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Non-Homogeneous Cylindrical Shells∗
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Abstract

A numerical solution of wave equation arising in non-homogeneous cylindrical

shells is considered. Stable numerical schemes are developed. The stability estimates

for the solution of these difference schemes and first and second order difference

derivatives are presented. Applying the difference schemes, the numerical methods

are proposed for solving the the given initial-boundary value problem.
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1. Introduction

In various sciences and engineering, hyperbolic partial differential equations are used
to formulate and solve problems that involve unknown functions of several variables,
such as the propagation of sound, heat or wave, or more generally any process that is
distributed in space, or distributed in space and time as in thermodynamics, elasticity
and electromagnetic.

In recent years, many applied problems in cylindrical and spherical coordinates by
using method of characteristic in mechanics and engineering science, were formulated as
the mathematical model of variable types. For instance, in [1], the dynamic response of
layered composites consisting of N isotropic, elastic and functionally graded cylindrical
layers (nonhomogeneous) were investigated. One-dimensional transient dynamic response
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of functionally graded spherical multilayered media was formulated as an initial-boundary
value problem of which solutions were obtained by employing the method of characteristic
in [2]. One-dimensional transient wave propagation in multilayered functionally graded
media was investigated in papers [3] and [4]. H.J. Ding et al. [5] has developed a so-
lution of a non-homogeneous orthotropic cylindrical shell for axisymmetric plane strain
dynamic thermoplastic problems and considered numerical solution for both isotropic and
orthotropic cylindrical shells. An efficient alternative to existing methods of analyzing
transient analysis of unbounded media was presented in [6] and the method was extended
to problems involving spherical and cylindrical computational boundaries. In [7], prop-
agation of two-dimensional transient waves in viscoelastic cylindrical layered media was
investigated by a numerical technique which combines the complex Fourier series with
the method of characteristic.

In this paper, we study the numerical solution of wave equation arising in non-
homogeneous cylindrical shells. Based on works [1] and [2], the problems can be for-
mulated in the form

ρ
∂2u(t, x)

∂t2
= c

∂2u(t, x)
∂x2

+
(

dc

dx
+

c

x̃

)
∂u(t, x)

∂x

+
(

dλ

dx
− c

x̃

)
u(t, x)

x̃
+ f(t, x), t ∈ (0, T ), x ∈ (ri, r0), (1)

where

ρ = ρ0(a + bx̃)J , c = c0(a + bx̃)i, ρ0 = (2μ0 + λ0), λ = λ0(a + bx̃)i, x̃ =
x − ri

r0 − ri
, (2)

with the initial and boundary conditions

u(0, x) = ut(0, x) = 0, x ∈ [ri, r0],

cux(t, x) + λu(t, x)|x=ri
= −p0l(t), u(t, r0) = 0, t ∈ [0, T ],

where a, b, i and J are the parameters determining the dimensionless quantities, ρ0, λ0,

μ0 and p0 are the parameters determining the material properties, and l(t) is a prescribed
continuous function of t. This problem is the more general form of the problems considered
in [3] and [4].
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Using the substitution u(t, x) = v(t, x) + (x − r0)z(t, x), we can rewrite the equation
(1) in the following equivalent form as

∂2v(t, x)
∂t2

=
c

ρ

∂2v(t, x)
∂x2

+
d

dx

(
c

ρ

)
∂v(t, x)

∂x

+
(

1
ρ

c

x̃
+

c

ρ2

dρ

dx

)
∂v(t, x)

∂x
+

1
ρx̃

(
dλ

dx
− c

x̃

)
v + F (t, x), t ∈ (0, T ), x ∈ (ri, r0), (3)

where

F (t, x) =
1
ρ

[
f(t, x) − (x − r0) ρ

∂2z(t, x)
∂t2

+ (x − r0) c
∂2z(t, x)

∂x2

+
[
2c + (x − r0)

(
dc

dx
+

c

x̃

)]
∂z(t, x)

∂x
+
[(

dc

dx
+

c

x̃

)
+

(x − r0)
x̃

(
dλ

dx
− c

x̃

)]]
z(t, x)

with the initial and boundary conditions

v(0, x) = −(x − r0)z(0, x), vt(0, x) = −(x − r0)zt(0, x), x ∈ [ri, r0],

cvx(t, x) + λv(t, x)|x=ri
. = 0, v(t, r0) = 0, t ∈ [0, T ].

