Values of the Carmichael Function Equal to a Sum of Two Squares

William D. Banks and Ahmet M. Güloğlu

Abstract

In this note, we determine the order of growth of the number of positive integers $n \leqslant x$ such that $\lambda(n)$ is a sum of two square numbers, where $\lambda(n)$ is the Carmichael function.

Key Words: Carmichael function, sum of two squares.

1. Introduction

Let $\lambda(n)$ denote the Carmichael function, whose value at the integer $n \geqslant 1$ is defined to be the exponent of the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{*}$. More explicitly, for every prime power p^{α} we have

$$
\lambda\left(p^{\alpha}\right)= \begin{cases}p^{\alpha-1}(p-1) & \text { if } p \geqslant 3 \text { or } \alpha \leqslant 2 \\ 2^{\alpha-2} & \text { if } p=2 \text { and } \alpha \geqslant 3\end{cases}
$$

and for an arbitrary integer $n \geqslant 2$ with prime factorization $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ we have

$$
\lambda(n)=\operatorname{lcm}\left[\lambda\left(p_{1}^{\alpha_{1}}\right), \ldots, \lambda\left(p_{k}^{\alpha_{k}}\right)\right] .
$$

Clearly, $\lambda(1)=1$.
In this note, we study positive integers n with the property that $\lambda(n)$ is the sum of two square numbers. Our main result is the following:

Theorem 1 Let \mathcal{S} be the set of positive integers m such that $m=a^{2}+b^{2}$ for some integers a and b, and put

$$
S(x)=\#\{n \leqslant x: \lambda(n) \in \mathcal{S}\} .
$$

Then, there are absolute constants $c_{2}>c_{1}>0$ such that the inequalities

$$
\frac{c_{1} x}{(\log x)^{3 / 2}} \leqslant S(x) \leqslant \frac{c_{2} x}{(\log x)^{3 / 2}}
$$

hold for all sufficiently large values of x.

[^0]
BANKS, GÜLOĞLU

Since $\lambda(p)=p-1$ for every prime p, the lower bound of Theorem 1 follows from the work of Iwaniec [2] (see also [3]), who showed that

$$
\#\{p \leqslant x: p-1 \in \mathcal{S}\} \geqslant \frac{c_{1} x}{(\log x)^{3 / 2}}
$$

holds with some absolute constant $c_{1}>0$ for all sufficiently large values of x. Our proof of the upper bound of Theorem 1 (see Section 4) uses ideas from [1], where similar bounds have been obtained for the Euler function $\varphi(n)$ and for the sum of divisors function $\sigma(n)$. One difference in our case is that $\lambda(n)$ is not a multiplicative function, and this fact necessitates an approach using slightly different sets than those considered in [1] and a special treatment of certain intermediate estimates (see, for example, Lemma 3). Fortunately, the contribution to $S(x)$ coming from integers with a fixed number of prime divisors can be controlled sufficiently well to obtain the required upper bound.

2. Notation

In what follows, the letter p always denotes a prime number, and the letter q (with or without subscripts) always denotes an odd prime power. As usual, we denote the set of natural numbers by \mathbb{N}.

For a positive integer n, we use $\omega(n)$ to denote the number of distinct prime divisors of n; in particular, $\omega(1)=0$.

Following [1], for a real number $x>0$ we define $\log x=\max \{\ln x, 2\}$, where $\ln x$ is the natural $\operatorname{logarithm}$, and for every integer $k \geqslant 2$, we use $\log _{k} x$ to denote the k-th iterate of $\log x$. We recall that $\log x$ is submultiplicative:

$$
\begin{equation*}
\log (x y) \leqslant(\log x)(\log y) \quad(x, y>0) \tag{2.1}
\end{equation*}
$$

Throughout the paper, implied constants in the symbols O, \gg and \ll are absolute. We recall that for positive functions f and g, the notations $f=O(g), f \ll g$ and $f \gg g$ are all equivalent to the assertion that $f \leqslant c g$ for some absolute constant $c>0$.

