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Abstract

Sufficient conditions for the Lp-equivalence between two nonlinear impulse differ-

ential equations with unbounded linear parts and possibly unbounded nonlinearity

parts are given. An example of two nonlinear impulse differential parabolic equa-

tions is considered.

Key words and phrases: Impulse differential equations, Lp-equivalence, Partial

impulse differential equations of parabolic type.

1. Introduction

We consider the Lp-equivalence between two nonlinear impulse differential equations
with unbounded linear parts and possibly unbounded nonlinearity parts. This means that
every solution of the one equation which lies in a closed, convex set induces a solution of
another equation which lies in a possibly another closed and convex set and vice versa.
Moreover the difference of the two solutions lies in the space Lp (1 < p < ∞).

With the help of a transformation every parabolic impulse differential equation can
be reduced to an ordinary impulse diferential equation with a unbounded operator. We
give an example for this situation and show the Lp-equivalence between the ordinary
equations.
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2. Statement of the Problem

Let X be a Banach space with norm ‖.‖, identity I and R+ = [0,∞).
By D(T ) ⊂ X we will denote the domain of the operator T : D(T ) → X.
Consider the impulse diferential equations

dui

dt
= Ai(t)ui + fi(t, ui) for t �= tn (1)

ui(t+n ) = Qi
n(ui(tn)) + hi

n(ui(tn)) for n = 1, 2, ..., (2)

where Ai(t) : D(Ai(t)) → X (t ∈ R+) and Qi
n : D(Qi

n) → D(Ai(tn)) (i = 1, 2) are linear
possibly unbounded operators and fi(t, .) : R+ ×X → X are possibly unbounded for any
fixed t ∈ R+ functions and hi

n : X → X are possibly unbounded functions. The sets
D(Ai(t)) and D(Qi

n) (i = 1, 2; n = 1, 2, ...; t ∈ R+) lie dense in X. The points of jump
tn satisfy the conditions 0 = t0 < t1 < t2 < ... < tn < ..., lim

n→∞
tn = ∞.

Set Qi
0 = I, hi

0(u) = 0 (i = 1, 2; u ∈ X).
Furthermore, we assume that all considered functions are left continuous and that

there exist the Cauchy operators Ui(t, s) (i = 1, 2) of the equations

dui

dt
= Ai(t)ui (3)

Remark 1 Sufficient conditions for the existence of Ui(t, s) can be found in [5]

We introduce the following condition.
(H1) [5] There exist constants ci > 0 (i = 1, 2) such that for t ∈ R+

‖(λI + Ai(t))
−1‖ ≤ ci

1 + |λ| (4)

for each λ which Reλ ≤ 0 hold.
From (4) it follows that

‖A−α
i (t)‖ ≤ ci (5)

for α ∈ (0, 1) and t ∈ R+ (i = 1, 2).
It is not hard to check that

Vi(t, s) = Ui(t, tn)Qi
nUi(tn, tn−1)Qi

n−1...Q
i
kUi(tk, s) (6)
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(0 ≤ s ≤ tk < tn < t; i = 1, 2) are the Cauchy operators of the linear part of the impulse
equations (1), (2).

Lemma 1 Let condition (H1) holds and integral equations

wi(t) = Vi(t, 0)Aα
i (0)ξi +

t∫
0

Aα
i (0)Vi(t, s)fi(s, A−α

i (0)wi(s))ds+

+
∑

0<tn<t
Aα

i (0)Vi(t, t+n )hi
n(A−α

i (0)wi(tn))
(7)

for 0 ≤ s ≤ t, ξi ∈ D(Aα
i (0)), ui(0) = ξi have solutions (i = 1, 2).

Then the functions
ui(t) = A−α

i (0)wi(t) (8)

are, for any α ∈ (0, 1), solutions of the equations (1), (2) (i = 1, 2).

Lemma 1 can be proved by help of the proof of Theorem 23.6 (pp.473) [5] and
straightforward verification.

