Turk J Math 32 (2008) , 467 – 474. © TÜBİTAK

On Pseudo-Inverses of Fredholm Operators

Christoph Schmoeger

Abstract

Suppose that A is a Fredholm operator on a Banach space. We prove that A has index = 0 (resp. ≥ 0 , resp. ≤ 0) if and only if A has pseudo-inverse which is invertible (resp. Fredholm and left invertible, resp. Fredholm and right invertible). Furthermore, we determine the interior points of some classes of linear operators.

Key Words: Fredholm operator, pseudo-inverse

1. Terminology

X always denotes a complex Banach space, and the algebra of all bounded linear operators on X is denoted by $\mathcal{L}(X)$.

If $A \in \mathcal{L}(X)$ we denote by N(A) the kernel of A and by $\alpha(A)$ the dimension of N(A). A(X) denotes the range of A, and we define $\beta(A) = \operatorname{codim} A(X)$.

An operator $A \in \mathcal{L}(X)$ is called *relatively regular* if there is $S \in \mathcal{L}(X)$ such that ASA = A. In this case S is called a *pseudo-inverse* of A, and, if B = SAS, then

ABA = A and BAB = B.

 $A \in \mathcal{L}(X)$ is called a *Fredholm operator* if $\alpha(A)$ and $\beta(A)$ are both finite. In this case we define the *index* of A by ind $(A) = \alpha(A) - \beta(A)$.

Observe that a Fredholm operator is relatively regular [2, Satz 74.4].

¹⁹⁹¹ AMS Mathematics Subject Classification: 47A53

Let $A \in \mathcal{L}(X)$. The sequence N(A), $N(A^2)$, $N(A^3)$, ... is increasing, while the sequence A(X), $A^2(X)$, $A^3(X)$, ... is decreasing. Define p(A), the *ascent* of A, to be the smallest integer $p \ge 0$ such that $N(A^p) = N(A^{p+1})$ or ∞ if no such p exists. Define q(A), the *descent* of A, to be the smallest integer $q \ge 0$ with $A^q(X) = A^{q+1}(X)$ or ∞ if no such q exists. It is shown in [2, Satz 72.3], that if $p(A) < \infty$ and $q(A) < \infty$, then p(A) = q(A).

We define various classes of operators:

$$\Phi(X) = \{A \in \mathcal{L}(X) : A \text{ is Fredholm}\};$$

$$\Phi_{\alpha}(X) = \{A \in \Phi(X) : \alpha(A) = 0\};$$

$$\Phi_{\beta}(X) = \{A \in \Phi(X) : \beta(A) = 0\};$$

$$\mathcal{L}(X)^{-1} = \{A \in \mathcal{L}(X) : \alpha(A) = \beta(A) = 0\};$$

$$\mathcal{F}(X) = \{A \in \mathcal{L}(X) : \dim A(X) < \infty\}.$$

Since Fredholm operators are relatively regular, $\Phi_{\alpha}(X)$ is the set of all left invertible Fredholm operators and $\Phi_{\beta}(X)$ is the class of all right invertible Fredholm operators.

The main results of this paper are as follows:

Theorem 1.1 If $A \in \Phi(X)$, then

- (a) ind $(A) = 0 \Leftrightarrow$ there is $S \in \mathcal{L}(X)^{-1}$ such that ASA = A;
- (b) ind $(A) \ge 0 \Leftrightarrow$ there is $S \in \Phi_{\alpha}(X)$ such that ASA = A;
- (c) ind $(A) \leq 0 \Leftrightarrow$ there is $S \in \Phi_{\beta}(X)$ such that ASA = A.

Theorem 1.2 If $A \in \Phi(X)$, then $p(A) = q(A) < \infty$ if and only if there are $p \in \mathbb{N}_0$ and $S \in \mathcal{L}(X)^{-1}$ such that $A^p S A^p = A^p$ and $A^p S = S A^p$.

Proofs of the above follow in the next section.

2. Proofs

Proposition 2.1 Suppose that $A \in \mathcal{L}(X)$ is relatively regular and B is a pseudo-inverse of A with ABA = A and BAB = B.

