On Pseudo-Inverses of Fredholm Operators

Christoph Schmoeger

Abstract

Suppose that A is a Fredholm operator on a Banach space. We prove that A has index $=0$ (resp. ≥ 0, resp. ≤ 0) if and only if A has pseudo-inverse which is invertible (resp. Fredholm and left invertible, resp. Fredholm and right invertible). Furthermore, we determine the interior points of some classes of linear operators.

Key Words: Fredholm operator, pseudo-inverse

1. Terminology

X always denotes a complex Banach space, and the algebra of all bounded linear operators on X is denoted by $\mathcal{L}(X)$.
If $A \in \mathcal{L}(X)$ we denote by $N(A)$ the kernel of A and by $\alpha(A)$ the dimension of $N(A)$. $A(X)$ denotes the range of A, and we define $\beta(A)=\operatorname{codim} A(X)$.

An operator $A \in \mathcal{L}(X)$ is called relatively regular if there is $S \in \mathcal{L}(X)$ such that $A S A=A$. In this case S is called a pseudo-inverse of A, and, if $B=S A S$, then

$$
A B A=A \quad \text { and } \quad B A B=B .
$$

$A \in \mathcal{L}(X)$ is called a Fredholm operator if $\alpha(A)$ and $\beta(A)$ are both finite. In this case we define the index of A by ind $(A)=\alpha(A)-\beta(A)$.
Observe that a Fredholm operator is relatively regular [2, Satz 74.4].

[^0]
SCHMOEGER

Let $A \in \mathcal{L}(X)$. The sequence $N(A), N\left(A^{2}\right), N\left(A^{3}\right), \ldots$ is increasing, while the sequence $A(X), A^{2}(X), A^{3}(X), \ldots$ is decreasing. Define $p(A)$, the ascent of A, to be the smallest integer $p \geq 0$ such that $N\left(A^{p}\right)=N\left(A^{p+1}\right)$ or ∞ if no such p exists.
Define $q(A)$, the descent of A, to be the smallest integer $q \geq 0$ with $A^{q}(X)=A^{q+1}(X)$ or ∞ if no such q exists. It is shown in [2, Satz 72.3], that if $p(A)<\infty$ and $q(A)<\infty$, then $p(A)=q(A)$.

We define various classes of operators:

$$
\begin{aligned}
& \Phi(X)=\{A \in \mathcal{L}(X): A \text { is Fredholm }\} \\
& \Phi_{\alpha}(X)=\{A \in \Phi(X): \alpha(A)=0\} ; \\
& \Phi_{\beta}(X)=\{A \in \Phi(X): \beta(A)=0\} ; \\
& \mathcal{L}(X)^{-1}=\{A \in \mathcal{L}(X): \alpha(A)=\beta(A)=0\} \\
& \mathcal{F}(X)=\{A \in \mathcal{L}(X): \operatorname{dim} A(X)<\infty\}
\end{aligned}
$$

Since Fredholm operators are relatively regular, $\Phi_{\alpha}(X)$ is the set of all left invertible Fredholm operators and $\Phi_{\beta}(X)$ is the class of all right invertible Fredholm operators.

The main results of this paper are as follows:

Theorem 1.1 If $A \in \Phi(X)$, then
(a) $\operatorname{ind}(A)=0 \Leftrightarrow$ there is $S \in \mathcal{L}(X)^{-1}$ such that $A S A=A$;
(b) $\operatorname{ind}(A) \geq 0 \Leftrightarrow$ there is $S \in \Phi_{\alpha}(X)$ such that $A S A=A$;
(c) ind $(A) \leq 0 \Leftrightarrow$ there is $S \in \Phi_{\beta}(X)$ such that $A S A=A$.

Theorem 1.2 If $A \in \Phi(X)$, then $p(A)=q(A)<\infty$ if and only if there are $p \in \mathbb{N}_{0}$ and $S \in \mathcal{L}(X)^{-1}$ such that $A^{p} S A^{p}=A^{p}$ and $A^{p} S=S A^{p}$.

Proofs of the above follow in the next section.

SCHMOEGER

2. Proofs

Proposition 2.1 Suppose that $A \in \mathcal{L}(X)$ is relatively regular and B is a pseudo-inverse of A with $A B A=A$ and $B A B=B$.
(a) $A B, B A, I-A B$ and $I-B A$ are projections with

$$
\begin{aligned}
& (A B)(X)=A(X),(B A)(X)=B(X) \\
& (I-A B)(X)=N(B) \quad \text { and } \quad(I-B A)(X)=N(A)
\end{aligned}
$$

(b) If $A \in \Phi(X)$, then $B \in \Phi(X), \alpha(B)=\beta(A), \beta(B)=\alpha(A)$ and $\operatorname{ind}(B)=-\operatorname{ind}(A)$.

