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Involving Some Special Functions
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Abstract

In the present paper, we introduce a new sequence of linear positive operators with the help of generating

functions. We obtain some Korovkin type approximation properties for these operators and compute rates

of convergence by means of the first and second order modulus of continuities and Peetre’s K -functional. In

order to obtain explicit expressions for the first and second moment of our operators, we obtain a functional

differential equation including our operators. Furthermore, we deal with a modification of our operators

converging to integral of function f on the interval (0, 1).
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1. Introduction

The study of the Korovkin-Bohman type approximation theory is a well established area of active research
(see, e.g., [4, 6, 14]). Especially, it has connections not only with classical approximation theory, but also with
other branches of mathematics, such as functional analysis, harmonic analysis, measure theory, probability
theory.

Cheney and Sharma [8], first introduced a new linear positive operators with the help of generating
function expansion of Laguerre polynomial. Recently, two different generalizations of linear positive operators
involving some generating functions have been introduced, and Korovkin type error estimates and their rates
of convergences have been obtained (see [3, 4]).

We now turn to introducing our operators used in this paper.

Consider a new sequence of linear positive operators for x ∈ [0, a] , a < 1, t ∈ [0, b], b ∈ R
+,

(Lnf)(x, t) =
1

Fn(x, t)

∞∑
k=0

f(
k

cn + k − 1
)g(n)

k (t)xk, (1.1)

2000 AMS Mathematics Subject Classification: Primary 41A25, 41A30, 41A36, Secondary 33C45, 33C50.

41



DOĞRU, ERKUŞ-DUMAN

where g
(n)
k (t) = dn

dtn gk(t) and {cn} is a sequence satisfying n ≤ cn. Let {Fn(x, t)} be a generating function for

the sequence of functions {g(n)
k (t)}k∈N0 (N0 = N ∪ {0}) satisfying the equality

Fn(x, t) = (1 − x)−cnψn

( −4xt

(1 − x)2

)
=

∞∑
k=0

g
(n)
k (t)xk, (1.2)

where

ψn(u) =
∞∑

k=0

γn,kuk , γn,0 �= 0.

We also assume that following conditions are satisfied.

1◦ Fn+1(x, t) = p(x)Fn(x, t) , |p(x)| < M, x ∈ [0, a],

2◦ (cn + k − 1) g
(n)
k−1(t) − kg

(n)
k (t) = −t(g(n+1)

k (t) + g
(n+1)
k−1 (t)); g

(n)
k (t) = 0 for k ∈ Z

−,

3◦ ψn

(
−4xt

(1−x)2

)
g
(n)
k (t) ≥ 0 (k = 0, 1, 2, ...) for all x ∈ [0, a] and t ∈ [0, b].

Remarks: If we choose cn = n + 1, t = 0, γn,0 = 1 and g
(n)
k (0) =

(
n+k

k

)
, then we have the Bernstein

power series (see [8])

(Mnf)(x) = (1 − x)n+1
∞∑

ν=0

f

(
ν

ν + n

)(
n + v

v

)
xν .

Let cn = an − 1 and

ψn

( −4xt

(1 − x)2

)
= 2F1

(
an

2
,

an − 1
2

;− ;
−4xt

(1 − x)2

)
.

Since

2F1

(
an

2
,

an − 1
2

;− ;
−4xt

(1 − x)2

)
(1 − x)an−1

=
∞∑

k=0

(an − 1)k

k!
yk(−bnt; an, bn),

one can easily get a new operators as follows

(Ynf)(x, t) =
(1 − x)an−1

2F1

(
an

2
,

an − 1
2

;− ;
−4xt

(1 − x)2

) ×
∞∑

k=0

f(
k

an + k − 2
)
(an − 1)k yk(−bnt; an, bn)

k!
xk,

where

(a)0 = 1, (a)k =
k−1∏
i=0

(a + i) (k ∈ N, a ∈ R)

and

2F1(a, b; c; x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
(|x| < 1)
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are known as Pochhammer symbol and hypergeometric function, respectively, and yk(−bnt; an, bn) are called
as generalized Bessel polynomials satisfying the following recurrence relation (see [11, Chapter 2])

−bnt
(an − 1)k

k!
y′k(−bnt; an, bn) − k

(an − 1)k

k!
yk(−bnt; an, bn)

= −(an + k − 2)
(an − 1)k−1

(k − 1)!
yk−1(−bnt; an, bn) + bnt

(an − 1)k−1

(k − 1)!
y′k−1(−bnt; an, bn).

