tübítak

Geodesics of the Cheeger-Gromoll Metric

A. A. Salimov, S. Kazimova

Abstract

The main purpose of the paper is to investigate geodesics on the tangent bundle with respect to the Cheeger-Gromoll metric.

Key Words: Geodesics, Cheeger-Gromoll metric, Horizontal and vertical lift.

1. Introduction

In [1] Cheeger and Gromoll study complete manifolds of nonnegative curvature and suggest a construction of Riemannian metrics useful in that contex. Inspired by a paper of Cheeger and Gromoll, in [4] Musso and Tricerri defined a new Riemannian metric ${ }^{C G} g$ on tangent bundle of Riemannian manifold which they called the Cheeger-Gromoll metric. The Levi-Civita connection of ${ }^{C G} g$ and its Riemannian curvature tensor are calculated by Sekizawa in [5] (for more details see [2],[3]). The main purpose of this paper is to investigate geodesics of the Cheeger-Gromoll metrics on tangent bundle.

Let M_{n} be a Riemannian manifold with metric g. We denote by $\Im_{q}^{p}\left(M_{n}\right)$ the set of all tensor fields of type (p, q) on M_{n}. Manifolds, tensor field and connections are always assumed to be differentiable and of class C^{∞}.

Let $T\left(M_{n}\right)$ be a tangent bundle of M_{n}, and π the projection $\pi: T\left(M_{n}\right) \rightarrow M_{n}$. Let the manifold M_{n} be covered by system of coordinate neighbourhoods $\left(U, x^{i}\right)$, where $\left(x^{i}\right), i=1, \ldots, n$ is a local coordinate system defined in the neighbourhood U. Let $\left(y^{i}\right)$ be the Cartesian coordinates in each tangent spaces $T_{p}\left(M_{n}\right)$ at $P \in M_{n}$ with respect to the natural base $\left\{\frac{\partial}{\partial x^{2}}\right\}, P$ being an arbitrary point in U whose coordinates are x^{i}. Then we can introduce local coordinates $\left(x^{i}, y^{i}\right)$ in open set $\pi^{-1}(U) \subset T\left(M_{n}\right)$. We call them coordinates induced in $\pi^{-1}(U)$ from $\left(U, x^{i}\right)$. The projection π is represented by $\left(x^{i}, y^{i}\right) \rightarrow\left(x^{i}\right)$. We use the notations $x^{I}=\left(x^{i}, x^{\bar{\imath}}\right)$ and $x^{\bar{\imath}}=y^{i}$. The indices I, J, \ldots run from 1 to 2 n , the indices $\bar{\imath}, \bar{j}, \ldots$ run from $\mathrm{n}+1$ to 2 n .

Let $X \in \Im_{0}^{1}\left(M_{n}\right)$, which locally are represented by $X=X^{i} \partial_{i},\left(\partial_{i}=\frac{\partial}{\partial x^{i}}\right)$. Then the vertical and horizontal lifts ${ }^{V} X$ and ${ }^{H} X$ of X (see [6]) are given, respectively by

[^0]
SALIMOV, KAZIMOVA

$$
\begin{equation*}
{ }^{V} X=X^{i} \partial_{\bar{\imath}},\left(\partial_{\bar{\imath}}=\frac{\partial}{\partial x^{\bar{\imath}}}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{H} X=X^{i} \partial_{i}-\Gamma_{j k}^{i} x^{\bar{j}} X^{k} \partial_{\bar{\imath}} \tag{2}
\end{equation*}
$$

where $\Gamma_{j k}^{i}$ are the coefficents of the Levi-Civita connection ∇.
Suppose that we are given on M_{n} a tensor field $S \in \Im_{q}^{p}\left(M_{n}\right), q>1$. We then define a tensor field $\gamma S \in \Im_{q-1}^{p}\left(T\left(M_{n}\right)\right)$ in $\pi^{-1}(U)$ by [6, p. 12]

$$
\gamma S=\left(x^{\bar{e}} S_{e i_{2} \ldots i_{q}}^{j_{1} \ldots j_{p}}\right) \partial_{\bar{j}_{1}} \otimes \ldots \otimes \partial_{\bar{j}_{p}} \otimes d x^{i_{2}} \otimes . . \otimes d x^{i_{q}}
$$