Here, z(t, x) is defined by the formula

c ((x − r0)z(t, x))x + λxz(t, x)|
x=ri

= −p0l(t).

2. Difference schemes. Stability estimates

The discretization of the problem (3) is carried out in two steps. In the first step the
grid sets

[ri, r0]h = {x : xn = ri + nh, 0 ≤ n ≤ M, Mh = r0 − ri}

are defined. The Banach space L2h = L2([ri, r0]h) of the grid functions ϕh(x) =

{ϕn}M−1
1 defined on [ri, r0]h, equipped with the norm

∥∥ϕh
∥∥

L2h
=

(
M−1∑
n=1

|ϕn|2 h

)1/2
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is introduced. To the differential operator Bx and Cx generated by the problem (3), we
assign the difference operators Bx

h and Cx
h by the formulas

Bx
hϕh(x) =

{
− 1

ρ (xn)

(
dc

dx

∣∣∣∣
x=xn

− c (xn)
ρ (xn)

dρ

dx

∣∣∣∣
x=xn

)
ϕ .

x,n − c (xn)
ρ (xn)

ϕxx,n

}M−1

1

and

Cx
hϕh(x)=

{
1

ρ (xn)

(
c (xn)
ρ (xn)

dρ

dx

∣∣∣∣
x=xn

+
c (xn)

x̃n

)
ϕ .

x,n+
1

x̃nρ (xn)

(
dλ

dx

∣∣∣∣
x=xn

− c (xn)
x̃n

)
ϕn

}M−1

1

acting in the space of grid functions ϕh(x), satisfying the conditions ϕ0 = 0, c
2h (−3ϕ0+

4ϕ1 − ϕ2) + λ
ri

ϕ0 = 0 for x̃ = ri. Here,

ϕxx,n =
{

ϕn+1 − 2ϕn + ϕn−1

h2

}M−1

1

and

ϕ .
x,n =

{
ϕn+1 − ϕn−1

2h

}M−1

1

.

With the help of Bx
h and Cx

h , we arrive at the initial value problem

⎧⎪⎪⎨⎪⎪⎩
d2uh(t,x)

dt2
+ Bx

huh(t, x) = F h(t, x) + Cx
huh(t, x), 0 ≤ t ≤ 1, x ∈ [ri, r0]h,

uh(0, x) = ϕh(x), duh(0,x)
dt

= ψh(x), x ∈ [ri, r0]h,

for an infinite system of ordinary differential equations.
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In the second step we replace problem (3) by the difference schemes in [8]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2 + Bx
huh

k+1(x) = F h
k (x) + Cx

huh
k+1(t, x),

F h
k (x) = F h(tk+1, x), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1, x ∈ [ri, r0]h,

uh
1 (x)−uh

0 (x)
τ

+ τBx
h

(
uh

1(x) − uh
0(x)

)
= ψh(x) + τCx

h

(
uh

1 (x) − uh
0 (x)

)
, x ∈ [ri, r0]h,

uh
0 (x) = ϕh(x), x ∈ [ri, r0]h,

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2 + 1
2
Bx

huh
k(x) + 1

4
Bx

huh
k+1(x) + 1

4
Bx

huh
k−1(x)

= F h
k (x) + 1

2Cx
huh

k(x) + 1
4Cx

huh
k+1(x) + 1

4Cx
huh

k−1(x),

F h
k (x) = F h(tk, x), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1, x ∈ [ri, r0]h,

uh
1 (x)−uh

0(x)
τ

+ τBx
h(uh

1(x) − uh
0(x))

= τ
2 (F h

0 (x) + 1
4

(
2Cx

huh
0(x) + Cx

huh
1 (x) + Cx

huh
−1(x)

)
− Bx

huh
0 (x))

+τCx
h(uh

1 (x) − uh
0(x)) + ψh(x),

F h
0 = F h(0, x), uh

0 (x) = ϕh(x), x ∈ [ri, r0]h,

(5)

respectively. Applying the abstract theorems of paper [8], we obtain the following results.