Remark 2 In [5] are given sufficient conditions for the solvability of the ordinary case
i.e. without of impulses of (7). If these conditions are fulfilled and hi

n are of Lipschitz
type, then equations (7) have unique solutions for any ξi ∈ D(Aα

i (0)).

By Lp(X), 1 ≤ p < ∞ we denote the space of all functions u : R+ → X for which

∞∫
0

‖u(t)‖p
dt < ∞ with norm ‖u‖p = (

∞∫
0

‖u‖p
dt)

1
p

.

Definition 1 Eqution (1), (2), i = 2, is called Lp-equialent to equation (1), (2), i = 1,
in the unempty, closed and convex subset B of X if there exists convex and closed subset
D of X such that for any solution u1(t) of (1), (2), i = 1, lying in the set B there
exists a solution u2(t) of (1), (2), i = 2, lying in the set B ∪ D and satisfying the
relation u2(t) − u1(t) ∈ Lp(X). If equation (1), (2), i = 2, is LP -equivalent to equation
(1), (2), i = 1, in set B, and vice versa, we shall say that equations (1), (2) i = 1 and
(1), (2), i = 2, are Lp-equivalent in set B.

We introduce the condition (H2) A1(0) = A2(0). Set A = A1(0).
The paper aims at finding of sufficient conditions for the existence of Lp-equivalence

between impulse equations (1), (2), i = 1, 2.
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3. Main Results

Set

u(t) = u2(t) − u1(t), (9)

where ui(t) (i = 1, 2) are defined by (8).
Then the function u(t) is a solution of integral equation

u(t) = T (A−αw1, u)(t), (10)

where w1(t) = Aαu1(t) and

T (u1, u)(t) = V2(t, 0)(u1(0) + u(0)) − V1(t, 0)u1(0)+

+
t∫
0

{V2(t, s)f2(s, u1(s) + u(s)) − V1(t, s)f1(s, u1(s))}ds+

+
∑

0<tn<t
{V2(t, t+n )h2

n(u1(tn) + u(tn)) − V1(t, t+n )h1
n(u1(tn))}.

(11)

By S(R+ , X) we denote the linear set of all functions which are continuous for
t �= tn (n = 1, 2, ...), have at points tn limits on the left and right and are left continuous.
The set S(R+, X) is a localy convex space with respect to the metric

ρ(u, v) = sup
0<T<∞

(1 + T )−1
max

0≤t≤T
‖u(t) − v(t)‖

1 + max
0≤t≤T

‖u(t) − v(t)‖ .

The convergence with respect to this metric coincides with the uniform convergence
on each bounded interval. For this space an analog of Arzella-Ascoli’s theorem is valid.

Lemma 2 [1] The set H ⊂ S(R+ , X) is relatively compact if and only if the intersections
H(t) = {h(t) : h ∈ H} are relatively compact for t ∈ R+ and H is equicontinuous on each
interval (tn, tn+1] (n = 0, 1, 2...).

Proof. We apply the theorem of Arzella-Ascoli on each intervals (tn, tn+1] (n =
0, 1, 2, ...) and constitute a diagonal line sequence. �

Let C be an unempty subset of X. Set C̃ = {u ∈ S(R+ , X) : u(t) ∈ C, t ∈ R+}. We
now have the following lemma.
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Lemma 3 Let C be a non empty, convex and closed subset of X. Suppose an operator
F transforms C̃ in the itself and is continuous and compact.

Then F has a fixed point in C̃.