with respect to the induced coordinates $\left(x^{i}, x^{\bar{\imath}}\right)$. The tensor field γS defined in each $\pi^{-1}(U)$ determine global tensor field on $T\left(M_{n}\right)$. We easily see that for any $\varphi \in \Im_{1}^{1}\left(M_{n}\right), \gamma \varphi$ has components $(\gamma \varphi)=\binom{0}{x^{\imath} \varphi_{i}^{j}}$ with respect to the induced coordinates $\left(x^{i}, x^{\bar{\imath}}\right)$ and $(\gamma \varphi)\left({ }^{V} f\right)=0, f \in \Im_{0}^{0}\left(M_{n}\right)$ i.e. $\gamma \varphi$ is a vertical vector field on $T\left(M_{n}\right)$.

Let there be given in $U \subset M_{n}$ a vector field $X=X^{i} \partial_{i}$ and a covector field $g_{X}=g_{i j} X^{i} d x^{j}$. Then we define a function $\gamma g_{X} \in \Im_{0}^{0}\left(M_{n}\right)$ in $\pi^{-1}(U) \subset T\left(M_{n}\right)$ by $\gamma g_{X}=x^{\bar{j}} g_{i j} X^{i}$ with respect to the induced coordinates $\left(x^{i}, x^{\bar{\imath}}\right)$. Now, let r be the norm a vector $y=\left(y^{i}\right)=\left(x^{\bar{\imath}}\right)$, i.e. $r^{2}=g_{i j} x^{i} x^{\bar{j}}$. The Cheeger-Gromoll metric ${ }^{C G} g$ on tangent bundle $T\left(M_{n}\right)$ is given by

$$
\begin{gather*}
{ }^{C G} g\left({ }^{H} X,{ }^{H} Y\right)={ }^{V}(g(X, Y)), \tag{3}\\
{ }^{C G} g\left({ }^{H} X,{ }^{V} Y\right)=0, \tag{4}\\
{ }^{C G} g\left({ }^{V} X,{ }^{V} Y\right)=\frac{1}{1+r^{2}}\left[{ }^{V}(g(X, Y))+\left(\gamma g g_{X}\right)+\left(\gamma g_{Y}\right)\right] \tag{5}
\end{gather*}
$$

for all vector field $X, Y \in \Im_{0}^{1}\left(M_{n}\right)$, where ${ }^{V}(g(X, Y))=(g(X, Y)) \circ \pi$.
It is obvious that the Cheeger-Gromoll metric ${ }^{C G} g$ is contained in the class of natural metrics (Recall that by a natural metric on tangent bundles we shall mean a metric which satisfies conditions (3) and (4)).

2. Expressions in Adapted Frames

In each local chart $U \subset M_{n}$, we put $X_{(j)}=\frac{\partial}{\partial x^{j}}, j=1, \ldots, n$. Then from (1) and (2), we see that these vector fields have, respectively, local expressions

$$
\begin{gather*}
{ }^{H} X_{(j)}=\delta_{j}^{h} \partial_{h}+\left(-\Gamma_{s j}^{h} x^{s}\right) \partial_{\bar{h}} \tag{6}\\
{ }^{V} X_{(j)}=\delta_{j}^{h} \partial_{\bar{h}} \tag{7}
\end{gather*}
$$

with respect to the natural frame $\left\{\partial_{h}, \partial_{\bar{h}}\right\}$, where δ_{j}^{h}-Kronecker delta. These $2 n$ vector fields are linear independent and generate, respectively, the horizontal distribution of ∇ and the vertical distribution of $T\left(M_{n}\right)$ We have call the set $\left\{{ }^{H} X_{(j)},{ }^{V} X_{(j)}\right\}$ the frame adapted to the affine connection ∇ in $\pi^{-1}(U) \subset T\left(M_{n}\right)$. On putting

$$
\begin{aligned}
& e_{(j)}={ }^{H} X_{(j)}, \\
& e_{(\bar{j})}={ }^{V} X_{(j)},
\end{aligned}
$$

