

Values of the Carmichael Function Equal to a Sum of Two Squares

William D. Banks and Ahmet M. Güloğlu

Abstract

In this note, we determine the order of growth of the number of positive integers $n \leq x$ such that $\lambda(n)$ is a sum of two square numbers, where $\lambda(n)$ is the Carmichael function.

Key Words: Carmichael function, sum of two squares.

1. Introduction

Let $\lambda(n)$ denote the *Carmichael function*, whose value at the integer $n \ge 1$ is defined to be the exponent of the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^*$. More explicitly, for every prime power p^{α} we have

$$\lambda(p^{\alpha}) = \begin{cases} p^{\alpha-1}(p-1) & \text{if } p \ge 3 \text{ or } \alpha \le 2, \\ 2^{\alpha-2} & \text{if } p = 2 \text{ and } \alpha \ge 3 \end{cases}$$

and for an arbitrary integer $n \ge 2$ with prime factorization $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ we have

$$\lambda(n) = \operatorname{lcm} \left[\lambda(p_1^{\alpha_1}), \dots, \lambda(p_k^{\alpha_k}) \right].$$

Clearly, $\lambda(1) = 1$.

In this note, we study positive integers n with the property that $\lambda(n)$ is the sum of two square numbers. Our main result is the following:

Theorem 1 Let S be the set of positive integers m such that $m = a^2 + b^2$ for some integers a and b, and put

$$S(x) = \# \{ n \leqslant x : \lambda(n) \in \mathcal{S} \}.$$

Then, there are absolute constants $c_2 > c_1 > 0$ such that the inequalities

$$\frac{c_1 x}{(\log x)^{3/2}} \leqslant S(x) \leqslant \frac{c_2 x}{(\log x)^{3/2}}$$

hold for all sufficiently large values of x.

AMS Mathematics Subject Classification: 11N37.

Since $\lambda(p) = p - 1$ for every prime p, the lower bound of Theorem 1 follows from the work of Iwaniec [2] (see also [3]), who showed that

$$\#\left\{p \leqslant x : p-1 \in \mathcal{S}\right\} \geqslant \frac{c_1 x}{(\log x)^{3/2}}$$

holds with some absolute constant $c_1 > 0$ for all sufficiently large values of x. Our proof of the upper bound of Theorem 1 (see Section 4) uses ideas from [1], where similar bounds have been obtained for the *Euler function* $\varphi(n)$ and for the sum of divisors function $\sigma(n)$. One difference in our case is that $\lambda(n)$ is not a multiplicative function, and this fact necessitates an approach using slightly different sets than those considered in [1] and a special treatment of certain intermediate estimates (see, for example, Lemma 3). Fortunately, the contribution to S(x) coming from integers with a fixed number of prime divisors can be controlled sufficiently well to obtain the required upper bound.

2. Notation

In what follows, the letter p always denotes a *prime number*, and the letter q (with or without subscripts) always denotes an *odd prime power*. As usual, we denote the set of natural numbers by \mathbb{N} .

For a positive integer n, we use $\omega(n)$ to denote the number of distinct prime divisors of n; in particular, $\omega(1) = 0$.

Following [1], for a real number x > 0 we define $\log x = \max\{\ln x, 2\}$, where $\ln x$ is the natural logarithm, and for every integer $k \ge 2$, we use $\log_k x$ to denote the k-th iterate of $\log x$. We recall that $\log x$ is submultiplicative:

$$\log(xy) \leqslant (\log x)(\log y) \qquad (x, y > 0). \tag{2.1}$$

Throughout the paper, implied constants in the symbols O, \gg and \ll are *absolute*. We recall that for positive functions f and g, the notations f = O(g), $f \ll g$ and $f \gg g$ are all equivalent to the assertion that $f \leqslant cg$ for some absolute constant c > 0.