Proof. The proof of Lemma 3 follows from the fixed point principle of Schauder-
Tychonoff. �

Theorem 1 The following conditions are fulfilled.
1. Let conditions (H1) and (H2) hold.
2. There exists an unempty, convex, closed subset D of X such that T (A−αw1, u)(t) ∈

D for each u with u(t) ∈ D (t ∈ R+).
3. There exist positive functions qi(t, s) (i = 1, 2) such that

‖V1(t, s)ξ‖ ≤ q1(t, s)‖ξ‖,

‖(V2(t, s) − V1(t, s))η‖ ≤ q2(t, s)‖η‖,

where ξ ∈ D(A1(s)), η ∈ D(A1(s))∩D(A2(s)), 0 ≤ s ≤ t and functions qi(t, s), fi(t, v)
and hi

n(v) i = 1, 2, satisfy the following conditions.
3.1 The functions qi(., 0) belong to Lp(R+) (i = 1, 2).
3.2

sup
v∈B̃

w∈B̃∪D̃

t∫

0

q1(t, s)‖f2(s, w) − f1(s, v)‖ds + sup
w∈B̃∪D̃

t∫

0

q2(t, s)‖f2(s, w)‖ds ≤ ψ(t),

where the function ψ(t) is continuous and ψ ∈ Lp(R+).

3.3 For any fixed u1 ∈ B̃ the following inclusions hold:

t∫

0

V2(t, s)f2(s, u1(s) + u(s))ds ∈ Ku1(t), (u ∈ D̃),

where Ku1(t) is for any fixed t ∈ R+ a compact subset of X.
3.4

sup
v∈B̃

w∈B̃∪D̃

∑
0<tn<t

q1(t, t+n )‖h2
n(w) − h1

n(v)‖ + sup
w∈B̃∪D̃

∑
0<tn<t

q2(t, t+n )‖h2
n(w)‖ ≤ ϕ(t),
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where ϕ ∈ Lp(R+).

3.5 For any fixed u1 ∈ B̃ the following inclusion holds:

∑
0<tn<t

V2(t, t+n )h2
n(u1(tn) + u(tn)) ∈ Ku1

n , (u ∈ D̃)

where Ku1
n is for any fixed n = 1, 2, ... a compact subset of X.

3.6

t∫
0

q1(t, s) sup
w∈B̃∪D̃

‖f2(s, w)‖ds < ∞ and
t∫
0

q2(t, s) sup
w∈B̃∪D̃

‖f2(s, w)‖ds < ∞ for any

fixed t ∈ R+.

Then the equation (1), (2) (i = 2) is Lp-equivalent to the equation (1), (2) (i = 1) in
the set B.

Proof. We will prove that for each solution u1(t) of equation (1), (2) (i = 1) lying in
the set B the operator T (A−αw1, u) has a fixed point u(t) such that u1 + u ∈ B̃ ∪ D̃ and
which lies in Lp(X).

From condition 2 of Theorem 1 it follows that the operator T (A−αw1, u) defined by
(11) maps the set

D̃ = {u ∈ S(R+, X) : u(t) ∈ D, t ∈ R+}

into itself for A−αw1 ∈ B̃.

Let be H = {h(t) = T (A−αw1, u)(t) : u ∈ D̃, t ∈ R+}.

We will show the equicontinuity of the functions of the set H . Let t′ > t′′ and
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t′, t′′ ∈ (tn, tn+1]. It can be verified that

‖h(t′) − h(t′′)‖ ≤

≤ ‖V2(t′, 0)u2(0) − V2(t′′, 0)u2(0)‖ + ‖V1(t′, 0)u1(0) − V1(t′′, 0)u1(0)‖+

+ sup
w∈B̃∪D̃

t′′∫
0

‖V2(t′, s)f2(s, w) − V2(t′′, s)f2(s, w)‖ds+

+ sup
v∈B̃

t′′∫
0

‖V1(t′, s)f1(s, v) − V1(t′′, s)f1(s, v)‖ds+

+ sup
w∈B̃∪D̃

t′∫
t′′

q2(t′, s)‖f2(s, w)‖ds + sup
v∈B̃

w∈B̃∪D̃

t′∫
t′′

q1(t′, s)‖f2(s, w) − f1(s, v)‖ds+

+ sup
w∈B̃∪D̃

∑
0<tn<t′′

‖V2(t′, t+n )h2
n(w) − V2(t′′, t+n )h2

n(w)‖+

+ sup
v∈B̃

∑
0<tn<t′′

‖V1(t′, t+n )h1
n(v) − V1(t′′, t+n )h1

n(v)‖.