Theorem 1. Let τ and |h| be sufficiently small numbers. Then for the solution of the
difference schemes (4) and (5), the following inequality is valid:

max
0≤k≤N

||uh
k ‖L2h + max

1≤k≤N
‖

uh
k − uh

k−1

τ
‖L2h

≤ C1[ max
1≤k≤N−1

‖ fh
k ‖L2h + ‖ ψh||L2h+ ‖ ϕh

.
x,n

||L2h],
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where C1 is independent of τ, h, fh
k , gh

k and ϕh.

Theorem 2. Let τ and |h| be sufficiently small numbers. Then for the solution of the
difference schemes (4) and (5), the following inequality is valid:

max
1≤k≤N−1

‖
uh

k+1 − 2uh
k + uh

k−1

τ2
‖L2h + max

1≤k≤N−1
||(uh

k+1)xx,n ‖L2h

≤ C2[ max
1≤k≤N−1

‖
fh

k − fh
k−1

τ
‖L2h + ‖ fh

0 ‖L2h +||ψh
x,n ‖L2h +||ϕh

x,n ‖L2h ],

where C2 is independent of τ, h, fh
k , gh

k and ϕh.

The proof of these theorems are based on the discrete analogies of integral inequality
and on the following formulas:

uh
k =

1
2

(
Rk−1

h + R̃k−1
h

)
ϕh +

(
Rh − R̃h

)−1

τRh

(
Rk

h − R̃k
h

) (
ψh + τCx

h

(
uh

1 − uh
0

))

− τ

2i

k−1∑
s=1

(Bx
h)−1/2

(
Rk−s

h − R̃k−s
h

)(
F h

s + Cx
huh

s+1

)
, k = 2, ..., N

for the solution of difference scheme (4);

uh
k =

[
P k

h + τPh

(
Ph − P̃h

)−1 (
P k

h − P̃ k
h

) (
I + τ2Bx

h

)−1
(
−τBx

h + i (Bx
h)1/2

)]
ϕh

+τPh

(
Ph − P̃h

)−1 (
P k

h − P̃ k
h

) (
I + τ2Bx

h

)−1 (
ψh + τCx

h

(
uh

1 − uh
0

))
+

τ2

2
Ph

(
Ph − P̃h

)−1 (
P k

h − P̃ k
h

) (
I + τ2Bx

h

)−1
F h

0

− τ

2i

k−1∑
s=1

(Bx
h)−1/2

(
P k−s

h − P̃ k−s
h

) [
F h

s +
1
4
(
2Cx

huh
s + Cx

huh
s+1 + Cx

huh
s−1

)]
, k = 2, ..., N

for the solution of difference scheme (5); and on the estimates

‖Rh‖H→H ≤ 1,
∥∥∥R̃h

∥∥∥
H→H

≤ 1,
∥∥∥RhR̃−1

h

∥∥∥
H→H

≤ 1,
∥∥∥R̃hR−1

h

∥∥∥
H→H

≤ 1,

∥∥∥τ (Bx
h)1/2

Rh

∥∥∥
H→H

≤ 1,
∥∥∥τ (Bx

h)1/2
R̃h

∥∥∥
H→H

≤ 1,
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and

‖Ph‖H→H ≤ 1,
∥∥∥P̃h

∥∥∥
H→H

≤ 1,
∥∥∥PhP̃−1

h

∥∥∥
H→H

≤ 1,
∥∥∥P̃hP−1

h

∥∥∥
H→H

≤ 1,

∥∥∥∥∥
(

I ± iτ

2
(Bx

h)1/2

)−1
∥∥∥∥∥

H→H

≤ 1,

∥∥∥∥(I ± iτ (Bx
h)1/2

)−1
∥∥∥∥

H→H

≤ 1,

∥∥∥∥τ (Bx
h)1/2

(
I ± iτ (Bx

h)1/2
)−1

∥∥∥∥
H→H

≤ 1,

and ∥∥∥(Bx
h)−1/2

Cx
h

∥∥∥
H→H

≤ M.

