singular left R− module is nil− injective,
if R satisfies one of the following conditions, then Zl(R) = 0.

(1) R is a left C2 ring.

(2) R is a right Kasch ring.
(3) R is a semiperfect ring.
(4) R is a left np− injective ring.

(5) R is a left morphic ring.
(5) R is a left Jcp− injective ring.
(6) Every left R− monic f : R −→ R is epic.

According to [6], a ring R is said to be idempotent reflexive if aRb = 0 always implies
that bRa = 0 for all a, b ∈ R. So idempotent reflexive rings are left GMC2. Since there
exists a left selfinjecive ring which is not idempotent reflexive, there exists a left GMC2
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ring which is not idempotent reflexive because all left selfinjective rings are left GMC2
(In fact, if R is a left mininjective ring, then for any a ∈ R and left minimal idempotent
e with aRe = 0, we have eRa = 0. Otherwise there exists a b ∈ R such that eba �= 0.
Since l(e) = l(eba) and R is a left mininjective ring, eR = rl(e) = rl(eba) = ebaR. Hence
eRe = ebaRe = 0, which is a contradiction. Hence eRa = 0, which implies R is a left
GMC2 ring.). So the following theorems are significant because they are the proper
generalization of [6, Proposition 7].

Recall that an element a ∈ R is called a left weakly regular if a ∈ RaRa. So the
following theorem is significant because it is a generalization of Xue [19, Proposition 2]
and Chen and Ding [3, Lemma 4.1].

Theorem 2.4 Let R be a left GMC2 ring. Then
(1) If a ∈ R is not a left weakly regular element, then every maximal left ideal M of

R containing RaR + l(a) must be essential in RR.
(2) If every simple singular left R− module is nil− injective, then for any non-

zero nilpotent element a ∈ R, there exists a positive integer n such that an �= 0 and
RaR + l(an) = R. Therefore N(R) ∩ J(R) = 0. Consequently, R is NI if and only if R

is reduced if and only if R is 2-prime.
(3) If every simple singular left R− module is Gnp− injective, then for any non-

nilpotent element a ∈ R, there exists a positive integer n such that RaR + l(an) = R.
Therefore N1(R) ∩ J(R) = 0.

(4) If every simple singular left R− module is nil− injective, then for any 0 �= a ∈ R,
(Ra)2 �= 0. Therefore R is a semiprime ring.

(5) If simple singular left R− modules are nil− injective and Gnp− injective, then
for any nonzero element a ∈ R, there exists a positive integer n such that an �= 0 and
RaR + l(an) = R. Therefore J(R) = 0.

Proof. (1) Assume that a ∈ R is not a left weakly regular element. Then RaR+l(a) is
contained in some maximal left ideal M . If M is not essential, then M = l(e), e2 = e ∈ R.
Then aRe = 0. Since R is left GMC2 and e is a left minimal idempotent, eRa = 0. Hence
e ∈ l(a) ⊆ M = l(e), which is a contradiction. This implies M is essential.

(2) Assume that an �= 0, an+1 = 0. If an is a left weakly regular element, then we
are done. Otherwise, by (1), there exists a maximal essential left ideal M containing
RanR + l(an). Thus R/M is a simple singular left R− module, so is nil− injective.
Hence the left R− morphism f : Ran −→ R/M defined by f(ran) = r + M extends to
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R, so there exists a c ∈ R such that 1−anc ∈ M . Since anc ∈ RanR ⊆ M , 1 ∈ M , which
is a contradiction. Hence R = RanR + l(an) = RaR + l(an).

(3) Consider the chain RaR + l(a) ⊆ RaR + l(a2) ⊆ · · · . Let ∪∞
i=1[RaR + l(ai)] = I.

If I �= R, then I is contained in a maximal essential left ideal M of R. Then R/M is
left Gnp− injective. So there exists a positive integer n such that such that the left R−
morphism Ran −→ M defined by ran �−→ r + M extends to R. By a similar way as in
the previous process, we obtain a contradiction. Therefore ∪∞

i=1[RaR + l(ai)] = R, then
we can easy to show that RaR + l(am) = R for some positive integer m.

(4) If (Ra)2 = 0, then by (2), we have RaR + l(a) = R. Hence a ∈ RaRa = 0, which
is a contradiction. Thus (Ra)2 �= 0.

(5) Follows from (2) and (3). �

A left R− module M is Y J− injective if and only if M is nil− injective and Gnp−
injective. Hence we have the following corollary.

Corollary 2.5 Let R be a strongly left min-abel ring whose simple singular left R−
modules are Y J− injective, then for any nonzero element a ∈ R, there exists a positive
integer n such that an �= 0 and RaR + l(an) = R. Therefore J(R) = 0.

It is well known that rings whose simple left R− modules are Y J− injective are always
semiprimitive [11, Lemma 1].

Proposition 2.6 (1) If every simple left R− module is nil− injective, then R is a
semiprime ring.

(2) If R is an NI ring whose every simple left R− module is nil− injective, then R

is a reduced ring.
(3) If R is a left MC2 ring whose every simple singular left R− module is nil−

injective, then R is a reduced ring if and only if R is an NI ring.

Proof. (1) It is clear from [5, Proposition 3.4].
(2) Assume that 0 �= a ∈ R with a2 = 0. Thus l(a) ⊆ M , where M be a maximal

left ideal of R. Then by a similar way as in the previous process, there exists a b ∈ R

such that 1 − ab ∈ M . Since ab ∈ N(R), 1 − ab is invertible, which is a contradiction.
Therefore R is a reduced ring.

(3) Assume that R is an NI ring, then R is strongly left min-abel ring, so is left
GMC2 ring. By Theorem 2.4, R is a reduced ring. �
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N. K. Kim and J. Y. Kim [7, Theorem 4] shows that if R is a ZI ring whose every
simple singular left R− module is Y J− injective, then R is a reduced weakly regular ring.
Then by Theorem 1.2 and [7, Proposition 8], we generalize the above result as follows.

Theorem 2.7 Let R be a left MC2 ring whose every simple singular left R− module is
Y J− injective. Then the following conditions are equivalent:

(1) R is a reduced ring.
(2) R is a ZI ring.
(3) R is a 2-prime ring.
(4) R is an NI ring.
In this case, R is a weakly regular ring. And if R is also a MELT ring, then R is a

strongly regular ring.

Recall that a ring R is said to be left weakly π− regular if for every x ∈ R, there exists
a positive integer n, depending on x, such that xn ∈ RxnRxn. By Theorem 2.4 and the
proof process of [2, Lemma 3.1], we have the following proposition which generalizes [6,
Theorem 10].

Theorem 2.8 Let R be a left GMC2 left Goldie ring. If R satisfies one of the following
conditions, then R is a finite product of simple left Goldie rings.

(1) Every simple singular left R− module is Y J− injective or
(2) Every simple singular left R− module is nil− injective and R is left weakly π−

regular,

Remark: (a) Left mininjective rings were first introduced in [17].
(b) Left np− injective rings were first introduced in [12].
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