From (6) and condition 3.2 of Theorem 1, it follows equicontinuity of the set H .
From conditions 3.3, 3.5 and (11) it follows the compactness of the intersections

H(t) = {h(t) : h ∈ H} for t ∈ R+. Consequently from Lemma 2 it follows the compactness
of the set H .

We will show that the operator T (A−αw1, u) is continuous in S(R+, X).
Let the sequence {ũk} ⊂ D̃ be convergent in the metric of the space S(R+, X) to the

function ũ ∈ D̃. Then for t ∈ R+ the sequence f2(t, A−αw1(t) + ũk(t)) convergence to
f2(t, A−αw1(t) + ũ(t)). From condition 3 of Theorem 1 we obtain

‖V2(t, s)f2(s, w)‖ − ‖V1(t, s)f2(s, w)‖ ≤

≤ ‖(V2(t, s) − V1(t, s))f2(t, w)‖ ≤ q2(t, s)‖f2(s, w)‖.

Hence
‖V2(t, s)f2(s, w)‖ ≤ (q1(t, s) + q2(t, s)) sup

w∈B̃+D̃

‖f2(s, w)‖. (12)

From condition 3.6 of Theorem 1 and (12) it follows that the convergent sequence of
functions V2(t, s)f2(s, A−αw1(s) + ũk(s)) is majorized by a integrable function. Hence
T (A−αw1, ũk)(t) tends to T (A−αw1, ũ)(t) for t ∈ R+.

From Lemma 3 it follows that for any u1 = A−αw1 ∈ B̃ the operator T (A−αw1, u)
has a fixed point u in D̃ i.e. u = T (A−αw1, u).
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We will show that this fixed point u lies in Lp(X).

‖u(t)‖ ≤ q2(t, 0)‖u1(0) + u(0)‖ + q1(t, 0)‖u(0)‖+

+ sup
w∈B̃∪D̃

t∫
0

q2(t, s)‖f2(s, w)‖ds + sup
v∈B̃

w∈B̃∪D̃

t∫
0

q1(t, s)‖f2(s, w) − f1(s, v)‖ds+

+ sup
w∈B̃∪D̃

∑
0<tn<t

q2(t, t+n )‖h2
n(w)‖ + sup

v∈B̃
w∈B̃∪D̃

∑
0<tn<t

q1(t, t+n )‖h2
n(w) − h1

n(v)‖ ≤

≤ q2(t, 0)‖u1(0) + u(0)‖ + q1(t, 0)‖u(0)‖+ ψ(t) + ϕ(t),

hence

‖u‖p ≤ ‖u1(0) + u(0)‖‖q2‖p + ‖u(0)‖‖q1‖p + ‖ψ‖p + ‖ϕ‖p.

Hence this fixed point belongs to the space Lp(X) i.e. equation (1), (2), i = 2, is
Lp-equivalent to the equation (1), (2), i = 1 in the set B. �

We shall illustrate Theorem 1 with an example of the qualitative theory of the
nonlinear partial impulse differential equations. We shall begin with the following lemma.

Lemma 4 Let Ai(t), Qi
n (i = 1, 2) be unbounded operators and Wi(t, s)(i = 1, 2) are the

Cauchy operators of the corresponding linear impulse equations.

Let the following conditions hold.

1. The operators A2(t) − A1(t) are bounded for any t ∈ R+.

2. The operators Q2
n − Q1

n are bounded for any n = 1, 2, ...

3. There exist constants N > 0 and ν ∈ R such that

‖W1(t, s)‖ ≤ Ne−ν(t−s)

for any 0 < s, t < ∞.