By replacing −bnt by t and using (a)k = (a+k−1)(a)k−1, after some simple calculations, we have the following
recurrence relation (see, for instance, [19, Theorem 48, p.137]):

t
[
(an + k − 2)y′k (t; an, bn) + k y′k−1 (t; an, bn)

]
= (an + k − 2) k [ yk(t; an, bn) − yk−1(t; an, bn)] .

Now choose cn = 1 + αn + βn and

ψn(
−4xt

(1 − x)2
) = 2F1

(
1 + αn + βn

2
,

2 + αn + βn

2
; 1 + αn ;

−4xt

(1 − x)2

)
.

Since

1
(1 − x)1+αn+βn

2F1

(
1 + αn + βn

2
,

2 + αn + βn

2
; 1 + αn ;

−4xt

(1 − x)2

)

=
∞∑

k=0

(1 + αn + βn)k

(1 + αn)k
P

(αn,βn)
k (1 − 2t),

our operators turn out to be the new operators

(Jnf)(x, t) =
(1 − x)1+αn+βn

2F1

(
1 + αn + βn

2
,

2 + αn + βn

2
; 1 + αn ;

−4xt

(1 − x)2

)

×
∞∑

k=0

f

(
k

αn + βn + k

)
(1 + αn + βn)k P

(αn,βn)
k (1 − 2t)

(1 + αn)k
xk,

where P
(αn,βn)
k (1 − 2t) are known as Jacobi polynomials which satisfy the recurrence relation

−2t
(1 + αn + βn)k

(1 + αn)k

d

dt
P

(αn,βn)
k (1 − 2t) − k

(1 + αn + βn)k

(1 + αn)k
P

(αn,βn)
k (1 − 2t)

= −(1 + αn + βn − 1)
(1 + αn + βn)k−1

(1 + αn)k−1
P

(αn,βn)
k−1 (1 − 2t) + 2t

(1 + αn + βn)k−1

(1 + αn)k−1

d

dt
P

(αn,βn)
k−1 (1 − 2t).

Replacing
1 − t

2
by t, we have the following recurrence relation for Jacobi polynomials (see [19, p. 262])

(t − 1)
[
(αn + βn + k)

d

dt
P

(αn,βn)
k (t) + (αn + k)

d

dt
P

(αn,βn)
k−1 (t)

]

= (αn + βn + k)
[
kP

(αn,βn)
k (t) − (αn + k)P (αn,βn)

k−1 (t)
]
.
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We know that if αn = βn , then the Jacobi polynomials P
(αn,αn)
k (t) are called as ultra spherical polynomials.

In this case, our operators are written including ultra spherical polynomials as

(Unf)(x, t) =
(1 − x)1+2αn

2F1

(
1 + 2αn

2
, 1 + αn ; 1 + αn ;

−4xt

(1 − x)2

)

×
∞∑

k=0

f

(
k

2αn + k

)
(1 + 2αn)k P

(αn,αn)
k (1 − 2t)

(1 + αn)k
xk.

We also know that the Gegenbauer polynomials has the form (see [19, p. 277])

Cn
k (t) =

(2n)kP
(n−1

2 , n− 1
2 )

k (t)
(n + 1

2
)k

,

where P
(n−1

2 , n− 1
2 )

k (t) are ultra spherical polynomials. Thus, choosing αn = βn = n− 1
2
, then we obtain another

new approximating operators including the Gegenbauer polynomials as follows:

(Gnf)(x, t) =
(1 − x)2n

2F1

(
n , n +

1
2

; n +
1
2

;
−4xt

(1 − x)2

) ∞∑
k=0

f

(
k

2n + k − 1

)
Cn

k (1 − 2t)xk.

In a similar manner, our operators Ln generate many new generalization of positive linear operators but we will
omit them. Therefore the approximation properties obtained in the present paper are valid in a large spectrum
of these type operators, including the some well-known special functions.

In the second part, using similar techniques given by Müller in [17] (see also [1, 3, 8, 9]), we obtain
Korovkin type error estimates for our operators Ln. The third section addresses some problems concerning
rates of convergence by means of first and second order modulus of continuity and Peetre’s K -functional. In
the fourth section, in order to obtain explicit expression for the central moments of our operators Ln, we give a
functional differential equation. Finally, in the last part, we make a modification of our operators and investigate
the rate of pointwise convergence for this modification.