Here,

Rh =
(
I + iτ (Bx

h)1/2
)−1

, R̃h =
(
I − iτ (Bx

h)1/2
)−1

,

and

Ph =
(

I + iτ (Bx
h)1/2 − τ2

2
Bx

h

)−1

, P̃h =
(

I − iτ (Bx
h)1/2 − τ2

2
Bx

h

)−1

.

Of course, the stability inequalities can be established for the general case Bx
h(t) (see

[9] and [10]).

Finally, one has not been able to obtain a sharp estimate for the constants figuring
in the stability estimates. Therefore, our interest in the present paper is studying the
difference schemes (4) and (5) by numerical experiments. Applying these difference
schemes, the numerical methods are proposed in the following section for solving the one-
dimensional wave equation arising in non-homogeneous cylindrical shells. The methods
are illustrated by numerical examples.

3. Numerical analysis

In the present paper, the initial-boundary value problem
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t,x)
∂t2

− α(x)∂2u(t,x)
∂x2 − β(x)∂u(t,x)

∂x
− δ(x)u(t, x) = f(t, x),

0 < t < 1, ri < x < r0, u(0, x) = ut(0, x) = 0, ri ≤ x ≤ r0,

c0(a + bri)iux(t, ri) + λ0
ri

(a + bri)iu(t, ri) = −p0l(t), u(t, r0) = 0, 0 ≤ t ≤ 1,

l(t) = − c0
r0−ri

(a + bri)iπt2, α(x) = c0
ρ0

(a + b x−ri

r0−ri
)i−J ,

β(x) =
[

ibc0
ρ0

(a + b x−ri

r0−ri
)i−J−1 + c0

ρ0
( r0−ri

x−ri
)(a + b x−ri

r0−ri
)i−J

]
,

δ(x) =
(

r0−ri

x−ri

) [
ibλ0
ρ0

(a + b x−ri

r0−ri
)i−J−1 − c0

ρ0
( r0−ri

x−ri
)(a + b x−ri

r0−ri
)i−J

]
,

f(t, x) =
(
2 + π2

(r0−ri)2
α(x)t2 − δ(x)t2

)
sin π x−ri

r0−ri
− π

r0−ri
β(x)t2 cosπ x−ri

r0−ri

(6)

with variable coefficients is considered. Note that this problem is the reformulation of
the test problem (1) with the specific choice of f(t, x).

First, applying difference scheme (4), we present the following first order of accuracy
difference scheme for the approximate solution of problem (6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
n −2uk

n+uk−1
n

τ2 − α(xn)
uk+1

n+1−2uk+1
n +uk+1

n−1
h2 − β(xn)

uk+1
n+1−uk+1

n−1
2h − δ(xn)uk+1

n

= f(tk+1, xn), tk = kτ, xn = ri + nh, 1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

u0
n = 0,

u1
n−u0

n

τ = 0, 1 ≤ n ≤ M − 1, c0(a + bri)i −uk+1
2 +4uk+1

1 −3uk+1
0

2h

+λ0
ri

(a + bri)iuk+1
0 = −p0l(tk), uk

M = 0, 0 ≤ k ≤ N − 1, f(tk+1, xn) =(
2 + π2

(r0−ri)2
αnt2k+1 − δnt2k+1

)
sin π xn−ri

r0−ri
− π

r0−ri
βnt2k+1 cosπ xn−ri

r0−ri
,

l(tk) = − c0
r0−ri

(a + bri)iπt2k, α(xn) = c0
ρ0

(a + bxn−ri

r0−ri
)i−J ,

β(xn) =
[

ibc0
ρ0

(a + bxn−ri

r0−ri
)i−J−1 + c0

ρ0
( r0−ri

xn−ri
)(a + bxn−ri

r0−ri
)i−J

]
,

δ(xn) =
(

r0−ri

xn−ri

) [
ibλ0
ρ0

(a + bxn−ri

r0−ri
)i−J−1 − c0

ρ0
( r0−ri

xn−ri
)(a + bxn−ri

r0−ri
)i−J

]
.