Then the following estimates hold

‖W2(t, s)‖ ≤ Ne−ν(t−s)e
N

t�

s

‖A2(τ)−A1(τ)‖dτ
(1 +

∏
s<tj<t

‖Q2
j − Q1

j‖) (13)
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and

‖W2(t, s) − W1(t, s)‖ ≤ Ne−ν(t−s)e
N

t�

s

‖A2(τ)−A1(τ)‖dτ
.

(1 +
∏

s<tj<t
‖Q2

j − Q1
j‖)(1 + N

∑
s<tj<t

‖Q2
j − Q1

j‖).
(14)

Proof. The function V2(t) = W2(t, 0) is a solution of the initial value problem.

dV2
dt − A1W2 = (A2 − A1)W2 (t �= tn)

V2(t+n ) = Q1
nV2(tn) + (Q2

n − Q1
n)V2(tn)

V2(0) = I.

The solution X(t) of the impulse equation

dX
dt − A1X = (A2(t) − A1(t))V2(t) (t �= tn)

X(t+n ) = Q1
nX(tn) + (Q2

n − Q1
n)V2(tn)

X(0) = I

has the representation

X(t) = W1(t, 0) +
t∫
0

W1(t, τ )(A2(τ ) − A1(τ ))V2(τ )dτ+

+
∑

0<tj<t
W1(t, t+j )(Q2

j − Q1
j)V2(tj)

i.e.

V2(t) = W1(t, 0) +
t∫
0

W1(t, τ )(A2(τ ) − A1(τ ))V2(τ )dτ+

+
∑

0<tj<t
W1(t, t+j )(Q2

j − Q1
j )V2(tj).

With ϕ(t) = ‖V2(t)‖, p(t) = ‖A2(t) − A1(t)‖, qj = ‖Q2
j − Q2

j‖ we obtain

ϕ(t) ≤ Ne−νt + N

t∫

0

e−ν(t−τ)p(τ )ϕ(τ )dτ + N
∑

0<tj<t

e−ν(t−tj)qjϕ(tj). (15)
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From [6] and (15) it follows the estimate (13). Inequality (14) follows from (13). �

Example In our example we shall consider two nonlinear partial impulse differential
equations. We transform this equations to ordinary impulse differential equations and
show that they satisfy the conditions of Theorem 1. The following short introduction in
the qualitative theory of nonlinear parabolic impulse differential equations is taken from
[2].

Let Ω be a bounded domain with smooth boundary ∂Ω in R
n, Q = (0,∞) × Ω and

Γ = (0,∞)× ∂Ω.
We denote

Pn = {(tn, x) : x ∈ Ω}, P =
∞⋃

n=1

Pn,

Λn = {(tn, x) : x ∈ ∂Ω}, Λ =
∞⋃

n=1

Λn.

Consider the impulse nonlinear parabolic initial value problems

∂ui

∂t = Ãi(t, x, D)ui + f̃i(t, x, ui), (t, x) ∈ Q \ P

Dαui(t, x) = 0, |α| < m, (t, x) ∈ Γ \ Λ

ui(0, x) = vi(x), x ∈ Ω

ui(t+n , x) = Qi
n(ui(tn, x)) + hi

n(ui(tn, x)), x ∈ Ω, n = 1, 2, ...,

where

Ãi(t, x, D)ui =
∑

|α|≤2m

aα(t, x)Dαui + kiui,

Q̃i
n : D(Qi

n) → D(Ãi(t, x, D)) (n = 1, 2, ...; i = 1, 2) are linear operators and f̃i(., ., .) :
R+ × R

n × R → R, hi
n : R → R.