3. Preliminary Estimates

Lemma 1 Let

$$
\begin{aligned}
& \mathcal{A}=\{a \in \mathbb{N}: p \mid a \Rightarrow p \equiv 3 \quad(\bmod 4)\} \\
& \mathcal{B}=\{b \in \mathbb{N}: p \mid b \Rightarrow p \not \equiv 3 \quad(\bmod 4)\}
\end{aligned}
$$

and for any integer $k \geqslant 1$ let \mathcal{Q}^{k} be the set of ordered k-tuples $\left(q_{1}, \ldots, q_{k}\right)$ such that each q_{i} is an odd prime power and $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$ for $i \neq j$. Then, for some absolute constant $C>0$, the bound

$$
\begin{equation*}
\sum_{\substack{\left(q_{1}, \ldots, q_{k}\right) \in \mathcal{Q}^{k} \\ q_{1} \cdots q_{k} \leqslant x \\ \lambda\left(q_{i}\right) \in a_{i} \mathcal{B} \forall i}} \log \left(q_{1} \cdots q_{k}\right) \leqslant k^{3 / 2} C^{k}\left(\prod_{i=1}^{k} \frac{1}{\varphi\left(a_{i}\right)}\right) \frac{x(\log A)^{3 / 2}}{\sqrt{\log x}} \tag{3.2}
\end{equation*}
$$

holds for all $x>0, k \geqslant 1$, and $a_{1}, \ldots, a_{k} \in \mathcal{A}$, where $A=\operatorname{lcm}\left[a_{1}, \ldots, a_{k}\right]$.

BANKS, GÜLOĞLU

Proof. Since the Euler and Carmichael functions agree on odd prime powers, the bound (3.2) can be proved using an inductive argument similar to the proof of [1, Lemma 5]. The only difference in this case is that we need the uniform upper bound

$$
\begin{equation*}
\#\{q \leqslant x: \lambda(q) \in a \mathcal{B}\} \ll \frac{x}{\varphi(a)(\log (x / a))^{3 / 2}} \quad(a \in \mathcal{A}, x>0) . \tag{3.3}
\end{equation*}
$$

Since $\lambda(q) \in a \mathcal{B}$ implies $q>a$, it is enough to prove this for $x>a$. In the proof of [1, Lemma 1] it is shown that

$$
\#\{p \leqslant x: p-1 \in a \mathcal{B}\} \ll \frac{x}{\varphi(a)(\log (x / a))^{3 / 2}},
$$

hence it suffices to consider the contribution to the left side of (3.3) coming from prime powers $q=p^{\alpha}$ with $\alpha>1$.

First, we observe that there is at most one prime power p^{α} such that $\lambda\left(p^{\alpha}\right) \in a \mathcal{B}, p \equiv 3(\bmod 4)$, and $\alpha>1$. Indeed, writing

$$
p^{\alpha-1}(p-1)=a b \quad \text { for some } b \in \mathcal{B},
$$

it is clear that p is the largest prime divisor of a, and that $p^{\alpha-1} \| a$; hence p^{α} is uniquely determined by a. On the other hand, if $p \equiv 1(\bmod 4)$, then $\lambda\left(p^{\alpha}\right) \in a \mathcal{B}$ if and only if $p-1 \in a \mathcal{B}$. Therefore,

$$
\sum_{\substack{p_{\lambda}^{\alpha} \leqslant x, \alpha>1 \\ \lambda\left(p^{\alpha}\right) \in a \mathcal{B}}} 1 \leqslant 1+\sum_{\substack{p \leqslant \sqrt{x} \\ p-1 \in a \mathcal{B}}} \sum_{\alpha \leqslant \log x} 1 \ll 1+\frac{\sqrt{x} \log x}{\varphi(a)(\log (\sqrt{x} / a))^{3 / 2}},
$$

and (3.3) follows. To complete the proof of (3.2), it is a straightforward matter to adapt the proofs of [1, Lemmas 3,4,5], making use of the bound (3.3) in place of [1, Lemma 2] together with the fact that $\log (x / A) \geqslant$ $(\log x) / \log A$ by (2.1); the details are omitted.