(7)

We have (N + 1) × (M + 1) system of linear equations in (7) and we write them in
the matrix form
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⎧⎪⎨⎪⎩
A Uk+1 + B Uk + C Uk−1 = Dϕk, 1 ≤ k ≤ N − 1,

U0 = 0̃, U1 = 0̃,

(8)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ... 0 0 1
d1 e1 f1 ... 0 0 0
0 d2 e2 ... 0 0 0
... ... ... ... ... ... ...

0 0 0 ... eM−2 fM−2 0
0 0 0 ... dM−1 eM−1 fM−1

−3s + z 4s −s ... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ... 0 0 0
0 p 0 0 ... 0 0 0
0 0 p 0 ... 0 0 0
... ... ... ... ... ... ... ...

0 0 0 0 ... 0 0 0
0 0 0 0 ... p 0 0
0 0 0 0 ... 0 p 0
0 0 0 0 ... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ... 0 0 0
0 q 0 0 ... 0 0 0
0 0 q 0 ... 0 0 0
... ... ... ... ... ... ... ...

0 0 0 0 ... 0 0 0
0 0 0 0 ... q 0 0
0 0 0 0 ... 0 q 0
0 0 0 0 ... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

417



ASHYRALYEV, KÖKSAL

D =

⎡⎢⎢⎢⎢⎣
1 0 ... 0
0 1 ... 0
... ... ... ...

0 0 ... 1

⎤⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

Us =

⎡⎢⎢⎢⎢⎣
Us

0

Us
1

...

Us
M

⎤⎥⎥⎥⎥⎦
(M+1)×(1)

, for s = k ± 1, k.

Here,

dn = −αn

h2
+

βn

2h
, en =

1
τ2

+
2αn

h2
− δn, fn = −αn

h2
− βn

2h
, 1 ≤ n ≤ M − 1

s =
1
2h

c0(a + bri)i, z =
λ0

ri
(a + bri)i, p = − 2

τ2
, q =

1
τ2

ϕk
n =

⎧⎪⎨⎪⎩
0, n = 0,

f(tk+1 , xn), 1 ≤ n ≤ M − 1,

c0
1

r0−ri
(a + bri)iπt2k, n = M,

, ϕk =

⎡⎢⎢⎢⎢⎣
ϕk

0

ϕk
1

...

ϕk
M

⎤⎥⎥⎥⎥⎦
(M+1)×1

.

So, we have the second order difference equation (8) with respect to k with matrix
coefficients. To solve this difference equation, we apply the following procedure

⎧⎪⎨⎪⎩
Uk+1 = A−1Dϕk − A−1BUk − A−1CUk−1, k = 1, 2, · · ·, N − 1,

U0 = 0̃, U1 = 0̃.

Second, applying difference scheme (5), we present the following second order of
accuracy difference scheme for the approximate solution of problem (6)

418



ASHYRALYEV, KÖKSAL

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
n −2uk

n+uk−1
n

τ2 − α(xn)
(

uk
n+1−2uk

n+uk
n−1

2h2 +
uk+1

n+1−2uk+1
n +uk+1

n−1
4h2

+
uk−1

n+1−2uk−1
n +uk−1

n−1
4h2

)
− β(xn)

(
uk

n+1−uk
n−1

4h +
uk+1

n+1−uk+1
n−1

8h +
uk−1

n+1−uk−1
n−1

8h

)

−δ (xn)
(

1
2
uk

n + 1
4

(
uk+1

n + uk−1
n

))
= f(tk, xn), xn = ri + nh, tk = kτ,

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1, u0
n = 0, 1 ≤ n ≤ M − 1,

u1
n−u0

n

τ
= τ

2

(
αn

u1
n+1−2u1

n+u1
n−1

h2 + βn
u1

n+1−u1
n−1

2h
+ δnu1

n + f(0, xn)
)

,

xn = ri + nh, 1 ≤ n ≤ M − 1, c0(a + bri)i −uk+1
2 +4uk+1

1 −3uk+1
0

2h

+λ0
ri

(a + bri)iuk+1
0 = −p0l(tk), uk

M = 0, 0 ≤ k ≤ N − 1, f(tk+1, xn)

