тüвітак

Stability of an Euler-Lagrange type Cubic Functional Equation

A. Najati and F. Moradlou

Abstract

In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for an Euler-Lagrange type cubic functional equation $$
2 m f(x+m y)+2 f(m x-y)=\left(m^{3}+m\right)[f(x+y)+f(x-y)]+2\left(m^{4}-1\right) f(y)
$$ in Banach spaces and in left Banach modules over a unital Banach $*$-algebra for a fixed integer m with $m \neq 0, \pm 1$.

Key Words: Hyers-Ulam-Rassias stability, cubic functional equation.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [14] concerning the stability of group homomorphisms: Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta(\epsilon)>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x * y), h(x) \diamond h(y))<\delta
$$

for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\epsilon
$$

for all $x \in G_{1}$?
In other words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism near it. The case of approximately additive mappings was solved by Hyers [2] under the assumption that G_{1} and G_{2} are Banach spaces. In 1978, a generalized version of the theorem of Hyers for approximately linear mappings was given by Th.M. Rassias [11]. During the last decades, the stability problems of several functional equations have been extensively investigated by a number of authors $[1,6,9,13]$. The terminology 'generalized Hyers-Ulam-Rassias stability' originates from

[^0]
NAJATI, MORADLOU

these historical backgrounds. These terminologies are also applied to the case of other functional equations. For more detailed definitions of such terminologies, we can refer to [3, 4, 12].

Jun and Kim [5] introduced the functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.1}
\end{equation*}
$$

and they established the general solution and the generalized Hyers-Ulam-Rassias stability problem for the functional equation (1.1).

It is easy to see that the function $f(x)=c x^{3}$ is a solution of the above functional equation (1.1). Thus, it is natural that (1.1) is called a cubic functional equation and every solution of the cubic functional equation (1.1) is said to be a cubic mapping.

Jun et al. [7] introduced the Euler-Lagrange type cubic functional equation

$$
\begin{equation*}
f(a x+y)+f(a x-y)=a f(x+y)+a f(x-y)+2 a\left(a^{2}-1\right) f(x) \tag{1.2}
\end{equation*}
$$

for a fixed integer a with $a \neq 0, \pm 1$, and they showed that the functional equation (1.1) is equivalent to the functional equation (1.2) (also see [8]).

The first author and C. Park [10] introduced the cubic functional equation

$$
\begin{equation*}
2 f(x+2 y)+f(2 x-y)=5 f(x+y)+5 f(x-y)+15 f(y) \tag{1.3}
\end{equation*}
$$

and established the general solution and the generalized Hyers-Ulam-Rassias stability problem for the functional equation (1.3).

In this paper, we deal with the following Euler-Lagrange type cubic functional equation

$$
\begin{equation*}
2 m f(x+m y)+2 f(m x-y)=\left(m^{3}+m\right)[f(x+y)+f(x-y)]+2\left(m^{4}-1\right) f(y) \tag{1.4}
\end{equation*}
$$

for a fixed integer m with $m \neq 0, \pm 1$, and we establish the general solution and the generalized Hyers-UlamRassias stability problem for the Euler-Lagrange type cubic functional equation (1.4).

Every solution of the functional equations (1.2) and (1.4) is said to be an Euler-Lagrange type cubic mapping.

2. Solution of Eq. (1.4)

Let both E_{1} and E_{2} be real vector spaces. We here present the general solution of (1.4).
Theorem 2.1 [7, 10] Let $f: E_{1} \rightarrow E_{2}$ be a mapping. The following statements are equivalent:
(i) f satisfies the functional equation (1.1);
(ii) f satisfies the functional equation (1.2);
(iii) f satisfies the functional equation (1.3);
(iv) there exists a function $B: E_{1} \times E_{1} \times E_{1} \rightarrow E_{2}$ such that $f(x)=B(x, x, x)$ for all $x \in E_{1}$, and B is symmetric for each fixed one variable and additive for each fixed two variables.

NAJATI, MORADLOU

Theorem 2.2 Let $f: E_{1} \rightarrow E_{2}$ be a mapping. The following statements are equivalent:
(i) f satisfies the functional equation (1.1);
(ii) f satisfies the functional equation (1.2);
(iii) f satisfies the functional equation (1.3);
(iv) f satisfies the functional equation (1.4);
(v) there exists a function $B: E_{1} \times E_{1} \times E_{1} \rightarrow E_{2}$ such that $f(x)=B(x, x, x)$ for all $x \in E_{1}$, and B is symmetric for each fixed one variable and additive for each fixed two variables.
Proof. We show that $(\mathbf{v}) \Rightarrow(\mathbf{i v}) \Rightarrow(\mathbf{i i})$, and it proves the theorem.
If we assume that (\mathbf{v}) holds, by a simple computation we get (iv).
Now, we assume that (iv) holds. Since $m \neq 1$, by putting $x=y=0$ in (1.4), we get that $f(0)=0$. Letting $y=0$ and $x=0$ in (1.4), respectively, we get that $f(m x)=m^{3} f(x)$ and $f(-y)=-f(y)$, respectively, for all $x, y \in E_{1}$. So the mapping f is odd. Replacing x and y by $-y$ and x in (1.4), respectively, and using the oddness of f, we get