Lemma 2 Uniformly for $n \geqslant 1$, we have

$$
\sum_{p \mid n} p^{-1} \ll \log _{3} n .
$$

Proof. Let p_{1}, p_{2}, \ldots be the sequence of consecutive prime numbers, and put $n_{k}=p_{1} \cdots p_{k}$ for each $k \geqslant 1$. By the Prime Number Theorem we have

$$
\log n_{k}=(1+o(1)) p_{k} \quad(k \rightarrow \infty),
$$

and by Mertens' theorem it follows that

$$
\sum_{p \backslash n_{k}} p^{-1}=\sum_{p \leqslant p_{k}} p^{-1}=(1+o(1)) \log _{2} p_{k}=(1+o(1)) \log _{3} n_{k} .
$$

Now, for an arbitrary integer n with $\omega(n)=k$, we have

$$
\sum_{p \mid n} p^{-1} \leqslant \sum_{p \mid n_{k}} p^{-1} \ll \log _{3} n_{k} \leqslant \log _{3} n,
$$

BANKS, GÜLOĞLU

which is the desired bound.

Lemma 3 For some absolute constant $C_{1}>0$, we have the uniform bound:

$$
\begin{equation*}
\sum_{\substack{\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k} \\ \operatorname{lcm}\left[n_{1}, \ldots, n_{k}\right]=n}}\left(\prod_{i=1}^{k} \frac{1}{\varphi\left(n_{i}\right)}\right) \ll \frac{k^{\omega(n)}\left(\log _{2} n\right)^{C_{1} k}}{n} \quad(k, n \in \mathbb{N}) \tag{3.4}
\end{equation*}
$$

Proof. For each fixed k, let $F_{k}(n)$ be the arithmetic function defined by the left side of (3.4). It is easy to see that $F_{k}(n)$ is multiplicative; thus,

$$
F_{k}(1)=1 \quad \text { and } \quad F_{k}(n)=\prod_{p^{\alpha} \| n} F_{k}\left(p^{\alpha}\right) \quad(n \geqslant 2)
$$

For every prime power p^{α}, we have

$$
F_{k}\left(p^{\alpha}\right)=G_{k}\left(p^{\alpha}\right)-G_{k}\left(p^{\alpha-1}\right)
$$

where

$$
G_{k}(m)=\sum_{\substack{\left(d_{1}, \ldots, d_{k}\right) \in \mathbb{N}^{k} \\ \operatorname{lcm}\left[d_{1}, \ldots, d_{k}\right] \mid m}}\left(\prod_{i=1}^{k} \frac{1}{\varphi\left(d_{i}\right)}\right)=\left(\sum_{d \mid m} \frac{1}{\varphi(d)}\right)^{k} \quad(m \in \mathbb{N})
$$

Hence, writing

$$
g=\frac{1}{\varphi\left(p^{\alpha}\right)} \quad \text { and } \quad h=\sum_{d \mid p^{\alpha-1}} \frac{1}{\varphi(d)}
$$

we have

$$
F_{k}\left(p^{\alpha}\right)=(g+h)^{k}-h^{k}=k \int_{h}^{g+h} t^{k-1} d t \leqslant k g(g+h)^{k-1}
$$

Also,

$$
g+h=\sum_{d \mid p^{\alpha}} \frac{1}{\varphi(d)}=1+\frac{p^{\alpha+1}-p}{p^{\alpha}(p-1)^{2}}=1+O\left(p^{-1}\right)
$$

Putting everything together, we derive that

$$
\begin{aligned}
\ln F_{k}(n) & \leqslant \sum_{p^{\alpha} \| n} \ln \left(\frac{k}{\varphi\left(p^{\alpha}\right)}\left(1+O\left(p^{-1}\right)\right)^{k-1}\right) \\
& =\omega(n) \ln k-\ln \varphi(n)+O\left(k \sum_{p \mid n} p^{-1}\right)
\end{aligned}
$$

Using Lemma 2 together with the lower bound

$$
\varphi(n) \gg \frac{n}{\log _{2} n} \quad(n \in \mathbb{N})
$$

BANKS, GÜLOĞLU

we obtain the stated result.

