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Values of the Carmichael Function Equal to a Sum of Two Squares

William D. Banks and Ahmet M. Güloğlu

Abstract

In this note, we determine the order of growth of the number of positive integers n � x such that λ(n)

is a sum of two square numbers, where λ(n) is the Carmichael function.
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1. Introduction

Let λ(n) denote the Carmichael function, whose value at the integer n � 1 is defined to be the exponent
of the multiplicative group (Z/nZ)∗ . More explicitly, for every prime power pα we have

λ(pα) =

{
pα−1(p − 1) if p � 3 or α � 2,

2α−2 if p = 2 and α � 3,

and for an arbitrary integer n � 2 with prime factorization n = pα1
1 . . . pαk

k we have

λ(n) = lcm
[
λ(pα1

1 ), . . . , λ(pαk

k )
]
.

Clearly, λ(1) = 1.

In this note, we study positive integers n with the property that λ(n) is the sum of two square numbers.
Our main result is the following:

Theorem 1 Let S be the set of positive integers m such that m = a2 + b2 for some integers a and b , and put

S(x) = #
{
n � x : λ(n) ∈ S

}
.

Then, there are absolute constants c2 > c1 > 0 such that the inequalities

c1 x

(log x)3/2
� S(x) � c2 x

(log x)3/2

hold for all sufficiently large values of x .
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Since λ(p) = p− 1 for every prime p , the lower bound of Theorem 1 follows from the work of Iwaniec [2]
(see also [3]), who showed that

#
{
p � x : p − 1 ∈ S

}
� c1 x

(logx)3/2

holds with some absolute constant c1 > 0 for all sufficiently large values of x . Our proof of the upper bound of
Theorem 1 (see Section 4) uses ideas from [1], where similar bounds have been obtained for the Euler function
ϕ(n) and for the sum of divisors function σ(n). One difference in our case is that λ(n) is not a multiplicative
function, and this fact necessitates an approach using slightly different sets than those considered in [1] and a
special treatment of certain intermediate estimates (see, for example, Lemma 3). Fortunately, the contribution
to S(x) coming from integers with a fixed number of prime divisors can be controlled sufficiently well to obtain
the required upper bound.

2. Notation

In what follows, the letter p always denotes a prime number, and the letter q (with or without subscripts)
always denotes an odd prime power. As usual, we denote the set of natural numbers by N .

For a positive integer n , we use ω(n) to denote the number of distinct prime divisors of n ; in particular,
ω(1) = 0.

Following [1], for a real number x > 0 we define log x = max{lnx, 2} , where ln x is the natural
logarithm, and for every integer k � 2, we use logk x to denote the k -th iterate of log x . We recall that logx

is submultiplicative:
log(xy) � (log x)(log y) (x, y > 0). (2.1)

Throughout the paper, implied constants in the symbols O , � and � are absolute. We recall that for
positive functions f and g , the notations f = O(g), f � g and f � g are all equivalent to the assertion that
f � cg for some absolute constant c > 0.

3. Preliminary Estimates

Lemma 1 Let

A =
{
a ∈ N : p | a ⇒ p ≡ 3 (mod 4)

}
,

B =
{
b ∈ N : p | b ⇒ p �≡ 3 (mod 4)

}
,

and for any integer k � 1 let Qk be the set of ordered k -tuples (q1, . . . , qk) such that each qi is an odd prime
power and gcd(qi, qj) = 1 for i �= j . Then, for some absolute constant C > 0 , the bound

∑
(q1,...,qk)∈Qk

q1···qk�x
λ(qi)∈aiB ∀ i

log(q1 · · ·qk) � k3/2 Ck

(
k∏

i=1

1
ϕ(ai)

)
x(logA)3/2

√
log x

(3.2)

holds for all x > 0 , k � 1 , and a1, . . . , ak ∈ A , where A = lcm[a1, . . . , ak] .
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Proof. Since the Euler and Carmichael functions agree on odd prime powers, the bound (3.2) can be proved
using an inductive argument similar to the proof of [1, Lemma 5]. The only difference in this case is that we
need the uniform upper bound

#
{
q � x : λ(q) ∈ aB

}
� x

ϕ(a)(log(x/a))3/2
(a ∈ A, x > 0). (3.3)

Since λ(q) ∈ aB implies q > a , it is enough to prove this for x > a . In the proof of [1, Lemma 1] it is shown
that

#
{
p � x : p − 1 ∈ aB

}
� x

ϕ(a)(log(x/a))3/2
,

hence it suffices to consider the contribution to the left side of (3.3) coming from prime powers q = pα with
α > 1.