2. Approximation of Ln

In this section, we approximate to continuous functions by means of the sequence of positive linear
operators (1.1). Throughout the paper we use the test functions

ei(x) = xi, i = 0, 1, 2.

Theorem 2.1 If f is continuous on [0, a], a < 1 , then (Lnf)(x, t0) converges to f(x) uniformly on [0, a]
for each fixed value of t0 ∈ [0, b].

Proof. Because of the Korovkin-Bohman theorem, it will suffice to prove that (Lnei)(x, t0) tends to ei(x)
as n → ∞ for each i = 0, 1, 2. To check these conditions, we will use the similar technique in [17] . From (1.2)
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it is clear that (Lne0)(x, t0) ≡ e0(x) = 1. By using 2◦ , we have

(Lne1)(x, t0) =
1

Fn(x, t0)

∞∑
k=0

k
cn+k−1g

(n)
k (t0)xk

=
x

Fn(x, t0)

∞∑
k=1

{
g
(n)
k−1(t0) +

t0
cn + k − 1

(g(n+1)
k (t0) + g

(n+1)
k−1 (t0))

}
xk−1.

(2.1)

Using 3◦, we get

xt0
Fn(x, t0)

∞∑
k=0

1
cn + k

(g(n+1)
k+1 (t0) + g

(n+1)
k (t0))xk ≥ 0.

From (2.1),

(Lne1)(x, t0) ≥ x (2.2)

holds. Since n ≤ cn, using
1
n

≥ 1
cn + k

in (2.1), we have

(Lne1)(x, t0) ≤ x +
1
n

xt0
Fn(x, t0)

∞∑
k=0

(g(n+1)
k+1 (t0) + g

(n+1)
k (t0))xk

= x +
(1 + x)p(x)t0

n
.

From the above inequality and (2.2), it is obvious that

‖(Lne1)(·, t0) − e1(·)‖C[0,a] ≤
bM(1 + a)

n
. (2.3)

Finally, we have

(Lne2)(x, t0) =
1

Fn(x, t0)

∞∑
k=1

k2

(cn + k − 1)2
g
(n)
k (t0)xk.

Using the recurrence formula 2◦ twice, we obtain

(
k

cn + k − 1

)2

g
(n)
k (t0) =

cn + k − 2
cn + k − 1

g
(n)
k−2(t0) +

t0
cn + k − 1

(g(n+1)
k−1 (t0)

+g
(n+1)
k−2 (t0)) +

1
cn + k − 1

g
(n)
k−1(t0)

+
kt0

(cn + k − 1)2
(g(n+1)

k (t0) + g
(n+1)
k−1 (t0)).
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So, we may write that

(Lne2)(x, t0) − e2(x) =

(
1

Fn(x, t0)

∞∑
k=2

cn + k − 2
cn + k − 1

g
(n)
k−2(t0)x

k − x2

)

+
t0

Fn(x, t0)

∞∑
k=1

1
cn + k − 1

(g(n+1)
k−1 (t0) + g

(n+1)
k−2 (t0))xk

+
1

Fn(x, t0)

∞∑
k=1

1
cn + k − 1

g
(n)
k−1(t0)x

k

+
t0

Fn(x, t0)

∞∑
k=0

k

(cn + k − 1)2
g
(n+1)
k (t0)xk

+
t0

Fn(x, t0)

∞∑
k=1

k

(cn + k − 1)2
g
(n+1)
k−1 (t0)xk,

and hence
(Lne2)(x, t0) − e2(x) := K1 + K2 + K3 + K4 + K5. (2.4)

By (1.2),

K1 =
x2

Fn(x, t0)

∞∑
k=0

(
cn + k

cn + k + 1
− 1

)
g
(n)
k (t0)xk.

Since
−1

cn + k + 1
< 0, we can write

K1 < 0. (2.5)

Because of
1

cn + k + 1
<

1
cn + k

≤ 1
n

, we have

K2 ≤ x(1 + x)t0p(x)
n

(2.6)

and

K3 ≤ x

n
. (2.7)

Finally, using
k

(cn + k − 1)2
≤ 2

n
, we get

K4 ≤ 2t0p(x)
n

(2.8)

and

K5 ≤ 2xt0p(x)
n

. (2.9)

Hence, by (2.5) − (2.9) in (2.4), we conclude that

(Lns2)(x, t0) − x2 ≤ x + t0p(x)(1 + x)(2 + x)
n

. (2.10)
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On the other hand, using the expression

e2(s) = s2 = (s − x)2 + 2xs− x2,

we see that

(Lne2)(x, t0) − e2(x) = (Ln(s − x)2)(x, t0) + 2x(Ln(s − x))(x, t0).