Lemma 4 The following bound holds:

$$
\sum_{k=1}^{\infty} \frac{k^{n}}{k!} \ll n^{n} \quad(n \in \mathbb{N})
$$

Proof. If n is large, then

$$
\sum_{k>n} \frac{k^{n}}{k!}<\sum_{k>n} \frac{n^{k}}{k!}<\sum_{k=0}^{\infty} \frac{n^{k}}{k!}=e^{n}
$$

Since $k!\sim \sqrt{2 \pi} k^{k+1 / 2} e^{-k}$ as $k \rightarrow \infty$, we also have

$$
\sum_{k=1}^{n} \frac{k^{n}}{k!} \ll \sum_{k=1}^{n} \frac{k^{n} e^{k}}{k^{k}} \leqslant \frac{n \kappa^{n} e^{\kappa}}{\kappa^{\kappa}}
$$

where κ is the real number at which the function $f(x)=x^{n} e^{x} x^{-x}$ takes its maximum value. It is easy to check that κ satisfies the equation $\kappa \ln \kappa=n$, hence $\kappa \sim n / \log n$ as $n \rightarrow \infty$, and we derive the estimate

$$
\frac{n \kappa^{n} e^{\kappa}}{\kappa^{\kappa}}=\exp \left(n \log n-n \log _{2} n+O(n)\right)
$$

The result follows.

Lemma 5 The following bound holds:

$$
\omega(n) \leqslant \frac{\log n}{\log _{2} n}\left(1+O\left(\frac{1}{\log _{2} n}\right)\right) \quad(n \in \mathbb{N})
$$

Proof. As in the proof of Lemma 2, it suffices to prove this bound for integers of the form $n_{k}=p_{1} \cdots p_{k}$, where p_{1}, p_{2}, \ldots is the sequence of consecutive prime numbers. Using [4, Theorem 4] we see that

$$
\log n_{k}=\sum_{p \leqslant p_{k}} \log p=p_{k}\left(1+O\left(\frac{1}{\log p_{k}}\right)\right),
$$

and by [4, Theorem 3] we have

$$
p_{k}=k\left(\log k+\log _{2} k\right)+O(k)
$$

therefore,

$$
\log n_{k}=k\left(\log k+\log _{2} k\right)\left(1+O\left(\frac{1}{\log k}\right)\right)
$$

and

$$
\log \log n_{k}=\left(\log k+\log _{2} k\right)\left(1+O\left(\frac{\log _{2} k}{(\log k)^{2}}\right)\right)
$$

BANKS, GÜLOĞLU

Since $\log k \sim \log _{2} n_{k}$ as $k \rightarrow \infty$, it follows that

$$
\omega\left(n_{k}\right)=k=\frac{\log n_{k}}{\log _{2} n_{k}}\left(1+O\left(\frac{1}{\log _{2} n_{k}}\right)\right) .
$$

This completes the proof.