First, we observe that there is at most one prime power pα such that λ(pα) ∈ aB , p ≡ 3 (mod 4), and
α > 1. Indeed, writing

pα−1(p − 1) = ab for some b ∈ B,

it is clear that p is the largest prime divisor of a , and that pα−1 ‖ a ; hence pα is uniquely determined by a .
On the other hand, if p ≡ 1 (mod 4), then λ(pα) ∈ aB if and only if p − 1 ∈ aB . Therefore,

∑
pα�x, α>1
λ(pα)∈aB

1 � 1 +
∑

p�√
x

p−1∈aB

∑
α�log x

1 � 1 +
√

x log x

ϕ(a)(log(
√

x/a))3/2
,

and (3.3) follows. To complete the proof of (3.2), it is a straightforward matter to adapt the proofs of [1,
Lemmas 3,4,5], making use of the bound (3.3) in place of [1, Lemma 2] together with the fact that log(x/A) �
(log x)/ logA by (2.1); the details are omitted. �

Lemma 2 Uniformly for n � 1 , we have ∑
p | n

p−1 � log3 n.

Proof. Let p1, p2, . . . be the sequence of consecutive prime numbers, and put nk = p1 · · · pk for each k � 1.
By the Prime Number Theorem we have

lognk = (1 + o(1)) pk (k → ∞),

and by Mertens’ theorem it follows that

∑
p |nk

p−1 =
∑
p�pk

p−1 = (1 + o(1)) log2 pk = (1 + o(1)) log3 nk.

Now, for an arbitrary integer n with ω(n) = k , we have

∑
p |n

p−1 �
∑
p |nk

p−1 � log3 nk � log3 n,
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which is the desired bound. �

Lemma 3 For some absolute constant C1 > 0 , we have the uniform bound:

∑
(n1,...,nk)∈N

k

lcm[n1,...,nk]=n

(
k∏

i=1

1
ϕ(ni)

)
� kω(n)(log2 n)C1k

n
(k, n ∈ N). (3.4)

Proof. For each fixed k , let Fk(n) be the arithmetic function defined by the left side of (3.4). It is easy to
see that Fk(n) is multiplicative; thus,

Fk(1) = 1 and Fk(n) =
∏

pα ‖n

Fk(pα) (n � 2).

For every prime power pα , we have

Fk(pα) = Gk(pα) − Gk(pα−1),

where

Gk(m) =
∑

(d1,...,dk)∈N
k

lcm[d1,...,dk] | m

(
k∏

i=1

1
ϕ(di)

)
=

⎛
⎝ ∑

d | m

1
ϕ(d)

⎞
⎠

k

(m ∈ N).

Hence, writing

g =
1

ϕ(pα)
and h =

∑
d | pα−1

1
ϕ(d)

,

we have

Fk(pα) = (g + h)k − hk = k

∫ g+h

h

tk−1 dt � kg(g + h)k−1.

Also,

g + h =
∑
d | pα

1
ϕ(d)

= 1 +
pα+1 − p

pα(p − 1)2
= 1 + O(p−1).

Putting everything together, we derive that

ln Fk(n) �
∑

pα ‖n

ln
(

k

ϕ(pα)
(
1 + O(p−1)

)k−1
)

= ω(n) ln k − ln ϕ(n) + O

⎛
⎝k

∑
p |n

p−1

⎞
⎠ .

Using Lemma 2 together with the lower bound

ϕ(n) � n

log2 n
(n ∈ N),
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we obtain the stated result. �

Lemma 4 The following bound holds:

∞∑
k=1

kn

k!
� nn (n ∈ N).

Proof. If n is large, then ∑
k>n

kn

k!
<

∑
k>n

nk

k!
<

∞∑
k=0

nk

k!
= en.

Since k! ∼
√

2π kk+1/2e−k as k → ∞ , we also have

n∑
k=1

kn

k!
�

n∑
k=1

knek

kk
� nκneκ

κκ
,

where κ is the real number at which the function f(x) = xnexx−x takes its maximum value. It is easy to check
that κ satisfies the equation κ lnκ = n , hence κ ∼ n/ logn as n → ∞ , and we derive the estimate

nκneκ

κκ
= exp(n log n − n log2 n + O(n)).

The result follows. �

Lemma 5 The following bound holds:

ω(n) � logn

log2 n

(
1 + O

(
1

log2 n

))
(n ∈ N).