Let X = Lp(Ω, R), (1 < p < ∞), where

Lp(Ω, R) = {v : Ω → R,

∫

Ω

|v(x)|pdx < ∞}

with norm |v|p = (
∫
Ω

|v(x)|pdx)
1
p .
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With the family Ãi(t, x, D), t ∈ R+, i = 1, 2, of strongly elliptic operators we
associate a family of linear operators Ai(t), t ∈ R+, n = 1, 2, acting in X by

Ai(t)ui = Ãi(t, x, D)ui, for ui ∈ D.

This is done with D = D(Ai(t)) = W 2m,p(Ω)
⋂

Wm,p
0 (Ω), (i = 1, 2; t ∈ R+).

The real constans ki > 0 (i = 1, 2) are chosen such that condition (H1) holds.
Let vi ∈ X. We set

fi(t, ui)(x) = f̃i(t, x, ui(t, x)), ui ∈ X, t ∈ R+, x ∈ Ω (i = 1, 2),

Qi
n(ui(tn))(x) = Q̃i

n(ui(tn, x)), hi
n(ui(tn))(x) = h̃i

n(ui(tn, x)),

where Qi
n : D(Qi

n) → D (D(Qi
n) ⊂ X lie dense in X (i = 1, 2)) are linear operators,

f i
n : R+ × X → X and hi

n : X → X.
Let Ui(t, s) i = 1, 2, be the Cauchy operators of the equations

dui

dt
= Ai(t)ui

In [4] are given sufficient conditions for the validaty of the estimates

|Ui(t, s)|p→p ≤ Mi (0 ≤ s ≤ t; Mi > 0 constants, i = 1, 2).

We shall consider the concrete case when tn = n (n = 1, 2, ...),

Q̃1
nξ =

e−2κ1

12(M2
1 + 1)

ξ, Q̃2
nξ =

12(M2
1 + 1) + 2ne−2κ1

12.2n(M2
1 + 1)

ξ, (ξ ∈ R)

where κ1 > 1
12
|k2 − k1|.

We denote

Q1
nη =

e−2κ1

12(M2
1 + 1)

η, Q2
nη =

12(M2
1 + 1) + 2ne−2κ1

12.2n(M2
1 + 1)

η (η ∈ X).

Let Vi(t, s) (i = 1, 2; 0 ≤ s ≤ t) are the Cauchy operators of the linear impulse
equations

dui

dt
= Ai(t)ui for t �= tn

ui(t+n ) = Qi
n(ui(tn)) for n = 1, 2, ...
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Then for 0 < s ≤ k < n < t, ξ ∈ D the following estimates are valid

|V1(t, s)ξ|p = |U1(t, tn)Q1
n...Q1

kU1(tk, s)ξ|p ≤

≤ M1
e−2κ1

12(M2
1+1)

...M1
e−2κ1

12(M2
1+1)

M1|ξ|p ≤

≤ 1
12

e−κ1(n−k+2) e−κ1(n−k)

12(n−k) |ξ|p ≤ 1
12

e−κ1(t−s)|ξ|p.

Let

q1(t, s) =
1
12

e−κ1(t−s).

From Lemma 4 we obtain the estimate

|V2(t, s)ξ − V1(t, s)ξ|p ≤

≤ 1
12

e−κ1(t−s)e
1
12

t�

s

|k2−k1|dτ
(1 +

∏
s<j<t

1
2j )(1 + 1

12

∑
s<j<t

1
2j )|ξ|p ≤

≤ 1
12e( 1

12 |k2−k1|−κ1)(t−s)2(1 + 1
121)|ξ|p = 13

72e( 1
12 |k2−k1|−κ1)(t−s)|ξ|p.