(a) AB, BA, I - AB and I - BA are projections with

$$(AB)(X) = A(X), (BA)(X) = B(X)$$

 $(I - AB)(X) = N(B) \quad and \quad (I - BA)(X) = N(A)$

(b) If $A \in \Phi(X)$, then $B \in \Phi(X)$, $\alpha(B) = \beta(A)$, $\beta(B) = \alpha(A)$ and $\operatorname{ind}(B) = -\operatorname{ind}(A)$. **Proof.** Easy verification.

Proposition 2.2 Let A and B be as in Proposition 2.1 and suppose that $A \in \Phi(X)$. Then there are $R \in \Phi(X)$ and $F \in \mathcal{F}(X)$ such that

BF = 0 and A = R + F.

Furthermore we have:

- (a) if ind (A) = 0, then $R \in \mathcal{L}(X)^{-1}$;
- (b) if ind $(A) \ge 0$, then $R \in \Phi_{\beta}(X)$;
- (c) if ind $(A) \leq 0$, then $R \in \Phi_{\alpha}(X)$.

Proof. By Proposition 2.1, (AB)(X) = A(X) and (I - AB)(X) = N(B). Hence

 $X = A(X) \oplus N(B) \,.$

Since $\alpha(A) < \infty$, there is $P \in \mathcal{L}(X)$ such that $P^2 = P$ and P(X) = N(A). Let $n = \alpha(A), m = \beta(A)$ and $p = \min\{n, m\}$. Let $\{x_1, \ldots, x_n\}$ be a basis of N(A). Then there are $x_1^*, \ldots, x_n^* \in X^*$ linearly independent with

$$Px = \sum_{j=1}^{n} x_j^*(x) x_j \qquad (x \in X).$$

If $\{y_1, \ldots, y_m\}$ is a basis of N(B), define $F \in \mathcal{F}(X)$ by

$$Fx = \sum_{j=1}^{p} x_{j}^{*}(x)y_{j} \qquad (x \in X).$$

Then $F(X) \subseteq N(B)$, thus BF = 0. Let R = A - F. It is shown in the proof of Satz 77.2 in [2] that (a), (b) and (c) hold.

Proof of Theorem 1.1 Let B, F and R be as in Proposition 2.2. Then BA = BR + BF = BR, hence A = ABA = ABR

(a) \Rightarrow : Since ind (A) = 0, we have $R \in \mathcal{L}(X)^{-1}$. Thus $AR^{-1} = AB$, hence $A = ABA = AR^{-1}A$.

 \Leftarrow : By the Index-theorem([2, Satz 71.3]),

 $\operatorname{ind} (A) = 2 \operatorname{ind} (A) + \operatorname{ind} (S) = 2 \operatorname{ind} (A),$

hence $\operatorname{ind}(A) = 0$.

(b) \Rightarrow : Since ind $(A) \ge 0$, there is $S \in \mathcal{L}(X)$ such that RS = I. From $R \in \Phi_{\beta}(X)$ we get, by Proposition 2.1 (b), $S \in \Phi_{\alpha}(X)$. From A = ABR it results that AS = AB, hence A = ABA = ASA.

⇐: Use the Index-theorem to see that $ind(A) \ge 0$.

(c) \Rightarrow : Since ind (A) ≤ 0 , we have ind (B) ≥ 0 , by Proposition 2.1(b). Apply Proposition 2.2 to B. Hence there are $F_0 \in \mathcal{F}(X)$, $R_0 \in \Phi_\beta(X)$ such that

 $AF_0 = 0$ and $B = R_0 + F_0$.

Let $S = R_0$. From $AB = AR_0 + AF_0 = AS$, we derive A = ABA = ASA. \Leftarrow : We have ind $(A) \le 0$, by the Index-theorem.

Proof of Theorem 1.2 (a) \Rightarrow (b): Let $p = p(A) = q(A) < \infty$. Satz 72.4 in [2] gives

 $X = N(A^p) \oplus A^p(X) \,.$

From [2, Satz 101.2] we see that 0 is a pole if the resolvent $(\lambda I - A)^{-1}$. Let P be the associated spectral projection. Hence

 $P(X) = N(A^p)$ and $N(P) = A^p(X)$.

