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On Pseudo-Inverses of Fredholm Operators

Christoph Schmoeger

Abstract

Suppose that A is a Fredholm operator on a Banach space. We prove that A

has index = 0 (resp. ≥ 0, resp. ≤ 0) if and only if A has pseudo-inverse which is

invertible (resp. Fredholm and left invertible, resp. Fredholm and right invertible).

Furthermore, we determine the interior points of some classes of linear operators.
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1. Terminology

X always denotes a complex Banach space, and the algebra of all bounded linear
operators on X is denoted by L(X).
If A ∈ L(X) we denote by N(A) the kernel of A and by α(A) the dimension of N(A).
A(X) denotes the range of A, and we define β(A) = codim A(X).

An operator A ∈ L(X) is called relatively regular if there is S ∈ L(X) such that
ASA = A. In this case S is called a pseudo-inverse of A, and, if B = SAS, then

ABA = A and BAB = B .

A ∈ L(X) is called a Fredholm operator if α(A) and β(A) are both finite. In this case we
define the index of A by ind (A) = α(A) − β(A).
Observe that a Fredholm operator is relatively regular [2, Satz 74.4].
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Let A ∈ L(X). The sequence N(A), N(A2), N(A3), . . . is increasing, while the se-
quence A(X), A2(X), A3(X), . . . is decreasing. Define p(A), the ascent of A, to be the
smallest integer p ≥ 0 such that N(Ap) = N(Ap+1) or ∞ if no such p exists.
Define q(A), the descent of A, to be the smallest integer q ≥ 0 with Aq(X) = Aq+1(X)
or ∞ if no such q exists. It is shown in [2, Satz 72.3], that if p(A) < ∞ and q(A) < ∞,
then p(A) = q(A).

We define various classes of operators:

Φ(X) = {A ∈ L(X) : A is Fredholm};

Φα(X) = {A ∈ Φ(X) : α(A) = 0};

Φβ(X) = {A ∈ Φ(X) : β(A) = 0};

L(X)−1 = {A ∈ L(X) : α(A) = β(A) = 0};

F(X) = {A ∈ L(X) : dimA(X) < ∞}.

Since Fredholm operators are relatively regular, Φα(X) is the set of all left invertible
Fredholm operators and Φβ(X) is the class of all right invertible Fredholm operators.

The main results of this paper are as follows:

Theorem 1.1 If A ∈ Φ(X), then

(a) ind (A) = 0 ⇔ there is S ∈ L(X)−1 such that ASA = A;

(b) ind (A) ≥ 0 ⇔ there is S ∈ Φα(X) such that ASA = A;

(c) ind (A) ≤ 0 ⇔ there is S ∈ Φβ(X) such that ASA = A.

Theorem 1.2 If A ∈ Φ(X), then p(A) = q(A) < ∞ if and only if there are p ∈ N0 and
S ∈ L(X)−1 such that ApSAp = Ap and ApS = SAp .

Proofs of the above follow in the next section.
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2. Proofs

Proposition 2.1 Suppose that A ∈ L(X) is relatively regular and B is a pseudo-inverse
of A with ABA = A and BAB = B.

(a) AB, BA, I − AB and I − BA are projections with

(AB)(X) = A(X), (BA)(X) = B(X)

(I − AB)(X) = N(B) and (I − BA)(X) = N(A) .

(b) If A ∈ Φ(X), then B ∈ Φ(X), α(B) = β(A), β(B) = α(A) and ind (B) = −ind (A).

Proof. Easy verification. �

Proposition 2.2 Let A and B be as in Proposition 2.1 and suppose that A ∈ Φ(X).
Then there are R ∈ Φ(X) and F ∈ F(X) such that

BF = 0 and A = R + F .

Furthermore we have:

(a) if ind (A) = 0, then R ∈ L(X)−1;

(b) if ind (A) ≥ 0, then R ∈ Φβ(X);

(c) if ind (A) ≤ 0, then R ∈ Φα(X).

Proof. By Proposition 2.1, (AB)(X) = A(X) and (I − AB)(X) = N(B). Hence

X = A(X) ⊕ N(B) .