3. Preliminary Estimates

Lemma 1 Let

$$\mathcal{A} = \{ a \in \mathbb{N} : p \mid a \Rightarrow p \equiv 3 \pmod{4} \},$$
$$\mathcal{B} = \{ b \in \mathbb{N} : p \mid b \Rightarrow p \not\equiv 3 \pmod{4} \},$$

and for any integer $k \ge 1$ let \mathcal{Q}^k be the set of ordered k-tuples (q_1, \ldots, q_k) such that each q_i is an odd prime power and $gcd(q_i, q_j) = 1$ for $i \ne j$. Then, for some absolute constant C > 0, the bound

$$\sum_{\substack{(q_1,\dots,q_k)\in\mathcal{Q}^k\\q_1\dots q_k\leqslant x\\\lambda(q_i)\in a_i\mathcal{B}\ \forall\ i}} \log(q_1\dots q_k) \leqslant k^{3/2} C^k \left(\prod_{i=1}^k \frac{1}{\varphi(a_i)}\right) \frac{x(\log A)^{3/2}}{\sqrt{\log x}}$$
(3.2)

holds for all x > 0, $k \ge 1$, and $a_1, \ldots, a_k \in \mathcal{A}$, where $A = \operatorname{lcm}[a_1, \ldots, a_k]$.

Proof. Since the Euler and Carmichael functions agree on odd prime powers, the bound (3.2) can be proved using an inductive argument similar to the proof of [1, Lemma 5]. The only difference in this case is that we need the uniform upper bound

$$#\{q \leq x : \lambda(q) \in a\mathcal{B}\} \ll \frac{x}{\varphi(a)(\log(x/a))^{3/2}} \qquad (a \in \mathcal{A}, \ x > 0).$$

$$(3.3)$$

Since $\lambda(q) \in a\mathcal{B}$ implies q > a, it is enough to prove this for x > a. In the proof of [1, Lemma 1] it is shown that

$$\#\left\{p\leqslant x : p-1\in a\mathcal{B}\right\}\ll \frac{x}{\varphi(a)(\log(x/a))^{3/2}},$$

hence it suffices to consider the contribution to the left side of (3.3) coming from prime powers $q = p^{\alpha}$ with $\alpha > 1$.

First, we observe that there is at most one prime power p^{α} such that $\lambda(p^{\alpha}) \in a\mathcal{B}, p \equiv 3 \pmod{4}$, and $\alpha > 1$. Indeed, writing

$$p^{\alpha-1}(p-1) = ab$$
 for some $b \in \mathcal{B}$,

it is clear that p is the largest prime divisor of a, and that $p^{\alpha-1} \parallel a$; hence p^{α} is uniquely determined by a. On the other hand, if $p \equiv 1 \pmod{4}$, then $\lambda(p^{\alpha}) \in a\mathcal{B}$ if and only if $p-1 \in a\mathcal{B}$. Therefore,

$$\sum_{\substack{p^{\alpha} \leqslant x, \ \alpha > 1\\\lambda(p^{\alpha}) \in a\mathcal{B}}} 1 \leqslant 1 + \sum_{\substack{p \leqslant \sqrt{x}\\p-1 \in a\mathcal{B}}} \sum_{\alpha \leqslant \log x} 1 \ll 1 + \frac{\sqrt{x \log x}}{\varphi(a)(\log(\sqrt{x}/a))^{3/2}},$$

and (3.3) follows. To complete the proof of (3.2), it is a straightforward matter to adapt the proofs of [1, Lemmas 3,4,5], making use of the bound (3.3) in place of [1, Lemma 2] together with the fact that $\log(x/A) \ge (\log x)/\log A$ by (2.1); the details are omitted.

Lemma 2 Uniformly for $n \ge 1$, we have

$$\sum_{p \mid n} p^{-1} \ll \log_3 n.$$

Proof. Let p_1, p_2, \ldots be the sequence of consecutive prime numbers, and put $n_k = p_1 \cdots p_k$ for each $k \ge 1$. By the *Prime Number Theorem* we have

$$\log n_k = (1 + o(1)) p_k \qquad (k \to \infty),$$

and by Mertens' theorem it follows that

$$\sum_{p \mid n_k} p^{-1} = \sum_{p \leq p_k} p^{-1} = (1 + o(1)) \log_2 p_k = (1 + o(1)) \log_3 n_k.$$

Now, for an arbitrary integer n with $\omega(n) = k$, we have

$$\sum_{p \mid n} p^{-1} \leqslant \sum_{p \mid n_k} p^{-1} \ll \log_3 n_k \leqslant \log_3 n,$$

which is the desired bound.