=
(
2 + π2

(r0−ri)2
αnt2k+1 − δnt2k+1

)
sin π xn−ri

r0−ri
− π

r0−ri
βnt2k+1 cosπ xn−ri

r0−ri
,

l(tk) = − c0
r0−ri

(a + bri)iπt2k, α(xn) = c0
ρ0

(a + bxn−ri

r0−ri
)i−J ,

β(xn) =
[

ibc0
ρ0

(a + bxn−ri

r0−ri
)i−J−1 + c0

ρ0
( r0−ri

xn−ri
)(a + bxn−ri

r0−ri
)i−J

]
,

δ(xn) =
(

r0−ri

xn−ri

) [
ibλ0
ρ0

(a + bxn−ri

r0−ri
)i−J−1 − c0

ρ0
( r0−ri

xn−ri
)(a + bxn−ri

r0−ri
)i−J

]
.

(9)

We have again (N + 1) × (M + 1) system of linear equations and we write them in
the matrix form

⎧⎪⎨⎪⎩
A Uk+1 + B Uk + C Uk−1 = Dϕk, 1 ≤ k ≤ N − 1,

U0 = 0̃, EU1 = vU0 + w˜ψ(xn), xn = nh, 1 ≤ n ≤ M − 1,

(10)
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ... 0 0 1
d1 e1 f1 ... 0 0 0
0 d2 e2 ... 0 0 0
... ... ... ... ... ... ...

0 0 0 ... eM−2 fM−2 0
0 0 0 ... dM−1 eM−1 fM−1

−3s + z 4s −s ... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ... 0 0 0
g1 p1 q1 ... 0 0 0
0 g2 p2 ... 0 0 0
... ... ... ... ... ... ...

0 0 0 ... pM−2 qM−2 0
0 0 0 ... gM−1 pM−1 qM−1

0 0 0 ... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ... 0 0 0
d1 e1 f1 ... 0 0 0
0 d2 e2 ... 0 0 0
... ... ... ... ... ... ...

0 0 0 ... eM−2 fM−2 0
0 0 0 ... dM−1 eM−1 fM−1

0 0 0 ... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

D =

⎡⎢⎢⎢⎢⎣
1 0 ... 0
0 1 ... 0
... ... ... ...

0 0 ... 1

⎤⎥⎥⎥⎥⎦
(M+1)×(M+1)

.
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E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ... 0 0 1
y1 η1 μ1 ... 0 0 0
0 y2 η2 ... 0 0 0
... ... ... ... ... ... ...

0 0 0 ... ηM−2 μM−2 0
0 0 0 ... yM−1 ηM−1 μM−1

−3s + z 4s −s ... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

.

Here,

dn = − αn

4h2
+

βn

8h
, en =

1
τ2

+
αn

2h2
− δn

4
, fn = − αn

4h2
− βn

8h
,

gn = − αn

2h2
+

βn

4h
, pn = − 2

τ2
+

αn

h2
− δn

2
, qn = − αn

2h2
− βn

4h
,

yn = −τ

2

(
αn

h2
− βn

2h

)
, ηn =

1
τ

+
ταn

h2
− τδn

2
, μn = −τ

2

(
αn

h2
+

βn

2h

)
, 1 ≤ n ≤ M − 1,

s =
1
2h

c0(a + bri)i, z =
λ0

ri
(a + bri)i, v =

1
τ

, w =
τ

2
, c0 = 2λ0 + μ0,

ϕk
n =

⎧⎪⎨⎪⎩
0, n = 0,

f(tk , xn), 1 ≤ n ≤ M − 1,

c0
1

r0−ri
(a + bri)iπt2k, n = M,

, ϕk =

⎡⎢⎢⎢⎢⎣
ϕk

0

ϕk
1

...

ϕk
M

⎤⎥⎥⎥⎥⎦
(M+1)×1

.