$$
\begin{equation*}
2 m f(m x-y)-2 f(x+m y)=\left(m^{3}+m\right)[f(x-y)-f(x+y)]+2\left(m^{4}-1\right) f(x) \tag{2.1}
\end{equation*}
$$

for all $x, y \in E_{1}$. Multiplying both sides of (2.1) to m, and adding the obtained functional equation to (1.4), we get

$$
\begin{align*}
2\left(m^{2}+1\right) f(m x-y)= & \left(m^{3}+m\right)(m+1) f(x-y)+\left(m^{3}+m\right)(1-m) f(x+y) \\
& +2 m\left(m^{4}-1\right) f(x)+2\left(m^{4}-1\right) f(y) \tag{2.2}
\end{align*}
$$

for all $x, y \in E_{1}$. Replacing y by $-y$ in (2.2) and using the oddness of f, we get

$$
\begin{align*}
2\left(m^{2}+1\right) f(m x+y)= & \left(m^{3}+m\right)(m+1) f(x+y)+\left(m^{3}+m\right)(1-m) f(x-y) \\
& +2 m\left(m^{4}-1\right) f(x)-2\left(m^{4}-1\right) f(y) \tag{2.3}
\end{align*}
$$

for all $x, y \in E_{1}$. Adding (2.2) to (2.3), we infer

$$
\begin{equation*}
\left(m^{2}+1\right)[f(m x+y)+f(m x-y)]=\left(m^{3}+m\right)[f(x+y)+f(x-y)]+2 m\left(m^{4}-1\right) f(x) \tag{2.4}
\end{equation*}
$$

for all $x, y \in E_{1}$. Dividing both sides of (2.4) by $m^{2}+1$, we get (1.2). Therefore (ii) holds and the theorem is proved.

3. Generalized Hyers-Ulam-Rassias stability of Eq. (1.4)

From now on, let X and Y be a real normed space with norm $\|\cdot\|_{X}$ and a real Banach space with norm $\|\cdot\|_{Y}$, respectively. In this section, using an idea of Găvruta [1], we prove the stability of Eq. (1.4) in the spirit

NAJATI, MORADLOU

of Hyers, Ulam and Th.M. Rassias. Thus we find some conditions that there exists a true cubic mapping near a approximately cubic mapping. Throughout this paper, m is an integer with $m \neq 0, \pm 1$. For convenience, we use the following abbreviation:

$$
\begin{aligned}
D_{m} f(x, y):= & 2 m f(x+m y)+2 f(m x-y) \\
& -\left(m^{3}+m\right)[f(x+y)+f(x-y)]-2\left(m^{4}-1\right) f(y)
\end{aligned}
$$

for all $x, y \in X$.
Theorem 3.1 Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\begin{align*}
\widetilde{\varphi}(x):= & \sum_{n=0}^{\infty} \frac{1}{|m|^{3 n}} \varphi\left(m^{n} x, 0\right)<\infty \tag{3.1}\\
& \lim _{n \rightarrow \infty} \frac{1}{|m|^{3 n}} \varphi\left(m^{n} x, m^{n} y\right)=0 \tag{3.2}
\end{align*}
$$

for all $x, y \in X$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D_{m} f(x, y)\right\|_{Y} \leq \varphi(x, y) \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $T_{m}: X \rightarrow Y$ which satisfies the inequality

$$
\begin{equation*}
\left\|T_{m}(x)-f(x)-\frac{m^{4}-1}{m^{3}-1} f(0)\right\|_{Y} \leq \frac{1}{2|m|^{3}} \widetilde{\varphi}(x) \tag{3.4}
\end{equation*}
$$

for all $x \in X$. The mapping $T_{m}: X \rightarrow Y$ is given by

$$
\begin{equation*}
T_{m}(x)=\lim _{n \rightarrow \infty} \frac{1}{m^{3 n}} f\left(m^{n} x\right) \tag{3.5}
\end{equation*}
$$

for all $x \in X$.
Proof. Putting $y=0$ in (3.3) and dividing both sides of (3.3) by $2|m|^{3}$, we have

$$
\begin{equation*}
\left\|\frac{f(m x)}{m^{3}}-f(x)-\frac{m^{4}-1}{m^{3}} f(0)\right\|_{Y} \leq \frac{1}{2|m|^{3}} \varphi(x, 0) \tag{3.6}
\end{equation*}
$$

for all $x \in X$. Replacing x by $m^{n} x$ in (3.6) and dividing both sides of (3.6) by $|m|^{3 n}$, we get

$$
\begin{equation*}
\left\|\frac{f\left(m^{n+1} x\right)}{m^{3(n+1)}}-\frac{f\left(m^{n} x\right)}{m^{3 n}}-\frac{m^{4}-1}{m^{3(n+1)}} f(0)\right\|_{Y} \leq \frac{1}{2|m|^{3(n+1)}} \varphi\left(m^{n} x, 0\right) \tag{3.7}
\end{equation*}
$$