Since α(A) < ∞, there is P ∈ L(X) such that P 2 = P and P (X) = N(A). Let
n = α(A), m = β(A) and p = min{n, m}. Let {x1, . . . , xn} be a basis of N(A). Then
there are x∗

1, . . . , x
∗
n ∈ X∗ linearly independent with

Px =
n∑

j=1

x∗
j(x)xj (x ∈ X) .

If {y1, . . . , ym} is a basis of N(B), define F ∈ F(X) by

Fx =
p∑

j=1

x∗
j(x)yj (x ∈ X) .
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Then F (X) ⊆ N(B), thus BF = 0. Let R = A−F . It is shown in the proof of Satz 77.2
in [2] that (a), (b) and (c) hold. �

Proof of Theorem 1.1 Let B, F and R be as in Proposition 2.2. Then BA = BR+BF =
BR, hence A = ABA = ABR

(a) ⇒: Since ind (A) = 0, we have R ∈ L(X)−1. Thus AR−1 = AB, hence
A = ABA = AR−1A.
⇐: By the Index-theorem([2, Satz 71.3]),

ind (A) = 2 ind (A) + ind (S) = 2 ind (A) ,

hence ind (A) = 0.

(b) ⇒: Since ind (A) ≥ 0, there is S ∈ L(X) such that RS = I. From R ∈ Φβ(X) we
get, by Proposition 2.1 (b), S ∈ Φα(X). From A = ABR it results that AS = AB, hence
A = ABA = ASA.
⇐: Use the Index-theorem to see that ind (A) ≥ 0.

(c) ⇒: Since ind (A) ≤ 0, we have ind (B) ≥ 0, by Proposition 2.1(b). Apply
Proposition 2.2 to B. Hence there are F0 ∈ F(X), R0 ∈ Φβ(X) such that

AF0 = 0 and B = R0 + F0 .

Let S = R0. From AB = AR0 + AF0 = AS, we derive A = ABA = ASA.
⇐: We have ind (A) ≤ 0, by the Index-theorem. �

Proof of Theorem 1.2 (a) ⇒ (b): Let p = p(A) = q(A) < ∞. Satz 72.4 in [2] gives

X = N(Ap) ⊕ Ap(X) .

From [2, Satz 101.2] we see that 0 is a pole if the resolvent (λI − A)−1. Let P be the
associated spectral projection. Hence

P (X) = N(Ap) and N(P ) = Ap(X) .

Then PA = AP by [2, Satz 99.1]. Let F = AP + P and R = A(I − P ) − P . Then
A = R+F . The proof of Satz 77.4 in [2] shows that R is invertible in L(X). Furthermore,
we have RF = FR, AF = FA and AR = RA. Since F (X) ⊆ P (X) = N(Ap), we get
ApF = 0, thus Ap+1 = ApR.
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Case 1: p = 0. With S = I, we are done.
Case 2: p = 1. We have A2 = AR. Let S = R−1. Then AS = SA and A = A2S = ASA.
Case 3: p > 1. Let A0 = Ap. Satz 71.2 in [2] shows that A0 is a Fredholm operator.
From

N(A2
0) = N(A2p) = N(Ap) = N(A0) ,

and

A2
0(X) = A2p(X) = Ap(X) = A0(X) ,

we conclude that p(A0) = q(A0) ≤ 1. Case 1 and Case 2 show that there is an invertible
operator S in L(X) with A0S = SA0 and A0 = A0SA0 .

(b) ⇒ (a): Assume that p ∈ N0, S ∈ L(X) is invertible, ApS = SAp and Ap = ApSAp.
Then A2pS = Ap. It follows that Ap(X) = A2p(S(X)) = A2p(X), thus q(A) < ∞.
Furthermore, N(A2p) = N(Ap), hence p(A) < ∞. �

3. Interior points of some classes of operators

For a subset M of L(X) let cl (M) and int (M) denote the closure and the interior
of M, respectively.

Notation.