Let

q2(t, s) =
13
72

e−κ2(t−s),

where κ2 = κ1 − 1
12
|k2 − k1|. We take

f̃1(t, x, u1) = eγt(ln(1 + 2−|u1(t,x)|) − u1(t, x)),

f̃2(t, x, u2) = eγt ln(2 + |u2(t, x)|),

h̃1
n(u1(tn, x)) = eαtn(sin u1(tn, x) − u1(tn, x)),

h̃2
n(u2(tn, x)) = eαtn(sin 1

1+|u2(tn,x)| + u2(tn, x)),

where γ + κi < −1 and α + γi < ln 1
2 (i = 1, 2). Then

f1(t, u1) = eγt(ln(1 + 2−|u1(t)|) − u1(t)),

f2(t, u2) = eγt ln(2 + |u2(t)|),

h1
n(u1(tn)) = eαtn(sin u1(tn) − u1(tn)),

h2
n(u2(tn)) = eαtn(sin 1

1+|u2(tn)| + u2(tn)).
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Let r > 0 and

ρ >
21
5

(r + (μ(Ω))
1
p ). (16)

We shall show that the conditions of Theorem 1 are fulfilled.

Set Bσ = {u ∈ X : |u|p ≤ σ}. For any ξ ∈ Bρ, η ∈ Br+ρ , t ∈ R+ we obtain

q1(t, 0)|ξ|p + q2(t, 0)|η|p ≤ 1
12

e−κ1tρ +
13
72

e−κ2t(r + ρ).

Let us set

χr,ρ(t) =
1
12

e−κ1tρ +
13
72

e−κ2t(r + ρ).

We shall show the validaty of the condition 3.2 of Theorem 1.

sup
|v|p≤r

|w|p≤r+ρ

t∫
0

q1(t, s)|f2(s, w) − f1(s, v)|pds + sup
|w|p≤r+ρ

t∫
0

q2(t, s)|f2(s, w)|pds =

= sup
|v|p≤r

|w|p≤r+ρ

t∫
0

1
12

e−κ1(t−s)eγs| ln 2+|w|
1+2−|v| + v|

p
ds+

+ sup
|w|p≤r+ρ

t∫
0

13
72e−κ2(t−s)eγs| ln(2 + |w|)|pds ≤

≤ sup
|v|p≤r

|w|p≤r+ρ

t∫
0

1
12e−κ1(t−s)eγs(|2 + |w||p + |v|p)ds+

+ sup
|w|p≤r+ρ

t∫
0

13
72

e−κ2(t−s)eγs|2 + |w||pds ≤

≤ 1
12

e−κ1t 2(μ(Ω))
1
p +2r+ρ

−(κ1+γ)
+ 13

72
e−κ2t 2(μ(Ω))

1
p +r+ρ

−(κ2+γ)
.

Let us set

ψr,ρ(t) =
1
12

e−κ1t 2(μ(Ω))
1
p + 2r + ρ

−(κ1 + γ)
+

13
72

e−κ2t 2(μ(Ω))
1
p + r + ρ

−(κ2 + γ)
.
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We prove condition 3.4 of Theorem 1.

sup
|v|p≤r

|w|p≤r+ρ

∑
0<tn<t

q1(t, t+n )|h2(w) − h1(v)|p + sup
|w|p≤r+ρ

∑
0<tn<t

q2(t, t+n )|h2(w)|p =

= sup
|v|p≤r

|w|p≤r+ρ

∑
0<n<t

1
12e−κ1(t−n)eαn| sin 1

1+|w| + w − sinv + v|
p
+

+ sup
|w|p≤r+ρ

∑
0<n<t

13
72

e−κ2(t−n)eαn| sin 1
1+|w| + w|

p
≤

≤ sup
|v|p≤r

|w|p≤r+ρ

1
12e−κ1t

∑
0<n<t

e(κ1+α)n(2(μ(Ω))
1
p + |w|p + |v|p)+

+ sup
|w|p≤r+ρ

13
72e−κ2t

∑
0<n<t

e(κ2+α)n((μ(Ω))
1
p + |w|p) ≤

≤ 1
12e−κ1t(2(μ(Ω))

1
p + 2r + ρ) eκ1+α

1−eκ1+α + 13
72e−κ2t((μ(Ω))

1
p + r + ρ) eκ2+α

1−eκ2+α .