Then PA = AP by [2, Satz 99.1]. Let F = AP + P and R = A(I - P) - P. Then A = R + F. The proof of Satz 77.4 in [2] shows that R is invertible in $\mathcal{L}(X)$. Furthermore, we have RF = FR, AF = FA and AR = RA. Since $F(X) \subseteq P(X) = N(A^p)$, we get $A^p F = 0$, thus $A^{p+1} = A^p R$.

Case 1: p = 0. With S = I, we are done.

Case 2: p = 1. We have $A^2 = AR$. Let $S = R^{-1}$. Then AS = SA and $A = A^2S = ASA$. Case 3: p > 1. Let $A_0 = A^p$. Satz 71.2 in [2] shows that A_0 is a Fredholm operator. From

$$N(A_0^2) = N(A^{2p}) = N(A^p) = N(A_0)$$

and

$$A_0^2(X) = A^{2p}(X) = A^p(X) = A_0(X) = A_0(X$$

we conclude that $p(A_0) = q(A_0) \leq 1$. Case 1 and Case 2 show that there is an invertible operator S in $\mathcal{L}(X)$ with $A_0 S = SA_0$ and $A_0 = A_0SA_0$.

(b) \Rightarrow (a): Assume that $p \in \mathbb{N}_0$, $S \in \mathcal{L}(X)$ is invertible, $A^p S = SA^p$ and $A^p = A^p SA^p$. Then $A^{2p}S = A^p$. It follows that $A^p(X) = A^{2p}(S(X)) = A^{2p}(X)$, thus $q(A) < \infty$. Furthermore, $N(A^{2p}) = N(A^p)$, hence $p(A) < \infty$.

3. Interior points of some classes of operators

For a subset \mathcal{M} of $\mathcal{L}(X)$ let $\operatorname{cl}(\mathcal{M})$ and $\operatorname{int}(\mathcal{M})$ denote the closure and the interior of \mathcal{M} , respectively.

Notation.

$$\begin{split} \Phi_+(X) &= \{A \in \Phi(X) : \operatorname{ind} (A) \ge 0\}; \\ \Phi_-(X) &= \{A \in \Phi(X) : \operatorname{ind} (A) \le 0\}; \\ \Phi_0(X) &= \{A \in \Phi(X) : \operatorname{ind} (A) = 0\}; \\ \mathcal{R}(X) &= \{A \in \mathcal{L}(X) : A \text{ is relatively regular}\}; \end{split}$$

$$\mathcal{A}(X) = \{ A \in \mathcal{R}(X) : \alpha(A) < \infty \text{ or } \beta(A) < \infty \};$$

$$\mathcal{R}_{\alpha}(X) = \{ A \in \mathcal{R}(X) : ABA = A \text{ for some } B \in \Phi_{\alpha}(X) \};$$

$$\mathcal{R}_{\beta}(X) = \{ A \in \mathcal{R}(X) : ABA = A \text{ for some } B \in \Phi_{\beta}(X) \};$$

$$\mathcal{R}_{0}(X) = \{ A \in \mathcal{R}(X) : ABA = A \text{ for some } B \in \mathcal{L}(X)^{-1} \}.$$

Operators of the class $\mathcal{A}(X)$ are called *Atkinson operators*, or *relatively regular semi-Fredholm operators*.

Proposition 3.1

- (a) $\Phi_+(X)$, $\Phi_-(X)$, $\Phi_0(X)$ and $\mathcal{A}(X)$ are open subsets of $\mathcal{L}(X)$.
- (b) $\mathcal{R}_{\alpha}(X) \cup \mathcal{R}_{\beta}(X) \subseteq \operatorname{cl}(\Phi(X)).$

Proof. (a) follows from [2, Satz 82.4] and (b) is shown in [3, Theorem 3].

From Proposition 3.1 (a) and Theorem 1.1. we get

$$\Phi_0(X) \subseteq \operatorname{int} (\mathcal{R}_0(X)), \ \Phi_+(X) \subseteq \operatorname{int} (\mathcal{R}_\alpha(X)),$$

$$\Phi_-(X) \subseteq \operatorname{int} (\mathcal{R}_\beta(X)) \quad \text{and} \quad \mathcal{A}(X) \subseteq \operatorname{int} (\mathcal{R}(X)).$$

We can be more precise:

Theorem 3.2

- (a) int $(\mathcal{R}(X)) = \mathcal{A}(X);$
- (b) $int(\mathcal{R}_0(X)) = \Phi_0(X);$
- (c) int $(\mathcal{R}_{\alpha}(X)) = \Phi_{+}(X);$
- (d) int $(\mathcal{R}_{\beta}(X)) = \Phi_{-}(X).$

Proof. We only have to show the inclusion " \subseteq ".