Φ+(X) = {A ∈ Φ(X) : ind (A) ≥ 0};

Φ−(X) = {A ∈ Φ(X) : ind (A) ≤ 0};

Φ0(X) = {A ∈ Φ(X) : ind (A) = 0};

R(X) = {A ∈ L(X) : A is relatively regular};
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A(X) = {A ∈ R(X) : α(A) < ∞ or β(A) < ∞};

Rα(X) = {A ∈ R(X) : ABA = A for some B ∈ Φα(X)};

Rβ(X) = {A ∈ R(X) : ABA = A for some B ∈ Φβ(X)};

R0(X) = {A ∈ R(X) : ABA = A for some B ∈ L(X)−1} .

Operators of the class A(X) are called Atkinson operators, or relatively regular semi-
Fredholm operators.

Proposition 3.1

(a) Φ+(X), Φ−(X), Φ0(X) and A(X) are open subsets of L(X).

(b) Rα(X) ∪Rβ(X) ⊆ cl (Φ(X)).

Proof. (a) follows from [2, Satz 82.4] and (b) is shown in [3, Theorem 3]. �

From Proposition 3.1 (a) and Theorem 1.1. we get

Φ0(X) ⊆ int (R0(X)), Φ+(X) ⊆ int (Rα(X)) ,

Φ−(X) ⊆ int (Rβ(X)) and A(X) ⊆ int (R(X)) .

We can be more precise:

Theorem 3.2

(a) int (R(X)) = A(X);

(b) int (R0(X)) = Φ0(X);

(c) int (Rα(X)) = Φ+(X);

(d) int (Rβ(X)) = Φ−(X).

Proof. We only have to show the inclusion “⊆”.

(a) Let A ∈ int (R(X)). Suppose that A /∈ A(X). Then α(A) = β(A) = ∞.
From [1, Theorem V. 2.6] we know that there is a compact K ∈ L(X) such that the
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range (A + λK)(X) is not closed for all λ ∈ C \ {0}. Since A is an interior point of
R(X), A + λK has closed range for |λ| sufficiently small, a contradiction.

(b), (c) and (d) Let γ ∈ {0, α, β} and A ∈ int (Rγ(X)). Hence A ∈ int (R(X)), thus
A ∈ A(X), by (a). Proposition 3.1 (b) shows that there is a sequence (An) in Φ(X) such
that ‖An − A‖ → 0 (n → ∞). Since A(X) is open, the stability of the index ([2, Satz
82.4]) shows that

ind (An) = ind (A) for n sufficiently large .

Thus ind (A) is finite, and so A ∈ Φ(X). Since A ∈ Rγ(X), Theorem 1.1 completes the
proof. �

Theorem 3.3

Φα(X) ∪ Φβ(X) = int ({A ∈ Φ(X) : N(A) ⊆ A(X)}).

Proof. Since Φα(X) and Φβ(X) are open, the inclusion “⊆” is clear. Now suppose
that A ∈ int ({A ∈ Φ(X) : N(A) ⊆ A(X)}). Then there is ε > 0 such that

if B ∈ L(X) and ‖A − B‖ < ε, then B ∈ Φ(X) and N(B) ⊆ B(X) . (∗)

Assume that α(A) > 0 and β(A) > 0. Then there are x0, y0 ∈ X with x0 �= 0, x0 ∈
N(A), y0 /∈ A(X) and ‖Ay0‖ = ε

2 . It follows that y0 /∈ N(A). The Hahn-Banach
theorem shows that there is x∗ ∈ X∗ such that

α = x∗(x0) �= 0, x∗(y0) = 0 and ‖x∗‖ = 1 .

Define B ∈ L(X) by

Bx = Ax + x∗(x)Ay0 (x ∈ X) .

Then ‖(A−B)x‖ ≤ ε
2‖x‖, thus ‖A−B‖ < ε. By (∗), B ∈ Φ(X) and N(B) ⊆ B(X). Since

B(X) ⊆ A(X), N(B) ⊆ A(X). We have y0 − x0/α ∈ N(B), thus y0 ∈ A(X) + N(A) =
A(X), which is a contradiction. �
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