By (2.2) and positivity of Ln ,

(Lne2)(x, t0) − e2(x) ≥ 0. (2.11)

Because of (2.10) and (2.11), we have

‖(Lne2)(·, t0) − e2(·)‖C[0,a] ≤
1
n

(a + bM(1 + a)(2 + a)) (2.12)

which gives the proof. �

3. Rates of Convergence

In this section, we compute the rates of convergence of the sequence {Ln} to the function f by the
means of the first and second modulus of continuities and Peetre’s K -functional.

The modulus of continuity of f denoted by ω(f, δ), is defined to be

ω(f, δ) = sup
|s−x|<δ; s,x∈[0,a]

|f(s) − f(x)| .

It is well-known that necessary and sufficient condition for a function f ∈ C[0, a] is

lim
δ→0

ω(f, δ) = 0.

It is also well-known that for any δ > 0 we have

|f(s) − f(x)| ≤ ω(f, δ)
( |s − x|

δ
+ 1

)
. (3.1)

The next result gives the rate of convergence of the sequence {Ln} to the function f (for all f ∈
C[0, a] ) by means of the first modulus of continuity.

Theorem 3.1 If f ∈ C[0, a] , then for all x ∈ [0, a] and fixed t0 ∈ [0, b], we have

‖(Lnf)(·, t0) − f(·)‖C[0,a] ≤ (1 +
√

a + (1 + a)(2 + 3a)bM)ω
(

f,
1√
n

)
. (3.2)
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Proof. For the proof, we use similar technique of Popoviciu [18]. By linearity and monotonicity of Ln and
(3.1), we obtain

|(Lnf)(x, t0) − f(x)| ≤ ω (f, δn)

{
1 +

1
δn

[
1

Fn(x, t0)

∞∑
k=0

∣∣∣∣ k

cn + k − 1
− x

∣∣∣∣ g(n)
k (t0)xk

]}
.

By the Cauchy-Schwarz inequality, we have

‖(Lnf)(·, t0) − f(·)‖C[0,a] ≤ ω (f, δn)

⎡
⎣1 +

1
δn

(
sup

x∈[0,a]

ϕn,2(x, t0)

)1/2
⎤
⎦ , (3.3)

where
ϕn,2(x, t0) = (Ln(s − x)2)(x, t0) (3.4)

is the second central moment of Ln. For each x ∈ [0, a] , we can write

ϕn,2(x, t0) ≤
∣∣(Lns2)(x, t0) − x2

∣∣+ 2x |(Lns)(x, t0) − x| .

So, by (2.3) and (2.12) we get

‖ϕn,2(., t0)‖C[0,a] ≤
a + (1 + a)(2 + 3a)bM

n
. (3.5)

If we use (3.5) in (3.3) , we obtain the desired result. �

In order to estimate a rate of convergence via second modulus of continuity, we benefit from the Peetre’s
K -functional. Let us define the following space and norm:

C2[0, a] := The space of the functions f of which f, f ′, f ′′ ∈ C[0, a] .

We define the norm in the space C2[0, a]

‖f‖C2[0,a] := ‖f‖C[0,a] + ‖f ′‖C[0,a] + ‖f ′′‖C[0,a]

and the following Peetre’s K -functional [6] (see also [7]) is

K (f, δn) = inf
h∈C2 [0,a]

{
‖f − h‖C[0,a] + δn ‖h‖C2[0,a]

}
. (3.6)

Theorem 3.2 If f ∈ C[0, a], then for each fixed value of t0 ∈ [0, b], we have

‖(Lnf)(·, t0) − f(·)‖C[0,a] ≤ C K(f ;
1
n

), (3.7)

where

C = max
{

2,
1
2

(a + (1 + a)(4 + 3a)bM)
}

. (3.8)
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Proof. If h ∈ C2[0, a] , then we have

h(s) − h(x) = h′(x)(s − x) +

s∫
x

h′′(u)(s − u)du. (3.9)

Applying the operator Ln to (3.9), we get

|(Lnh)(x, t0) − h(x)| ≤
[
ϕn,1(x, t0) +

1
2
ϕn,2(x, t0)

]
‖h‖C2[0,a] . (3.10)

On the other hand, since Ln is a linear operator, we have

|(Lnf)(x, t0) − f(x)| ≤ |(Ln(f − h)(x, t0)|+ |f(x) − h(x)| + |(Lnh)(x, t0) − h(x)| .