Set

ϕr,ρ(t) = 1
12e−κ1t(2(μ(Ω))

1
p + 2r + ρ) eκ1+α

1−eκ1+α + 13
72e−κ2t((μ(Ω))

1
p + r + ρ) eκ2+α

1−eκ2+α .

It is not hard to check that the functions qi(., 0) (i = 1, 2), ψr,ρ and ϕr,ρ lie in the
space Lp(R+).

From condition (16) we obtain

χr,ρ(t) + ψr,ρ(t) + ϕr,ρ(t) ≤ ρ for each t ∈ R+.

By means of a compactness criterion from [3] we prove condition 3.3.

Set

M(t) = {m(t) =

t∫

0

V2(t, s)f2(s, u1(s) + u(s))ds : |u|p ≤ ρ}

is a compact subset of X for any fixed t ∈ R+.
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Indeed,

|m(t)|p ≤
t∫
0

|(V2(t, s) − V1(t, s))f2(s, u1(s)(x) + u(s)(x))|pds+

+
t∫
0

|V1(t, s)f2(s, u1(s)(x) + u(s)(x))|pds ≤

≤ 13
72e−κ2t

t∫
0

e(κ2+γ)s| ln(2 + |u1(s)(x) + u(s)(x)|)|pds+

+ 1
12

e−κ1t
t∫
0

e(κ1+γ)s| ln(2 + |u1(s)(x) + u(s)(x)|)|pds ≤

≤ 13
72

2(μ(Ω))
1
p +r+ρ

−(κ2+γ)
+ 1

12
2(μ(Ω))

1
p +r+ρ

−(κ1+γ)
.

Moreover

|m(t)(x + h) − m(t)(x)|p ≤

≤ 13
72e−κ2t

t∫
0

e(κ2+γ)s| ln 2+|u1(s)(x+h)+u(s)(x+h)|
2+|u1(s)(x)+u(s)(x)| |

p
ds+

+ 1
12e−κ1t

t∫
0

e(κ1+γ)s| ln 2+|u1(s)(x+h)+u(s)(x+h)|
2+|u1(s)(x)+u(s)(x)| |

p
ds.

In a similar way we show the validaty of condition 3.5.
Obviously condition 3.6 of Theorem 1 is fulfilled.
The conditions of Theorem 1 are fulfilled and hence the equations (1), (2)(i = 1, 2)

are in Br , Lp-equivalent.

References

[1] Bainov, D., Kostadinov, S. and Zabreiko, P.: Lp-equivalence of impulsive equations, Inter-

national Journal of Theoretical Physics, 27, N11, 1411-1424, (1988).

[2] Erbe, L., Freedman, H., Liu, X. and Wu, J.: Comparison principle for impulsive parabolic

equations with applications to models of single species growth, J. Austral. Math. Soc. Ser.

B 32, 382-400, (1991).

[3] Maurin, K.: Metody Przestrzeni Hilberta, Panstwowe wydawnictwo naukovwe, 570, (1959).

[4] Pazy, A.: Semigroups of Linear Operators, Springer-Verlag, 279, (1983).

[5] Krasnoselski, M., Zabreiko, P., Pustilnic, E. and Sobolevski P.: Integrable Operators in

Spaces of Integrable Functions, Moskva , 499, (in Russian), (1966).

465



GEORGIEVA, KOSTADINOV

[6] Bainov, D. and Kostadinov, S.: Abstract Impulsive Differential Equations, Descartes Press

Co., Koriyama (1996).

A. GEORGIEVA

University of Food Technologies

26 Maritza Blvd.

4002 Plovdiv-BULGAGIA

S. KOSTADINOV

University of Plovdiv

Department of Mathematics and

Informatics 24 Tsar Asen St.

4000 Plovdiv-BULGAGIA

Received 22.06.2007

466