Lemma 3 For some absolute constant $C_1 > 0$, we have the uniform bound:

$$\sum_{\substack{(n_1,\dots,n_k)\in\mathbb{N}^k\\ \operatorname{lcm}[n_1,\dots,n_k]=n}} \left(\prod_{i=1}^k \frac{1}{\varphi(n_i)}\right) \ll \frac{k^{\omega(n)}(\log_2 n)^{C_1 k}}{n} \qquad (k,n\in\mathbb{N}).$$
(3.4)

Proof. For each fixed k, let $F_k(n)$ be the arithmetic function defined by the left side of (3.4). It is easy to see that $F_k(n)$ is multiplicative; thus,

$$F_k(1) = 1$$
 and $F_k(n) = \prod_{p^{\alpha} \parallel n} F_k(p^{\alpha})$ $(n \ge 2).$

For every prime power p^{α} , we have

$$F_k(p^{\alpha}) = G_k(p^{\alpha}) - G_k(p^{\alpha-1}),$$

where

$$G_k(m) = \sum_{\substack{(d_1, \dots, d_k) \in \mathbb{N}^k \\ \operatorname{lcm}[d_1, \dots, d_k] \mid m}} \left(\prod_{i=1}^k \frac{1}{\varphi(d_i)}\right) = \left(\sum_{d \mid m} \frac{1}{\varphi(d)}\right)^k \qquad (m \in \mathbb{N}).$$

Hence, writing

$$g = rac{1}{arphi(p^{lpha})}$$
 and $h = \sum_{d \mid p^{lpha-1}} rac{1}{arphi(d)}$

we have

$$F_k(p^{\alpha}) = (g+h)^k - h^k = k \int_h^{g+h} t^{k-1} dt \leqslant kg(g+h)^{k-1}.$$

Also,

$$g+h = \sum_{d \mid p^{\alpha}} \frac{1}{\varphi(d)} = 1 + \frac{p^{\alpha+1} - p}{p^{\alpha}(p-1)^2} = 1 + O(p^{-1}).$$

Putting everything together, we derive that

$$\ln F_k(n) \leq \sum_{p^{\alpha} \parallel n} \ln \left(\frac{k}{\varphi(p^{\alpha})} \left(1 + O(p^{-1}) \right)^{k-1} \right)$$
$$= \omega(n) \ln k - \ln \varphi(n) + O\left(k \sum_{p \mid n} p^{-1} \right).$$

Using Lemma 2 together with the lower bound

$$\varphi(n) \gg \frac{n}{\log_2 n} \qquad (n \in \mathbb{N}),$$

we obtain the stated result.

Lemma 4 The following bound holds:

$$\sum_{k=1}^{\infty} \frac{k^n}{k!} \ll n^n \qquad (n \in \mathbb{N}).$$

Proof. If n is large, then

$$\sum_{k>n} \frac{k^n}{k!} < \sum_{k>n} \frac{n^k}{k!} < \sum_{k=0}^{\infty} \frac{n^k}{k!} = e^n.$$

Since $k! \sim \sqrt{2\pi} k^{k+1/2} e^{-k}$ as $k \to \infty$, we also have

$$\sum_{k=1}^n \frac{k^n}{k!} \ll \sum_{k=1}^n \frac{k^n e^k}{k^k} \leqslant \frac{n \kappa^n e^\kappa}{\kappa^\kappa} \,,$$

where κ is the real number at which the function $f(x) = x^n e^x x^{-x}$ takes its maximum value. It is easy to check that κ satisfies the equation $\kappa \ln \kappa = n$, hence $\kappa \sim n/\log n$ as $n \to \infty$, and we derive the estimate

$$\frac{n\kappa^n e^{\kappa}}{\kappa^{\kappa}} = \exp(n\log n - n\log_2 n + O(n)).$$

The result follows.