4. Proof of the Upper Bound

Let \mathcal{A}, \mathcal{B} and \mathcal{Q}^{k} be defined as in Lemma 1. For every $a \in \mathcal{A}$, let

$$
\mathcal{N}(a ; x)=\{\operatorname{odd} n \leqslant x: \lambda(n) \in a \mathcal{B}\} \quad(x \geqslant 1)
$$

Our first goal is to establish an upper bound on sums of the form

$$
L_{k}(a ; x)=\sum_{\substack{n \in \mathcal{N}(a ; x) \\ \omega(n)=k}} \log n \quad(k \in \mathbb{N}, a \in \mathcal{A}, x \geqslant 1)
$$

Factoring each n as a product of odd prime powers, we have

$$
L_{k}(a ; x)=\frac{1}{k!} \sum_{\substack{\left(q_{1}, \ldots, q_{k}\right) \in \mathcal{Q}^{k} \\ q_{1} \cdots q_{k} \in \mathcal{N}(a ; x)}} \log \left(q_{1} \cdots q_{k}\right)
$$

Every k-tuple $\left(q_{1}, \ldots, q_{k}\right) \in \mathcal{Q}^{k}$ determines a unique k-tuple $\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{A}^{k}$ such that

$$
\lambda\left(q_{i}\right) \in a_{i} \mathcal{B} \quad(i=1, \ldots, k)
$$

Moreover, since $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$ for $i \neq j$, the condition $\lambda\left(q_{1} \cdots q_{k}\right) \in a \mathcal{B}$ is equivalent to $\operatorname{lcm}\left[a_{1}, \ldots, a_{k}\right]=a$. Therefore, the preceding sum can be expressed in the form

$$
L_{k}(a ; x)=\frac{1}{k!} \sum_{\begin{array}{c}
\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{A}^{k} \\
\operatorname{lcm}\left[a_{1}, \ldots, a_{k}\right]=a
\end{array}} \sum_{\substack{\left(q_{1}, \ldots, q_{k}\right) \in \mathcal{Q}^{k} \\
q_{1} \cdots q_{k} \leqslant x^{2} \\
\lambda\left(q_{i}\right) \in a_{i} \mathcal{B} \forall i}} \log \left(q_{1} \cdots q_{k}\right) .
$$

Inserting the bounds of Lemmas 1 and 3, we derive that

$$
\begin{equation*}
L_{k}(a ; x) \ll \frac{k^{\omega(a)+3 / 2}\left(C\left(\log _{2} a\right)^{C_{1}}\right)^{k}}{k!} \frac{(\log a)^{3 / 2}}{a} \frac{x}{\sqrt{\log x}} \tag{4.5}
\end{equation*}
$$

Next, we need an upper bound on sums of the form

$$
s(a)=\sum_{k=1}^{\infty} \frac{k^{\omega(a)+3 / 2}\left(C\left(\log _{2} a\right)^{C_{1}}\right)^{k}}{k!}
$$

BANKS, GÜLOĞLU

in the special case that a is a square number. For our purposes below, the following bound suffices:

$$
\begin{equation*}
s(a) \ll \frac{\sqrt{a}}{(\log a)^{7 / 2}} . \tag{4.6}
\end{equation*}
$$

To prove (4.6), we begin by applying Cauchy's inequality to the sum $s(a)$, obtaining

$$
\begin{equation*}
s(a)^{2} \leqslant \exp \left(C^{2}\left(\log _{2} a\right)^{2 C_{1}}\right) \sum_{k=1}^{\infty} \frac{k^{2 \omega(a)+3}}{k!} \tag{4.7}
\end{equation*}
$$

Since a is a square number, Lemma 5 implies that

$$
2 \omega(a)+3=2 \omega(\sqrt{a})+3 \leqslant \frac{\log a}{\log _{2} a}\left(1+O\left(\frac{1}{\log _{2} a}\right)\right) .
$$

Setting $n=2 \omega(a)+3$, it follows that

$$
n \log n \leqslant \frac{\log a}{\log _{2} a}\left(\log _{2} a-\log _{3} a+O(1)\right)
$$

hence by Lemma 4 we have

$$
\sum_{k=1}^{\infty} \frac{k^{2 \omega(a)+3}}{k!}=\sum_{k=1}^{\infty} \frac{k^{n}}{k!} \ll \exp (n \log n) \leqslant a \exp \left(-\frac{\log a}{\log _{2} a}\left(\log _{3} a+O(1)\right)\right)
$$

Inserting this bound into (4.7) and extracting a square-root, we immediately obtain (4.6) for all square numbers $a \in \mathcal{A}$.