Proof. As in the proof of Lemma 2, it suffices to prove this bound for integers of the form nk = p1 · · ·pk ,
where p1, p2, . . . is the sequence of consecutive prime numbers. Using [4, Theorem 4] we see that

log nk =
∑
p�pk

logp = pk

(
1 + O

(
1

log pk

))
,

and by [4, Theorem 3] we have
pk = k(log k + log2 k) + O(k);

therefore,

lognk = k(log k + log2 k)
(

1 + O

(
1

logk

))

and

log lognk = (log k + log2 k)
(

1 + O

(
log2 k

(logk)2

))
.
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Since logk ∼ log2 nk as k → ∞ , it follows that

ω(nk) = k =
log nk

log2 nk

(
1 + O

(
1

log2 nk

))
.

This completes the proof. �

4. Proof of the Upper Bound

Let A , B and Qk be defined as in Lemma 1. For every a ∈ A , let

N (a; x) =
{
odd n � x : λ(n) ∈ aB

}
(x � 1).

Our first goal is to establish an upper bound on sums of the form

Lk(a; x) =
∑

n∈N(a;x)
ω(n)=k

logn (k ∈ N, a ∈ A, x � 1).

Factoring each n as a product of odd prime powers, we have

Lk(a; x) =
1
k!

∑
(q1,...,qk)∈Qk

q1···qk∈N(a;x)

log(q1 · · · qk),

Every k -tuple (q1, . . . , qk) ∈ Qk determines a unique k -tuple (a1, . . . , ak) ∈ Ak such that

λ(qi) ∈ aiB (i = 1, . . . , k).

Moreover, since gcd(qi, qj) = 1 for i �= j , the condition λ(q1 · · ·qk) ∈ aB is equivalent to lcm[a1, . . . , ak] = a .
Therefore, the preceding sum can be expressed in the form

Lk(a; x) =
1
k!

∑
(a1,...,ak)∈Ak

lcm[a1,...,ak]=a

∑
(q1,...,qk)∈Qk

q1···qk�x
λ(qi)∈aiB ∀ i

log(q1 · · ·qk).

Inserting the bounds of Lemmas 1 and 3, we derive that

Lk(a; x) � kω(a)+3/2
(
C(log2 a)C1

)k

k!
(loga)3/2

a

x√
log x

. (4.5)

Next, we need an upper bound on sums of the form

s(a) =
∞∑

k=1

kω(a)+3/2
(
C(log2 a)C1

)k

k!
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in the special case that a is a square number. For our purposes below, the following bound suffices:

s(a) �
√

a

(log a)7/2
. (4.6)

To prove (4.6), we begin by applying Cauchy’s inequality to the sum s(a), obtaining

s(a)2 � exp
(
C2(log2 a)2C1

) ∞∑
k=1

k2 ω(a)+3

k!
. (4.7)

Since a is a square number, Lemma 5 implies that

2 ω(a) + 3 = 2 ω(
√

a ) + 3 � log a

log2 a

(
1 + O

(
1

log2 a

))
.

Setting n = 2 ω(a) + 3, it follows that

n logn � loga

log2 a
(log2 a − log3 a + O(1)),

hence by Lemma 4 we have

∞∑
k=1

k2 ω(a)+3

k!
=

∞∑
k=1

kn

k!
� exp(n logn) � a exp

(
− loga

log2 a
(log3 a + O(1))

)
.

Inserting this bound into (4.7) and extracting a square-root, we immediately obtain (4.6) for all square numbers
a ∈ A .

Using (4.5) and (4.6), we now derive that

∑
n∈N(a;x)

logn �
∞∑

k=1

Lk(a, x) � s(a)(log a)3/2

a

x√
logx

� 1√
a (log a)2

x√
logx

.

Let
L(x) =

{
odd n � x : λ(n) ∈ S

}
(x � 1),

where S is defined as in the statement of Theorem 1. Since S is the disjoint union:

S =
•⋃

d∈A
d2B,

we have ∑
n∈L(x)

log n =
∞∑

d=1

∑
n∈N(d2 ;x)

log n � x√
logx

∞∑
d=1

1
d (logd)2

� x√
log x

.

By partial summation, it follows that

#L(x) � x

(log x)3/2
.
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Finally, for an odd integer n , we have λ(n) ∈ S if and only if λ(2αn) ∈ S for all α � 0; therefore,

S(x) = #
{
n � x : λ(n) ∈ S

}
=

∑
α�0

#L(x/2α)

�
∑
α�0

x

2α(log(x/2α))3/2
� x

(log x)3/2

∑
α�0

(log 2α)3/2

2α
� x

(log x)3/2
,

which is the required upper bound for S(x).
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