Thus, by using Ln(1; x) ≡ 1 and (3.10) , we can write that

‖(Lnf)(·, t0) − f(·)‖C[0,a] ≤ 2 ‖f − h‖C[0,a] +
[
‖ϕn,1(·, t0)‖C[0,a] +

1
2
‖ϕn,2(., t0)‖C[0,a]

]
‖h‖C2[0,a] (3.11)

If we use (2.3) and (3.5) in (3.11), we easily see that

‖(Lnf)(·, t0) − f(·)‖C[0,b] ≤ 2 ‖f − h‖C[0,a] +
1
2n

(a + (1 + a)(4 + 3a)bM) ‖h‖C2[0,b] . (3.12)

Choosing C as in (3.8) and taking infimum over g ∈ C2 [0, a] from the second hand-side of (3.12), we obtain
(3.7) . �

Let f ∈ C[0, A], the second order modulus of continuity of f denoted by ω2(f, δ) is defined as

ω2(f, δ) = sup

{
|f(x + h) − 2f(x) + f(x − h)| ;

(x ∓ h) ∈ [0, 1], |h| ≤ δ

}
.

This modulus is also known as Zygmund modulus for the function f. The following theorem estimates the rate
of convergence of the sequence {Ln} to the function f via Zygmund modulus.

Theorem 3.3 If f ∈ C [0, a] , then for each 0 ≤ δ ≤ 1 and for each fixed value of t0 ∈ [0, b], we have

‖(Lnf)(·, t0) − f(·)‖C[0,a] ≤ Cf max
{

ω2

(
f,

1√
n

)
,

1
n

}
. (3.13)

Proof. By using the inequality (see [7, Proposition 3.4.1])

K(f, δ) ≤ C1

[
ω2(f,

√
δ) + min{1, δ} ‖f‖C[0,a]

]
in (3.6), and choosing δ = 1

n
, we have

‖(Lnf)(·, t0) − f(·)‖C[0,a] ≤ C C1

[
ω2

(
f,

1√
n

)
+

1
n
‖f‖C[0,a]

]
, (3.14)
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where C is defined in (3.8) . If
1
n
≤ ω2

(
f,

1√
n

)
then from (3.14), we get

‖(Lnf)(·, t0) − f(·)‖C[0,a] ≤ CC1

[
1 + ‖f‖C[0,a]

]
ω2

(
f,

1√
n

)
. (3.15)

Otherwise, if ω2

(
f,

1√
n

)
<

1
n

, then, from (3.14) ,

‖(Lnf)(·, t0) − f(·)‖C[0,a] ≤ CC1

[
1 + ‖f‖C[0,a]

] 1
n

(3.16)

holds. Now, choosing C C1

[
1 + ‖f‖C[0,a]

]
= Cf in (3.15) and (3.16), we immediately obtain (3.13). �

4. An Application to Differential Equations

The explicit expressions of the moments can easily compute for a lot of well-known positive linear
operators. Some of them are Bernstein polynomials, Bernstein Chlodowsky polynomials, Szasz-Mirakjan and
Baskakov operators and their generalization as Gadjiev-Ibragimov operators [10]. But these computations may
be difficult for some operators. For example, the second moment of Meyer-König and Zeller operators [16] was
not obtained in an explicit form by Müller [17] , Sikkema [20] , Lupaş and Müller [15] , Becker and Nessel [5]
respectively. Similar estimations are given for Bleimann, Butzer and Hahn operators in [6] .

Recently, Alkemade [2] obtained a functional differential equation so that Meyer-König and Zeller opera-
tors are particular solutions of it. He also obtained an explicit formula for the second moment of Meyer-König
and Zeller operators with the help of this functional differential equation. In this part, we will obtain a functional
differential equation including our operators.

First, in addition to conditions 10 − 30, let us assume that the condition

4◦
∂

∂x
ψn

( −4xt

(1 − x)2

)
= Kn(x, t)ψn

( −4xt

(1 − x)2

)

holds.

Theorem 4.1 Under the conditions 10 − 40, (Lnf)(x, t0) satisfies the differential equation

x
d

dx
(Lnf)(x, t0) = −x

(
cn

1 − x
+ Kn(x, t0)

)
(Lnf)(x, t0) + (cn − 1)(Lnf h)(x, t0). (4.1)

for each fixed t0 ∈ [0, b] and f ∈ C[0, a] , where h(s) =
s

1 − s
.