we write the adapted frame as $\left\{e_{\beta}\right\}=\left\{e_{(j)}, e_{(\bar{j})}\right\}$. The indices α, β, \ldots run over the range $\{1, \ldots, 2 n\}$ and indicate the indices with respect to the adapted frame.
Using (1), (2), (6) and (7) we have

$$
\begin{aligned}
{ }^{H} X & =\binom{X^{j} \delta_{j}^{h}}{-X^{j} \Gamma_{s j}^{h} x^{\bar{s}}}=X^{j}\binom{\delta_{j}^{h}}{-\Gamma_{s j}^{h} x^{\bar{s}}}=X^{j} e_{(j)} \\
{ }^{V} X & =\binom{0}{X^{h}}=\binom{0}{X^{j} \delta_{j}^{h}}=X^{j}\binom{0}{\delta_{j}^{h}}=X^{j} e_{(\bar{j})},
\end{aligned}
$$

i.e. the lifts ${ }^{H} X$ and ${ }^{V} X$ have respectively components

$$
\begin{aligned}
{ }^{H} X & =\left({ }^{H} X^{\beta}\right)=\binom{{ }^{H} X^{j}}{{ }^{H} X^{\bar{j}}}=\binom{X^{j}}{0} \\
{ }^{V} X & =\left({ }^{V} X^{\beta}\right)=\binom{{ }^{V} X^{j}}{{ }^{V} X^{\bar{j}}}=\binom{0}{X^{j}}
\end{aligned}
$$

with respect to the adapted frame $\left\{e_{\beta}\right\}$. From (3)-(5) we see that the Cheeger-Gromoll metric ${ }^{C G} g$ has components

$$
\left({ }^{C G} \tilde{g}_{\beta \gamma}\right)=\left(\begin{array}{cc}
{ }^{C G} g_{j l} & { }^{C G} g_{j \bar{l}} \\
{ }^{C G} g_{\bar{\jmath} l} & { }^{C G} g_{\bar{j} \bar{l}}
\end{array}\right)=\left(\begin{array}{cc}
g_{j l} & 0 \\
0 & \frac{1}{1+r^{2}}\left(g_{j l}+g_{j s} g_{l t} x^{\bar{s}} x^{\bar{t}}\right)
\end{array}\right)
$$

with respect to the adapted frame $\left\{e_{\beta}\right\}$.
For the Levi-Civita connection of the Cheeger-Gromoll metric we have the following.

SALIMOV, KAZIMOVA

Theorem 1 [5] Let $\left(M_{n}, g\right)$ be a Riemannian manifold and equip its tangent bundle $T\left(M_{n}\right)$ with the CheegerGromoll metric ${ }^{C G} g$. Then the corresponding Levi-Civita connection ${ }^{C G} \nabla$ satisfies the following:

$$
\left\{\begin{align*}
& C G \tag{8}\\
& \nabla_{H}^{H} Y={ }^{H}\left(\nabla_{X} Y\right)-\frac{1}{2}(R(X, Y) y) \\
&{ }^{C G} \nabla_{H}^{V} Y=\frac{1}{2 \alpha}{ }^{H}(R(y, Y) X)+{ }^{V}\left(\nabla_{X} Y\right), \\
&{ }^{C G} \nabla_{V}^{H} Y=\frac{1}{2 \alpha}{ }^{H}(R(y, X) Y), \\
&{ }^{C G} \nabla_{V}^{V} Y=-\frac{1}{\alpha}\left({ }^{C G} g\left({ }^{V} X, \gamma \delta\right)^{V} Y+{ }^{C G} g\left({ }^{V} Y, \gamma \delta\right)^{V} X\right) \\
&+\frac{1+\alpha}{\alpha}{ }^{C G} g\left({ }^{V} X,{ }^{V} Y\right) \gamma \delta-\frac{1}{\alpha}{ }^{C G} g\left({ }^{V} X, \gamma \delta\right)^{C G} g\left({ }^{V} Y, \gamma \delta\right) \gamma \delta
\end{align*}\right.
$$

for any $X, Y \in \Im_{0}^{1}\left(M_{n}\right)$, where R and $\gamma \delta$ denotes respectively the curvature tensor of ∇ and the canonical vertical vector field on $T\left(M_{n}\right)$ with components

$$
\gamma \delta=\binom{0}{x^{\bar{\imath}} \delta_{i}^{j}}=\binom{0}{x^{\bar{j}}}=x^{\bar{j}} \partial_{\bar{j}}=x^{\bar{j}} e_{(\bar{j})} .
$$