(a) Let $A \in int(\mathcal{R}(X))$. Suppose that $A \notin \mathcal{A}(X)$. Then $\alpha(A) = \beta(A) = \infty$. From [1, Theorem V. 2.6] we know that there is a compact $K \in \mathcal{L}(X)$ such that the

range $(A + \lambda K)(X)$ is not closed for all $\lambda \in \mathbb{C} \setminus \{0\}$. Since A is an interior point of $\mathcal{R}(X)$, $A + \lambda K$ has closed range for $|\lambda|$ sufficiently small, a contradiction.

(b), (c) and (d) Let $\gamma \in \{0, \alpha, \beta\}$ and $A \in \operatorname{int}(\mathcal{R}_{\gamma}(X))$. Hence $A \in \operatorname{int}(\mathcal{R}(X))$, thus $A \in \mathcal{A}(X)$, by (a). Proposition 3.1 (b) shows that there is a sequence (A_n) in $\Phi(X)$ such that $||A_n - A|| \to 0 \ (n \to \infty)$. Since $\mathcal{A}(X)$ is open, the stability of the index ([2, Satz 82.4]) shows that

 $\operatorname{ind}(A_n) = \operatorname{ind}(A)$ for *n* sufficiently large.

Thus ind (A) is finite, and so $A \in \Phi(X)$. Since $A \in \mathcal{R}_{\gamma}(X)$, Theorem 1.1 completes the proof.

Theorem 3.3

 $\Phi_{\alpha}(X) \cup \Phi_{\beta}(X) = int(\{A \in \Phi(X) : N(A) \subseteq A(X)\}).$

Proof. Since $\Phi_{\alpha}(X)$ and $\Phi_{\beta}(X)$ are open, the inclusion " \subseteq " is clear. Now suppose that $A \in \operatorname{int} (\{A \in \Phi(X) : N(A) \subseteq A(X)\})$. Then there is $\epsilon > 0$ such that

if
$$B \in \mathcal{L}(X)$$
 and $||A - B|| < \epsilon$, then $B \in \Phi(X)$ and $N(B) \subseteq B(X)$. (*)

Assume that $\alpha(A) > 0$ and $\beta(A) > 0$. Then there are $x_0, y_0 \in X$ with $x_0 \neq 0, x_0 \in N(A), y_0 \notin A(X)$ and $||Ay_0|| = \frac{\epsilon}{2}$. It follows that $y_0 \notin N(A)$. The Hahn-Banach theorem shows that there is $x^* \in X^*$ such that

$$\alpha = x^*(x_0) \neq 0, \ x^*(y_0) = 0 \text{ and } \|x^*\| = 1.$$

Define $B \in \mathcal{L}(X)$ by

$$Bx = Ax + x^*(x)Ay_0 \qquad (x \in X).$$

Then $||(A-B)x|| \leq \frac{\epsilon}{2} ||x||$, thus $||A-B|| < \epsilon$. By (*), $B \in \Phi(X)$ and $N(B) \subseteq B(X)$. Since $B(X) \subseteq A(X)$, $N(B) \subseteq A(X)$. We have $y_0 - x_0/\alpha \in N(B)$, thus $y_0 \in A(X) + N(A) = A(X)$, which is a contradiction.

References

- [1] Goldberg, S.: Unbounded linear operators, New York, 1966.
- [2] Heuser, H.: Funktionalanalysis, 2nd ed., Teubner (1986).
- [3] Rakocević. V. : A note on regular elements in Calkin algebras, Collect. Math. 43, 37–42 (1992).

Received 19.07.2007

Christoph SCHMOEGER Institut für Analysis Arbeitsgruppe Funktionalanalysis Fakultät für Mathematik Universität Karlsruhe (TH) Englerstraße 2 76128 Karlsruhe-GERMANY e-mail: christoph.schmoeger@math.uni-karlsruhe.de e-mail: christoph.schmoeger@kit.edu