Lemma 5 The following bound holds:

$$\omega(n) \leq \frac{\log n}{\log_2 n} \left(1 + O\left(\frac{1}{\log_2 n}\right) \right) \qquad (n \in \mathbb{N}).$$

Proof. As in the proof of Lemma 2, it suffices to prove this bound for integers of the form $n_k = p_1 \cdots p_k$, where p_1, p_2, \ldots is the sequence of consecutive prime numbers. Using [4, Theorem 4] we see that

$$\log n_k = \sum_{p \leqslant p_k} \log p = p_k \left(1 + O\left(\frac{1}{\log p_k}\right) \right),$$

and by [4, Theorem 3] we have

$$p_k = k(\log k + \log_2 k) + O(k);$$

therefore,

$$\log n_k = k(\log k + \log_2 k) \left(1 + O\left(\frac{1}{\log k}\right)\right)$$

and

$$\log \log n_k = \left(\log k + \log_2 k\right) \left(1 + O\left(\frac{\log_2 k}{(\log k)^2}\right)\right).$$

13

Since $\log k \sim \log_2 n_k$ as $k \to \infty$, it follows that

$$\omega(n_k) = k = \frac{\log n_k}{\log_2 n_k} \left(1 + O\left(\frac{1}{\log_2 n_k}\right) \right)$$

This completes the proof.

4. Proof of the Upper Bound

Let \mathcal{A}, \mathcal{B} and \mathcal{Q}^k be defined as in Lemma 1. For every $a \in \mathcal{A}$, let

$$\mathcal{N}(a;x) = \left\{ \text{odd } n \leqslant x : \lambda(n) \in a\mathcal{B} \right\} \qquad (x \ge 1).$$

Our first goal is to establish an upper bound on sums of the form

$$L_k(a;x) = \sum_{\substack{n \in \mathcal{N}(a;x)\\ \omega(n) = k}} \log n \qquad (k \in \mathbb{N}, \ a \in \mathcal{A}, \ x \ge 1).$$

Factoring each n as a product of odd prime powers, we have

$$L_k(a;x) = \frac{1}{k!} \sum_{\substack{(q_1,\dots,q_k) \in \mathcal{Q}^k \\ q_1 \cdots q_k \in \mathcal{N}(a;x)}} \log(q_1 \cdots q_k),$$

Every k-tuple $(q_1, \ldots, q_k) \in \mathcal{Q}^k$ determines a unique k-tuple $(a_1, \ldots, a_k) \in \mathcal{A}^k$ such that

$$\lambda(q_i) \in a_i \mathcal{B} \qquad (i = 1, \dots, k).$$

Moreover, since $gcd(q_i, q_j) = 1$ for $i \neq j$, the condition $\lambda(q_1 \cdots q_k) \in a\mathcal{B}$ is equivalent to $lcm[a_1, \ldots, a_k] = a$. Therefore, the preceding sum can be expressed in the form

$$L_k(a;x) = \frac{1}{k!} \sum_{\substack{(a_1,\dots,a_k) \in \mathcal{A}^k \\ \lim[a_1,\dots,a_k] = a}} \sum_{\substack{(q_1,\dots,q_k) \in \mathcal{Q}^k \\ q_1\cdots q_k \leqslant x \\ \lambda(q_i) \in a_i \mathcal{B} \ \forall i}} \log(q_1 \cdots q_k).$$

Inserting the bounds of Lemmas 1 and 3, we derive that

$$L_k(a;x) \ll \frac{k^{\omega(a)+3/2} \left(C(\log_2 a)^{C_1}\right)^k}{k!} \frac{(\log a)^{3/2}}{a} \frac{x}{\sqrt{\log x}}.$$
(4.5)

Next, we need an upper bound on sums of the form

$$s(a) = \sum_{k=1}^{\infty} \frac{k^{\omega(a)+3/2} \left(C(\log_2 a)^{C_1}\right)^k}{k!}$$

	٦.
	1
_	-

in the special case that a is a square number. For our purposes below, the following bound suffices:

$$s(a) \ll \frac{\sqrt{a}}{(\log a)^{7/2}}$$
 (4.6)

To prove (4.6), we begin by applying Cauchy's inequality to the sum s(a), obtaining

$$s(a)^{2} \leq \exp\left(C^{2}(\log_{2} a)^{2C_{1}}\right) \sum_{k=1}^{\infty} \frac{k^{2\,\omega(a)+3}}{k!} \,. \tag{4.7}$$