Proof. Easy verification.

Proposition 2.2 Let A and B be as in Proposition 2.1 and suppose that $A \in \Phi(X)$. Then there are $R \in \Phi(X)$ and $F \in \mathcal{F}(X)$ such that

$$
B F=0 \quad \text { and } \quad A=R+F
$$

Furthermore we have:
(a) if $\operatorname{ind}(A)=0$, then $R \in \mathcal{L}(X)^{-1}$;
(b) if $\operatorname{ind}(A) \geq 0$, then $R \in \Phi_{\beta}(X)$;
(c) if ind $(A) \leq 0$, then $R \in \Phi_{\alpha}(X)$.

Proof. By Proposition 2.1, $(A B)(X)=A(X)$ and $(I-A B)(X)=N(B)$. Hence

$$
X=A(X) \oplus N(B)
$$

Since $\alpha(A)<\infty$, there is $P \in \mathcal{L}(X)$ such that $P^{2}=P$ and $P(X)=N(A)$. Let $n=\alpha(A), m=\beta(A)$ and $p=\min \{n, m\}$. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of $N(A)$. Then there are $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$ linearly independent with

$$
P x=\sum_{j=1}^{n} x_{j}^{*}(x) x_{j} \quad(x \in X)
$$

If $\left\{y_{1}, \ldots, y_{m}\right\}$ is a basis of $N(B)$, define $F \in \mathcal{F}(X)$ by

$$
F x=\sum_{j=1}^{p} x_{j}^{*}(x) y_{j} \quad(x \in X)
$$

SCHMOEGER

Then $F(X) \subseteq N(B)$, thus $B F=0$. Let $R=A-F$. It is shown in the proof of Satz 77.2 in [2] that (a), (b) and (c) hold.

Proof of Theorem 1.1 Let B, F and R be as in Proposition 2.2. Then $B A=B R+B F=$ $B R$, hence $A=A B A=A B R$
(a) \Rightarrow : Since $\operatorname{ind}(A)=0$, we have $R \in \mathcal{L}(X)^{-1}$. Thus $A R^{-1}=A B$, hence $A=A B A=A R^{-1} A$.
\Leftarrow : By the Index-theorem([2, Satz 71.3]),

$$
\operatorname{ind}(A)=2 \operatorname{ind}(A)+\operatorname{ind}(S)=2 \operatorname{ind}(A)
$$

hence $\operatorname{ind}(A)=0$.
(b) \Rightarrow : Since ind $(A) \geq 0$, there is $S \in \mathcal{L}(X)$ such that $R S=I$. From $R \in \Phi_{\beta}(X)$ we get, by Proposition 2.1 (b), $S \in \Phi_{\alpha}(X)$. From $A=A B R$ it results that $A S=A B$, hence $A=A B A=A S A$.
\Leftarrow : Use the Index-theorem to see that ind $(A) \geq 0$.
(c) \Rightarrow : Since ind $(A) \leq 0$, we have ind $(B) \geq 0$, by Proposition 2.1(b). Apply Proposition 2.2 to B. Hence there are $F_{0} \in \mathcal{F}(X), R_{0} \in \Phi_{\beta}(X)$ such that

$$
A F_{0}=0 \quad \text { and } \quad B=R_{0}+F_{0}
$$

Let $S=R_{0}$. From $A B=A R_{0}+A F_{0}=A S$, we derive $A=A B A=A S A$. \Leftarrow : We have ind $(A) \leq 0$, by the Index-theorem.

Proof of Theorem $1.2(\mathrm{a}) \Rightarrow(\mathrm{b})$: Let $p=p(A)=q(A)<\infty$. Satz 72.4 in [2] gives

$$
X=N\left(A^{p}\right) \oplus A^{p}(X)
$$

From [2, Satz 101.2] we see that 0 is a pole if the resolvent $(\lambda I-A)^{-1}$. Let P be the associated spectral projection. Hence

$$
P(X)=N\left(A^{p}\right) \quad \text { and } \quad N(P)=A^{p}(X)
$$

Then $P A=A P$ by [2, Satz 99.1]. Let $F=A P+P$ and $R=A(I-P)-P$. Then $A=R+F$. The proof of Satz 77.4 in [2] shows that R is invertible in $\mathcal{L}(X)$. Furthermore, we have $R F=F R, A F=F A$ and $A R=R A$. Since $F(X) \subseteq P(X)=N\left(A^{p}\right)$, we get $A^{p} F=0$, thus $A^{p+1}=A^{p} R$.