Proof. From 40 , we have

d

dx
Fn(x, t0) =

(
cn

1 − x
+ Kn(x, t0)

)
Fn(x, t0). (4.2)
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We can differentiate the power series on the right-hand side of (1.1) term by term in [0, a] since it converges on
[0, a]. Thus, we have

d

dx
(Lnf)(x, t0) = −

(
cn

1 − x
+ Kn(x, t0)

)
(Lnf)(x, t0) +

1
Fn(x, t)

∞∑
k=1

f

(
k

cn + k − 1

)
g
(n)
k (t)kxk−1.

Using k = (cn − 1)h
(

k

cn + k − 1

)
in this equation, we obtain the desired result. �

Note that (4.1) is not a differential equation but rather a functional differential equation. In the light of
Theorem 4.1, using the similar method given by Alkemade [2] , if we have explicit expressions of {Fn(x, t)} and{

g
(n)
k (t)

}
, then we can obtain explicit expressions for first and second moment of Ln.

5. A Modification of Ln

Let us recall the following quadrature formula of the mid-point

∫ 1

0

f(x)dx =
1
n

n∑
i=1

f((2i − 1)/2n) + Rn(f),

where Rn(f) is remainder term. Error of this remainder term, obtained by Korneichuk in [13] (see also [12]), is

Rn(f) =
∫ 1

0

ω(f,
u

2n
)du,

where ω(f,
u

2n
) denotes modulus of continuity of the function f .

Now consider a modification of the sequence {Ln} as

(L∗
nf)(x, t) =

1
Fn(x, t)

∞∑
k=0

1
cn + k − 1

cn+k−1∑
i=1

f

(
2i − 1

2(cn + k − 1)

)
g
(n)
k (t)xk, (5.1)

where cn ∈ N .

Suppose that R∗
n(f) is remainder term of the following quadrature formula at the mid-point:

1∫
0

f(x)dx =
1

cn + k − 1

cn+k−1∑
i=1

f

(
2i − 1

2(cn + k − 1)

)
+ R∗

n(f). (5.2)

We first obtain the error estimate of remainder term of the formula (5.2) via the Zygmund modulus.

Lemma 5.1 If f is integrable function on (0, 1) , then we have

|R∗
n(f)| ≤ 1

n
ω2(f,

1
n

). (5.3)
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Proof. For the reminder term in (5.2), we can write

|R∗
n(f)| =

∣∣∣∣∣∣∣∣
cn+k−1∑

i=1

i
cn+k−1∫
i−1

cn+k−1

[
f(x) − f

(
2i − 1

2(cn + k − 1)

)]
dx

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
cn+k−1∑

i=1

⎡
⎢⎢⎣

2i−1
2(cn+k−1)∫

i−1
cn+k−1

[
f(x) − f

(
2i − 1

2(cn + k − 1)

)]
dx

+

i
cn+k−1∫
2i−1

2(cn+k−1)

[
f(x) − f

(
2i − 1

2(cn + k − 1)

)]
dx

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
cn+k−1∑

i=1

(I1 + I2)

∣∣∣∣∣ .

With the substitution x = 2i−s−1
2(cn+k−1)

in the integral I1 and x = 2i+s−1
2(cn+k−1)

in the integral I2, we have

|R∗
n(f)| ≤ 1

2(cn + k − 1)

cn+k−1∑
i=1

1∫
0

∣∣∣∣f
(

2i − s − 1
2(cn + k − 1)

)
− 2f

(
2i − 1

2(cn + k − 1)

)
+ f

(
2i + s − 1

2(cn + k − 1)

)∣∣∣∣ ds. (5.4)

By using ω2(f, δn) for δn =
s

2(cn + k − 1)
in (5.4) , we obtain

|R∗
n(f)| ≤ 1

2(cn + k − 1)

1∫
0

ω2(f,
s

2(cn + k − 1)
)ds.

Since 2(cn + k − 1) ≥ n, the proof is completed. �

As a result of this lemma, we have this corollary:

Corollary 5.2 If f is integrable function on (0, 1) , then we have

∣∣∣∣∣∣(L∗
nf)(x0, t0) −

1∫
0

f(u)du

∣∣∣∣∣∣ ≤
1
n

ω2

(
f,

1
n

)

for each fixed x0 ∈ (0, 1) and t0 ∈ [0, b].
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