So, we have the second order difference equation (10) with respect to k with matrix
coefficients. To solve this difference equation, we apply the following procedure:⎧⎪⎨⎪⎩

Uk+1 = A−1Dϕk − A−1BUk − A−1CUk−1, k = 1, 2, · · ·, N − 1,

U0 = 0̃, U1 = E−1vU0 + E−1w˜ψ(xn), xn = nh, 1 ≤ n ≤ M − 1.

Now, we will give the results of the numerical analysis. Similar forms of equation (2)
were used in the papers [11] and [12] in the cases a = 1, i = J = 1, and a = 1, i = J = 2,

respectively. In the first and second examples in the present paper, numerical results are
presented with the parameters a = 1, b = 0, i = J = 1, and a = 5/6, b = 1/6, i = J = 1,

respectively. In both examples, the values λ0 = 0.3, μ0 = 0.35, p0 = 1, ri = 1, r0 = 2 are
taken for material properties.
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First, as we noted above one can not obtain a sharp estimate for the constants C1

and C2 figuring in the stability estimates of Theorems 1 and 2. We have

C1 = max
f,u

(Ct1) ,

C2 = max
f,u

(Ct2) ,

where
Ct1 = max

0≤k≤N

∥∥uh
k

∥∥
L2h

+ max
1≤k≤N

∥∥τ−1
(
uh

k − uh
k−1

)∥∥
L2h

×
[

max
1≤k≤N−1

∥∥fh
k

∥∥
L2h

+
∥∥ψh

∥∥
L2h

+
n∑

r=1

∥∥ϕh
xr,jr

∥∥
L2h

]−1

,

Ct2 =

[
max

1≤k≤N−1

∥∥τ−2
(
uh

k+1 − 2uh
k + uh

k−1

)∥∥
L2h

+ max
1≤k≤N−1

n∑
r=1

∥∥∥(uh
k+1

)
xr ,xr,,jr

∥∥∥
L2h

]

×
[

max
1≤k≤N−1

∥∥τ−1(fh
k − fh

k−1)
∥∥

L2h
+
∥∥fh

0

∥∥
L2h

+
n∑

r=1

∥∥ψh
xr ,jr

∥∥
L2h

+
n∑

r=1

∥∥∥ϕh
xr,xr,,jr

∥∥∥
L2h

]−1

.

The constants Ct1 and Ct2 in the case of numerical solution of initial value problem (6)
are computed.

The numerical solutions are recorded for different values of N = M, uk
n represents the

numerical solutions of these difference schemes at (tk, xn). In the cases a = 1, b = 0, and
a = 5/6, b = 1/6, the constants Ct1 and Ct2 are given in Tables 1–2 and Tables 3–4 for
N = M = 10, 20, 30, 40 and 50.

Table 1. The values of Ct1 in the case a = 1, b = 0.

Method N=M=10 N=M=20 N=M=30 N=M=40 N=M=50

Difference scheme (4) 0.2314 0.1273 0.0896 0.0693 0.0566
Difference scheme (5) 0.2749 0.1390 0.0951 0.0725 0.0587
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Table 2. The values of Ct2 in the case a = 1, b = 0.

Method N=M=10 N=M=20 N=M=30 N=M=40 N=M=50

Difference scheme (4) 0.4300 0.2091 0.1397 0.1051 0.0843
Difference scheme (5) 0.5000 0.2251 0.1468 0.1091 0.0869

Table 3. The values of Ct1 in the case a = 5/6, b = 1/6. ¿

Method N=M=10 N=M=20 N=M=30 N=M=40 N=M=50

Difference scheme (4) 0.2260 0.1260 0.0890 0.0690 0.0563
Difference scheme (5) 0.2686 0.1376 0.0945 0.0721 0.0584

Table 4. The values of Ct2 in the case a = 5/6, b = 1/6.

Method N=M=10 N=M=20 N=M=30 N=M=40 N=M=50

Difference scheme (4) 0.4217 0.2072 0.1389 0.1047 0.0840
Difference scheme (5) 0.4907 0.2231 0.1459 0.1086 0.0866

Recall that we have not been able to obtain a sharp estimate for the constants C1 and
C2 figuring in the stability estimates. The numerical results in the Tables 1, 3 and 2, 4
give Ct1

∼= 0.5 and Ct2
∼= 0.8, respectively. That means the constants C1 and C2 figuring

in the stability estimates of Theorem 1 and 2 are not large numbers and the difference
schemes (4) and (5) are stable in the case of numerical solution of initial value problem
(6). Further, the properties of the material represented by the parameters a and b do not
effect the values of the coefficients of the stability estimates C1 and C2 very much.