SCHMOEGER

Case 1: $p=0$. With $S=I$, we are done.
Case 2: $p=1$. We have $A^{2}=A R$. Let $S=R^{-1}$. Then $A S=S A$ and $A=A^{2} S=A S A$.
Case 3: $p>1$. Let $A_{0}=A^{p}$. Satz 71.2 in [2] shows that A_{0} is a Fredholm operator. From

$$
N\left(A_{0}^{2}\right)=N\left(A^{2 p}\right)=N\left(A^{p}\right)=N\left(A_{0}\right)
$$

and

$$
A_{0}^{2}(X)=A^{2 p}(X)=A^{p}(X)=A_{0}(X)
$$

we conclude that $p\left(A_{0}\right)=q\left(A_{0}\right) \leq 1$. Case 1 and Case 2 show that there is an invertible operator S in $\mathcal{L}(X)$ with $A_{0} S=S A_{0}$ and $A_{0}=A_{0} S A_{0}$.
(b) \Rightarrow (a): Assume that $p \in \mathbb{N}_{0}, S \in \mathcal{L}(X)$ is invertible, $A^{p} S=S A^{p}$ and $A^{p}=A^{p} S A^{p}$. Then $A^{2 p} S=A^{p}$. It follows that $A^{p}(X)=A^{2 p}(S(X))=A^{2 p}(X)$, thus $q(A)<\infty$. Furthermore, $N\left(A^{2 p}\right)=N\left(A^{p}\right)$, hence $p(A)<\infty$.

3. Interior points of some classes of operators

For a subset \mathcal{M} of $\mathcal{L}(X)$ let $\operatorname{cl}(\mathcal{M})$ and $\operatorname{int}(\mathcal{M})$ denote the closure and the interior of \mathcal{M}, respectively.

Notation.

$\Phi_{+}(X)=\{A \in \Phi(X): \operatorname{ind}(A) \geq 0\} ;$
$\Phi_{-}(X)=\{A \in \Phi(X): \operatorname{ind}(A) \leq 0\} ;$
$\Phi_{0}(X)=\{A \in \Phi(X): \operatorname{ind}(A)=0\} ;$
$\mathcal{R}(X)=\{A \in \mathcal{L}(X): A$ is relatively regular $\} ;$

SCHMOEGER

$\mathcal{A}(X)=\{A \in \mathcal{R}(X): \alpha(A)<\infty$ or $\beta(A)<\infty\} ;$
$\mathcal{R}_{\alpha}(X)=\left\{A \in \mathcal{R}(X): A B A=A\right.$ for some $\left.B \in \Phi_{\alpha}(X)\right\} ;$
$\mathcal{R}_{\beta}(X)=\left\{A \in \mathcal{R}(X): A B A=A\right.$ for some $\left.B \in \Phi_{\beta}(X)\right\} ;$
$\mathcal{R}_{0}(X)=\left\{A \in \mathcal{R}(X): A B A=A\right.$ for some $\left.B \in \mathcal{L}(X)^{-1}\right\}$.

Operators of the class $\mathcal{A}(\mathrm{X})$ are called Atkinson operators, or relatively regular semiFredholm operators.

Proposition 3.1

(a) $\Phi_{+}(X), \Phi_{-}(X), \Phi_{0}(X)$ and $\mathcal{A}(X)$ are open subsets of $\mathcal{L}(X)$.
(b) $\mathcal{R}_{\alpha}(X) \cup \mathcal{R}_{\beta}(X) \subseteq \operatorname{cl}(\Phi(X))$.

Proof. (a) follows from [2, Satz 82.4] and (b) is shown in [3, Theorem 3].
From Proposition 3.1 (a) and Theorem 1.1. we get

$$
\begin{aligned}
& \Phi_{0}(X) \subseteq \operatorname{int}\left(\mathcal{R}_{0}(X)\right), \Phi_{+}(X) \subseteq \operatorname{int}\left(\mathcal{R}_{\alpha}(X)\right) \\
& \Phi_{-}(X) \subseteq \operatorname{int}\left(\mathcal{R}_{\beta}(X)\right) \quad \text { and } \quad \mathcal{A}(X) \subseteq \operatorname{int}(\mathcal{R}(X))
\end{aligned}
$$

We can be more precise:

Theorem 3.2

(a) $\operatorname{int}(\mathcal{R}(X))=\mathcal{A}(X)$;
(b) $\operatorname{int}\left(\mathcal{R}_{0}(X)\right)=\Phi_{0}(X)$;
(c) $\operatorname{int}\left(\mathcal{R}_{\alpha}(X)\right)=\Phi_{+}(X)$;
(d) $\operatorname{int}\left(\mathcal{R}_{\beta}(X)\right)=\Phi_{-}(X)$.