Using (4.5) and (4.6), we now derive that

$$
\sum_{n \in \mathcal{N}(a ; x)} \log n \leqslant \sum_{k=1}^{\infty} L_{k}(a, x) \ll \frac{s(a)(\log a)^{3 / 2}}{a} \frac{x}{\sqrt{\log x}} \ll \frac{1}{\sqrt{a}(\log a)^{2}} \frac{x}{\sqrt{\log x}}
$$

Let

$$
\mathcal{L}(x)=\{\operatorname{odd} n \leqslant x: \lambda(n) \in \mathcal{S}\} \quad(x \geqslant 1)
$$

where \mathcal{S} is defined as in the statement of Theorem 1 . Since \mathcal{S} is the disjoint union:

$$
\mathcal{S}=\bigcup_{d \in \mathcal{A}}^{\bullet} d^{2} \mathcal{B}
$$

we have

$$
\sum_{n \in \mathcal{L}(x)} \log n=\sum_{d=1}^{\infty} \sum_{n \in \mathcal{N}\left(d^{2} ; x\right)} \log n \ll \frac{x}{\sqrt{\log x}} \sum_{d=1}^{\infty} \frac{1}{d(\log d)^{2}} \ll \frac{x}{\sqrt{\log x}}
$$

By partial summation, it follows that

$$
\# \mathcal{L}(x) \ll \frac{x}{(\log x)^{3 / 2}}
$$

Finally, for an odd integer n, we have $\lambda(n) \in \mathcal{S}$ if and only if $\lambda\left(2^{\alpha} n\right) \in \mathcal{S}$ for all $\alpha \geqslant 0$; therefore,

$$
\begin{aligned}
S(x) & =\#\{n \leqslant x: \lambda(n) \in \mathcal{S}\}=\sum_{\alpha \geqslant 0} \# \mathcal{L}\left(x / 2^{\alpha}\right) \\
& \ll \sum_{\alpha \geqslant 0} \frac{x}{2^{\alpha}\left(\log \left(x / 2^{\alpha}\right)\right)^{3 / 2}} \leqslant \frac{x}{(\log x)^{3 / 2}} \sum_{\alpha \geqslant 0} \frac{\left(\log 2^{\alpha}\right)^{3 / 2}}{2^{\alpha}} \ll \frac{x}{(\log x)^{3 / 2}},
\end{aligned}
$$

which is the required upper bound for $S(x)$.

Acknowledgements

The authors thank Florian Luca, Igor Shparlinski and the referee for helpful comments which led to several improvements in the exposition of the paper.

References

[1] Banks, W.D., Luca, F., Saidak, F., Shparlinski, I.E.: Values of arithmetical functions equal to a sum of two squares. Q. J. Math. 56, no. 2, 123-139, (2005).
[2] Iwaniec, H.: Primes of the type $\varphi(x, y)+A$ where φ is a quadratic form. Acta Arith., 21, 203-234, (1972).
[3] Iwaniec, H.: Primes represented by quadratic polynomials in two variables. Acta Arith., 24, 435-459, (1974).
[4] Rosser, J.B., Schoenfeld, L., Approximate formulas for some functions of prime numbers. Illinois J. Math., 6, 64-94, (1962).

William D. BANKS
Received 29.11.2007
Department of Mathematics
University of Missouri
Columbia, MO 65211 USA
e-mail: bbanks@math.missouri.edu
Ahmet M. GÜLOĞLU
Department of Mathematics
University of Missouri
Columbia, MO 65211 USA
e-mail: ahmet@math.missouri.edu

[^0]: AMS Mathematics Subject Classification: 11N37.