Second, for the accurate comparison of the two different difference schemes considered,
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the errors of the numerical solution computed by

E0 = max
1≤k≤N−1

(
M−1∑
n=1

∣∣u(tk, xn) − uk
n

∣∣2 h

)1/2

,

are recorded for various values of N and M, where u(tk, xn) represents the exact solution
and uk

n represents the numerical solution at (tk, xn). The errors for the first order of
accuracy difference scheme are given in the Tables 5–7 for a = 1, b = 0, and a = 5/6,

b = 1/6, respectively. For the same values of a and b, Tables 6 and 8 show the errors for
the second order of accuracy difference scheme.

Table 5. The errors for the difference scheme (4) in the case a = 1, b = 0.

N\M 10 20 30 40 50

10 0.1059 0.1074 0.1076 0.1077 0.1078
20 0.0588 0.0605 0.0608 0.0609 0.0609
30 0.0401 0.0419 0.0421 0.0422 0.0423
40 0.0302 0.0320 0.0322 0.0323 0.0324
50 0.0240 0.0258 0.0261 0.0262 0.0262

Table 6. The errors for the difference scheme (5) in the case a = 1, b = 0.

N\M 10 20 30 40 50

10 0.0063 0.0052 0.0054 0.0058 0.0061
20 0.0053 0.0021 0.0015 0.0014 0.0013
30 0.0045 0.0016 0.0010 0.0008 0.0007
40 0.0040 0.0013 0.0008 0.0006 0.0004
50 0.0037 0.0012 0.0007 0.0005 0.0004
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Table 7. The errors for the difference scheme (4) in the case a = 5/6, b = 1/6.

N\M 10 20 30 40 50

10 0.1063 0.1078 0.1081 0.1082 0.1078
20 0.0591 0.0608 0.0611 0.0612 0.0612
30 0.0403 0.0421 0.0424 0.0425 0.0425
40 0.0303 0.0321 0.0324 0.0325 0.0325
50 0.0241 0.0259 0.0262 0.0263 0.0263

Table 8. The errors for the difference scheme (5) in the case a = 5/6, b = 1/6.

N\M 10 20 30 40 50

10 0.0056 0.0052 0.0055 0.0059 0.0062
20 0.0049 0.0019 0.0015 0.0014 0.0013
30 0.0043 0.0015 0.0009 0.0007 0.0006
40 0.0039 0.0012 0.0007 0.0005 0.0004
50 0.0037 0.0011 0.0006 0.0004 0.0003

Thus, the second order of accuracy difference scheme is more accurate comparing with
the first order of accuracy difference scheme. Further, the rate of decrease of the error
with increasing N and M is higher for the second order of accuracy difference scheme (5)
than the first order of accuracy difference scheme (4). These results are common to both
examples obtained by variation of parameters a and b. As in the case of the computation
of the coefficients of the stability estimates, the errors of the first and second order of
accuracy difference schemes do not differ very much for the two examples. For example
for N = M = 20, the errors computed for the first order of accuracy difference schemes
are 0.0605 and 0.0608 for the examples 1 and 2, respectively. Similarly for the second
order of accuracy difference scheme, these errors are 0.0021 and 0.0019. Obviously in
both examples the second order of accuracy difference scheme is more accurate almost 30
times.
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[11] Liu, G.R., Han, X., Lam, K.Y.: Stress Waves in functionally gradient materials and its use

for material characterization, Compos. Part B: Eng., 30, 383-394, (1999).

[12] Han, X., Liu, G.R.: Effects of SH waves in a functionally graded plate, Mesh. Res. Comm.,

29, 327-338, (2002).

Allaberen ASHYRALYEV

Department of Mathematics

Fatih University
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