With respect to the adapted frame $\left\{e_{\alpha}\right\}$ of $T\left(M_{n}\right)$, we write ${ }^{C G} \nabla_{e_{\alpha}} e_{\beta}={ }^{C G} \Gamma_{\alpha \beta}^{\gamma} e_{\gamma}$ where ${ }^{C G} \Gamma_{\alpha \beta}^{\gamma}$ denote the Christoffel symbols constructed by ${ }^{C G} g$. The particular values of ${ }^{C G} \Gamma_{\alpha \beta}^{\gamma}$ for different indices, on taking account of (8) are then found to be

$$
\left\{\begin{array}{l}
{ }^{C G} \Gamma_{j i}^{h}=\Gamma_{j i}^{h}, \quad{ }^{C G} \Gamma_{j i}^{\bar{h}}=-\frac{1}{2} R_{j i k}^{h} x^{\bar{k}} \tag{9}\\
{ }^{C G} \Gamma_{j \bar{\imath}}^{h}=-\frac{1}{2 \alpha} R_{\bullet j k i}^{h \bullet} x^{\bar{k}}, \quad{ }^{C G} \Gamma_{j \bar{\imath}}^{\bar{h}}=\Gamma_{j i}^{h} \\
{ }^{C G} \Gamma_{\bar{j} i}^{h}=-\frac{1}{2 \alpha} R_{\bullet i k j}^{h \bullet} x^{\bar{k}}, \quad{ }^{C G} \Gamma_{\bar{j} i}^{\bar{h}}=0 \\
{ }^{C G} \Gamma_{\bar{j} \bar{\imath}}^{h}=0 \\
{ }^{C G} \Gamma_{\bar{j} \bar{\imath}}^{\bar{h}}=-\frac{1}{\alpha}\left(x_{\bar{j}} \delta_{i}^{h}+x_{\bar{\imath}} \delta_{j}^{h}\right)+\frac{1+\alpha}{\alpha} g_{j i} x^{\bar{h}}-\frac{1}{\alpha} x_{\bar{j}} x_{\bar{\imath}} x^{\bar{h}}
\end{array}\right.
$$

with respect to the adapted frame, where $x_{\bar{j}}=g_{j i} x^{\bar{\imath}}, R_{\bullet i k j}^{h \bullet}=g^{h t} g_{j s} R_{t i k}^{h}$.

3. Results

Let $\tilde{C}:[0,1] \rightarrow T\left(M_{n}\right)$ be a curve on $T\left(M_{n}\right)$ and suppose that \tilde{C} is expressed locally by $x^{A}=x^{A}(t)$, i.e., $x^{h}=x^{h}(t), x^{\bar{h}}=x^{\bar{h}}(t)=y^{h}(t)$ with respect to induced coordinates $\left(x^{h}, x^{\bar{h}}\right)$ in $\pi^{-1}(U) \subset T\left(M_{n}\right)$, t being a parameter. Then the curve $C=\pi \circ \tilde{C}$ on M_{n} is called the projection of the curve \tilde{C} and denoted by $\pi \tilde{C}$ which is expressed locally by $x^{h}=x^{h}(t)$. Let $X^{h}(t)$ be a vector field along C. Then, on $T\left(M_{n}\right)$ we define a curve \tilde{C} by

SALIMOV, KAZIMOVA

$$
\left\{\begin{array}{l}
x^{h}=x^{h}(t) \tag{10}\\
x^{\bar{h}}=X^{h}(t) .
\end{array}\right.
$$

If the curve (10) satisfies at all points the relation

$$
\frac{\delta X^{h}}{d t}=\frac{d X^{h}}{d t}+\Gamma_{j i}^{h} \frac{d x^{j}}{d t} X^{i}=0
$$

then the curve \tilde{C} is said to be a horizontal lift of the curve C and denoted by ${ }^{H} C$ [6,p.172]. If X^{h} is the tangent vector field $\frac{d x^{h}}{d t}$ to C, then the curve \tilde{C} defined by (10) is called the natural lift of the curve C and denoted by C^{*}.