Since a is a square number, Lemma 5 implies that

$$2\,\omega(a) + 3 = 2\,\omega(\sqrt{a}\,) + 3 \leqslant \frac{\log a}{\log_2 a}\,\left(1 + O\left(\frac{1}{\log_2 a}\right)\right).$$

Setting $n = 2\omega(a) + 3$, it follows that

$$n\log n \leqslant \frac{\log a}{\log_2 a} \left(\log_2 a - \log_3 a + O(1)\right),$$

hence by Lemma 4 we have

$$\sum_{k=1}^{\infty} \frac{k^{2\,\omega(a)+3}}{k!} = \sum_{k=1}^{\infty} \frac{k^n}{k!} \ll \exp(n\log n) \leqslant a \, \exp\left(-\frac{\log a}{\log_2 a} \left(\log_3 a + O(1)\right)\right).$$

Inserting this bound into (4.7) and extracting a square-root, we immediately obtain (4.6) for all square numbers $a \in \mathcal{A}$.

Using (4.5) and (4.6), we now derive that

$$\sum_{n \in \mathcal{N}(a;x)} \log n \leqslant \sum_{k=1}^{\infty} L_k(a,x) \ll \frac{s(a)(\log a)^{3/2}}{a} \frac{x}{\sqrt{\log x}} \ll \frac{1}{\sqrt{a} (\log a)^2} \frac{x}{\sqrt{\log x}}$$

Let

$$\mathcal{L}(x) = \left\{ \text{odd } n \leqslant x : \lambda(n) \in \mathcal{S} \right\} \qquad (x \ge 1),$$

where S is defined as in the statement of Theorem 1. Since S is the disjoint union:

$$\mathcal{S} = \bigcup_{d \in \mathcal{A}} d^2 \mathcal{B},$$

we have

$$\sum_{n \in \mathcal{L}(x)} \log n = \sum_{d=1}^{\infty} \sum_{n \in \mathcal{N}(d^2; x)} \log n \ll \frac{x}{\sqrt{\log x}} \sum_{d=1}^{\infty} \frac{1}{d \, (\log d)^2} \ll \frac{x}{\sqrt{\log x}}$$

By partial summation, it follows that

$$\#\mathcal{L}(x) \ll \frac{x}{(\log x)^{3/2}}.$$

Finally, for an odd integer n, we have $\lambda(n) \in S$ if and only if $\lambda(2^{\alpha}n) \in S$ for all $\alpha \ge 0$; therefore,

$$S(x) = \#\{n \le x : \lambda(n) \in \mathcal{S}\} = \sum_{\alpha \ge 0} \#\mathcal{L}(x/2^{\alpha})$$
$$\ll \sum_{\alpha \ge 0} \frac{x}{2^{\alpha} (\log(x/2^{\alpha}))^{3/2}} \le \frac{x}{(\log x)^{3/2}} \sum_{\alpha \ge 0} \frac{(\log 2^{\alpha})^{3/2}}{2^{\alpha}} \ll \frac{x}{(\log x)^{3/2}},$$

which is the required upper bound for S(x).

Acknowledgements

The authors thank Florian Luca, Igor Shparlinski and the referee for helpful comments which led to several improvements in the exposition of the paper.

References

- Banks, W.D., Luca, F., Saidak, F., Shparlinski, I.E.: Values of arithmetical functions equal to a sum of two squares. Q. J. Math. 56, no. 2, 123–139, (2005).
- [2] Iwaniec, H.: Primes of the type $\varphi(x, y) + A$ where φ is a quadratic form. Acta Arith., 21, 203–234, (1972).
- [3] Iwaniec, H.: Primes represented by quadratic polynomials in two variables. Acta Arith., 24, 435–459, (1974).
- [4] Rosser, J.B., Schoenfeld, L., Approximate formulas for some functions of prime numbers. Illinois J. Math., 6, 64–94, (1962).

Received 29.11.2007

William D. BANKS Department of Mathematics University of Missouri Columbia, MO 65211 USA e-mail: bbanks@math.missouri.edu Ahmet M. GÜLOĞLU

Department of Mathematics University of Missouri Columbia, MO 65211 USA e-mail: ahmet@math.missouri.edu