Proof. We only have to show the inclusion " \subseteq ".
(a) Let $A \in \operatorname{int}(\mathcal{R}(X))$. Suppose that $A \notin \mathcal{A}(X)$. Then $\alpha(A)=\beta(A)=\infty$. From [1, Theorem V. 2.6] we know that there is a compact $K \in \mathcal{L}(X)$ such that the 472

SCHMOEGER

range $(A+\lambda K)(X)$ is not closed for all $\lambda \in \mathbb{C} \backslash\{0\}$. Since A is an interior point of $\mathcal{R}(X), A+\lambda K$ has closed range for $|\lambda|$ sufficiently small, a contradiction.
(b), (c) and (d) Let $\gamma \in\{0, \alpha, \beta\}$ and $A \in \operatorname{int}\left(\mathcal{R}_{\gamma}(X)\right)$. Hence $A \in \operatorname{int}(\mathcal{R}(X))$, thus $A \in \mathcal{A}(X)$, by (a). Proposition 3.1 (b) shows that there is a sequence $\left(A_{n}\right)$ in $\Phi(X)$ such that $\left\|A_{n}-A\right\| \rightarrow 0(n \rightarrow \infty)$. Since $\mathcal{A}(X)$ is open, the stability of the index ([2, Satz 82.4]) shows that

$$
\operatorname{ind}\left(A_{n}\right)=\operatorname{ind}(A) \text { for } n \text { sufficiently large }
$$

Thus $\operatorname{ind}(A)$ is finite, and so $A \in \Phi(X)$. Since $A \in \mathcal{R}_{\gamma}(X)$, Theorem 1.1 completes the proof.

Theorem 3.3

$$
\Phi_{\alpha}(X) \cup \Phi_{\beta}(X)=\operatorname{int}(\{A \in \Phi(X): N(A) \subseteq A(X)\})
$$

Proof. Since $\Phi_{\alpha}(X)$ and $\Phi_{\beta}(X)$ are open, the inclusion " \subseteq " is clear. Now suppose that $A \in \operatorname{int}(\{A \in \Phi(X): N(A) \subseteq A(X)\})$. Then there is $\epsilon>0$ such that

$$
\begin{equation*}
\text { if } B \in \mathcal{L}(X) \text { and }\|A-B\|<\epsilon, \text { then } B \in \Phi(X) \text { and } N(B) \subseteq B(X) \tag{*}
\end{equation*}
$$

Assume that $\alpha(A)>0$ and $\beta(A)>0$. Then there are $x_{0}, y_{0} \in X$ with $x_{0} \neq 0, x_{0} \in$ $N(A), y_{0} \notin A(X)$ and $\left\|A y_{0}\right\|=\frac{\epsilon}{2}$. It follows that $y_{0} \notin N(A)$. The Hahn-Banach theorem shows that there is $x^{*} \in X^{*}$ such that

$$
\alpha=x^{*}\left(x_{0}\right) \neq 0, x^{*}\left(y_{0}\right)=0 \quad \text { and } \quad\left\|x^{*}\right\|=1
$$

Define $B \in \mathcal{L}(X)$ by

$$
B x=A x+x^{*}(x) A y_{0} \quad(x \in X) .
$$

Then $\|(A-B) x\| \leq \frac{\epsilon}{2}\|x\|$, thus $\|A-B\|<\epsilon$. By $(*), B \in \Phi(X)$ and $N(B) \subseteq B(X)$. Since $B(X) \subseteq A(X), N(B) \subseteq A(X)$. We have $y_{0}-x_{0} / \alpha \in N(B)$, thus $y_{0} \in A(X)+N(A)=$ $A(X)$, which is a contradiction.

SCHMOEGER

References

[1] Goldberg, S.: Unbounded linear operators, New York, 1966.
[2] Heuser, H.: Funktionalanalysis, 2nd ed., Teubner (1986).
[3] Rakocević. V. : A note on regular elements in Calkin algebras, Collect. Math. 43, 37-42 (1992).

Christoph SCHMOEGER
Received 19.07.2007
Institut für Analysis
Arbeitsgruppe Funktionalanalysis
Fakultät für Mathematik
Universität Karlsruhe (TH)
Englerstraße 2
76128 Karlsruhe-GERMANY
e-mail: christoph.schmoeger@math.uni-karlsruhe.de e-mail: christoph.schmoeger@kit.edu

[^0]: 1991 AMS Mathematics Subject Classification: 47A53