The geodesics of the connection ${ }^{C G} \nabla$ is given by the differential equations

$$
\begin{equation*}
\frac{\delta^{2} x^{A}}{d t^{2}}=\frac{d^{2} x^{A}}{d t^{2}}+{ }^{C G} \Gamma_{C B}^{A} \frac{d x^{C}}{d t} \frac{d x^{B}}{d t}=0 \tag{11}
\end{equation*}
$$

with respect to induced coordinates $\left(x^{h}, x^{\bar{h}}\right)$, where t is the arc length of a curve on $T\left(M_{n}\right)$.
We find it more convenient to refer equations (11) to the adapted frame $\left\{e_{\alpha}\right\}$. From (6) and (7) we see that the matrix of change of frames $e_{\beta}=A_{\beta}{ }^{H} \partial_{H}$ has components of the form

$$
A=\left(A_{\beta}^{B}\right)=\left(\begin{array}{cc}
\delta_{j}^{k} & 0 \\
-\Gamma_{s j}^{h} x^{\bar{s}} & \delta_{j}^{k}
\end{array}\right)
$$

The inverse of the matrix A is given by

$$
\tilde{A}=\left(\tilde{A}^{\alpha}{ }_{A}\right)=\left(\begin{array}{cc}
\delta_{i}^{h} & 0 \\
\Gamma_{s i}^{h} x^{\bar{s}} & \delta_{i}^{h}
\end{array}\right)
$$

Using \tilde{A}, we now write

$$
\theta^{\alpha}=\tilde{A}_{A}^{\alpha} d x^{A}
$$

or

$$
\theta^{h}=\tilde{A}_{A}^{h} d x^{A}=\delta_{i}^{h} d x^{i}=d x^{h}
$$

for $\alpha=h$

$$
\theta^{\bar{h}}=\tilde{A}_{A}^{\bar{h}} d x^{A}=\Gamma_{s i}^{h} x^{\bar{s}} d x^{i}+\delta_{i}^{h} d x^{\bar{\imath}}=d y^{h}+\Gamma_{s i}^{h} y^{s} d x^{i}=\delta y^{h}
$$

for $\alpha=\bar{h}$ and put

SALIMOV, KAZIMOVA

$$
\begin{aligned}
\frac{\theta^{h}}{d t} & =A_{A}^{h} \frac{d x^{A}}{d t}=\frac{d x^{h}}{d t} \\
\frac{\theta^{\bar{h}}}{d t} & =A_{A}^{\bar{h}} \frac{d x^{A}}{d t}=\frac{\delta y^{h}}{d t}
\end{aligned}
$$

along a curve $x^{A}=x^{A}(t)$ on $T\left(M_{n}\right)$.

If we therefore write down the form equivalent to (11), namely,

$$
\frac{d}{d t}\left(\frac{\theta^{\alpha}}{d t}\right)+{ }^{C G} \Gamma_{\gamma \beta}^{\alpha} \frac{\theta^{\gamma}}{d t} \frac{\theta^{\beta}}{d t}=0
$$

with respect to adapted frame and taking account of (9), then we have

$$
\left\{\begin{array}{l}
\text { (a) } \frac{\delta^{2} x^{h}}{d t^{2}}+\frac{1}{\alpha} R_{k j i}^{h} y^{k} \frac{\delta y^{j}}{d t} \frac{d x^{i}}{d t}=0 \tag{12}\\
\text { (b) } \frac{\delta^{2} y^{h}}{d t^{2}}+\left[-\frac{1}{\alpha}\left(y_{j} \delta_{i}^{h}+y_{i} \delta_{j}^{h}\right)+\frac{1+\alpha}{\alpha} g_{j i} y^{h}-\frac{1}{\alpha} y_{j} y_{i} y^{h}\right] \frac{\delta y^{j}}{d t} \frac{\delta y^{i}}{d t}=0
\end{array}\right.
$$

where $y^{i}=x^{\bar{i}}$. Thus we have the following theorem.

Theorem 2 Let \tilde{C} be a curve on $T\left(M_{n}\right)$ and locally expressed by $x^{h}=x^{h}(t), x^{\bar{h}}=y^{h}(t)$ with respect to induced coordinates $\left(x^{h}, x^{\bar{h}}\right)$ in $\pi^{-1}(U) \subset T\left(M_{n}\right)$. The curve \tilde{C} is a geodesic of ${ }^{C G} g$, if it satisfies the equations (12).
If a curve \tilde{C} satisfying (12) lies on a fibre given by $x^{h}=$ const, then by virtue of $\frac{d x^{h}}{d t}=0$ and $\frac{\delta y^{h}}{d t}=$ $\frac{d y^{h}}{d t}+\Gamma_{i j}^{h} \frac{d x^{i}}{d t} y^{j}=\frac{d y^{h}}{d t}$, the equations (12) reduces to

$$
\begin{equation*}
\frac{d^{2} y^{h}}{d t^{2}}+\left[-\frac{1}{\alpha}\left(y_{j} \delta_{i}^{h}+y_{i} \delta_{j}^{h}\right)+\frac{1+\alpha}{\alpha} g_{j i} y^{h}-\frac{1}{\alpha} y_{j} y_{i} y^{h}\right] \frac{d y^{j}}{d t} \frac{d y^{i}}{d t}=0 \tag{13}
\end{equation*}
$$

Hence we have this final theorem

Theorem 3 If a geodesic lies on a fibre of $T\left(M_{n}\right)$ with metric ${ }^{C G} g$, the geodesic is expressed by equation (13). Let $C=\pi \circ C^{H}$ be a geodesic of ∇ on M_{n}. Then $\frac{\delta^{2} x^{h}}{d t^{2}}=0 . \quad$ Using this condition and condition $\frac{\delta y^{j}}{d t}=\frac{\delta X^{h}}{d t}=0$, we have

Theorem 4 The horizontal lift of a geodesic on M_{n} is always geodesic on $T\left(M_{n}\right)$ with the metric ${ }^{C G} g$.
Let now $C=\pi \circ C^{*}$ be a geodesic of ∇ on M_{n}, i.e. $\frac{\delta^{2} x^{h}}{d t^{2}}=\frac{\delta}{d t}\left(\frac{d x^{h}}{d t}\right)=0$. On the other hand, from definition of the natural lift of the curve, we obtain

SALIMOV, KAZIMOVA

$$
\begin{equation*}
\frac{\delta y^{h}}{d t}=\frac{\delta}{d t}\left(\frac{d x^{h}}{d t}\right)=0 \tag{14}
\end{equation*}
$$

Then from (12) and (14) we easily see that the natural lift of a curve on M_{n} defined $x^{h}=x^{h}(t)$ is geodesic on $T\left(M_{n}\right)$ with the metric ${ }^{C G} g$. Thus we have

Theorem 5 The natural lift C^{*} of a any geodesic on M_{n} is a geodesic on $T\left(M_{n}\right)$ with the metric ${ }^{C G} g$.

References

[1] Cheeger, J. and Gromoll, D.: On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96, 413-443, (1972).
[2] Gudmundsson, S. and Kappos, E.: On the geometry of the Tangent Bundle with the Cheeger- Gromoll metric, Tokyo J. Math. 25, no.1, 75-83, (2002).
[3] Gudmundsson, S. and Kappos, E.: On the Geometry of the Tangent Bundles, Expo. Math. 20, no.1, 1-41, (2002).
[4] Musso, E. and Tricerri, F.: Riemannian metric on Tangent Bundles, Ann. Math. Pura. Appl. 150(4), 1-19, (1988).
[5] Sekizawa, M.: Curvatures of Tangent Bundles with Cheeger-Gromoll Metric,Tokyo J. Math., 14, 407-417, (1991).
[6] Yano, K. and Ishihara, S.: Tangent and Cotangent Bundles, Marcel Dekker Inc., N.Y., (1973).
A. A. SALIMOV

Received 24.04.2008
Atatürk University,
Faculty of Arts and Sciences,
Department of Mathematics, 25240, Erzurum-TURKEY
e-mail: asalimov@atauni.edu.tr
S. KAZIMOVA

Baku State University,
Department of Geometry,
Baku, 370145, AZERBAIJAN
e-mail: sevilkazimova@hotmail.com

[^0]: 2000 Mathematics Subject Classification: 53C22, 53C25