for all $x \in X$ and all $n \in \mathbb{N}$. Therefore, we have

$$
\begin{aligned}
\left\|\sum_{i=k}^{n}\left[\frac{f\left(m^{i+1} x\right)}{m^{3(i+1)}}-\frac{f\left(m^{i} x\right)}{m^{3 i}}-\frac{m^{4}-1}{m^{3(i+1)}} f(0)\right]\right\|_{Y} & \leq \sum_{i=k}^{n}\left\|\frac{f\left(m^{i+1} x\right)}{m^{3(i+1)}}-\frac{f\left(m^{i} x\right)}{m^{3 i}}-\frac{m^{4}-1}{m^{3(i+1)}} f(0)\right\|_{Y} \\
& \leq \frac{1}{2|m|^{3}} \sum_{i=k}^{n} \frac{1}{|m|^{3 i}} \varphi\left(m^{i} x, 0\right)
\end{aligned}
$$

NAJATI, MORADLOU

for all $x \in X$ and all integers $n \geq k \geq 0$. Hence

$$
\begin{equation*}
\left\|\frac{f\left(m^{n+1} x\right)}{m^{3(n+1)}}-\frac{f\left(m^{k} x\right)}{m^{3 k}}-\sum_{i=k}^{n} \frac{m^{4}-1}{m^{3(i+1)}} f(0)\right\|_{Y} \leq \frac{1}{2|m|^{3}} \sum_{i=k}^{n} \frac{1}{|m|^{3 i}} \varphi\left(m^{i} x, 0\right) \tag{3.8}
\end{equation*}
$$

for all $x \in X$ and all integers $n \geq k \geq 0$. Since the series $\sum_{i=0}^{\infty} \frac{1}{m^{3 i}}$ is convergent, it follows from (3.1) and (3.8) that the sequence $\left\{\frac{f\left(m^{n} x\right)}{m^{3 n}}\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is a Banach space, it follows that the sequence $\left\{\frac{f\left(m^{n} x\right)}{m^{3 n}}\right\}$ converges. We define $T_{m}: X \rightarrow Y$ by (3.5). It follows from (3.2) and (3.3) that

$$
\left\|D_{m} T_{m}(x, y)\right\|_{Y}=\lim _{n \rightarrow \infty} \frac{1}{|m|^{3 n}}\left\|D_{m} f\left(m^{n} x, m^{n} y\right)\right\|_{Y} \leq \lim _{n \rightarrow \infty} \frac{1}{|m|^{3 n}} \varphi\left(m^{n} x, m^{n} y\right)=0
$$

for all $x, y \in X$. So T_{m} satisfies Eq. (1.4). Hence by Theorem 2.2, T_{m} is cubic.
Putting $k=0$ and letting $n \rightarrow \infty$ in (3.8), we get (3.4).
It remains to show that T_{m} is unique. Suppose that there exists another cubic mapping $Q: X \rightarrow Y$ which satisfies (3.4). Since $Q\left(m^{n} x\right)=m^{3 n} Q(x)$ for all $x \in X$ and all $n \in \mathbb{N}$, we conclude from (3.1) and (3.4) that

$$
\begin{aligned}
\left\|Q(x)-T_{m}(x)\right\|_{Y} & =\lim _{n \rightarrow \infty} \frac{1}{|m|^{3 n}}\left\|Q\left(m^{n} x\right)-f\left(m^{n} x\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{|m|^{3 n}}\left\|Q\left(m^{n} x\right)-f\left(m^{n} x\right)-\frac{m^{4}-1}{m^{3}-1} f(0)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2|m|^{3 n+3}} \widetilde{\varphi}\left(m^{n} x\right)=0
\end{aligned}
$$

for all $x \in X$. Hence we have $Q(x)=T_{m}(x)$ for all $x \in X$, which gives the conclusion.

Corollary 3.2 Let $\theta, \delta, \epsilon, p, q$ be non-negative real numbers such that $0<p, q<3$. Suppose that a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\left\|D_{m} f(x, y)\right\|_{Y} \leq \theta+\epsilon\|x\|_{X}^{p}+\delta\|y\|_{X}^{q}
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $T_{m}: X \rightarrow Y$ which satisfies the inequality

$$
\left\|f(x)-T_{m}(x)\right\|_{Y} \leq \frac{1}{2}\left(\frac{\theta}{|m|^{3}-1}+\frac{\epsilon}{|m|^{3}-|m|^{p}}\|x\|_{X}^{p}\right)
$$

for all $x \in X$. Also, if for each fixed $x \in X$ the mapping $t \mapsto f(t x)$ from \mathbb{R} to Y is continuous, then $T_{m}(t x)=t^{3} T_{m}(x)$ for all $t \in \mathbb{R}$.
Proof. Define $\varphi: X \times X \rightarrow[0, \infty)$ by $\varphi(x, y)=\theta+\epsilon\|x\|_{X}^{p}+\delta\|y\|_{X}^{q}$ for all $x, y \in X$. So the result follows from Theorem 3.1. Under the assumption that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$, by the same reasoning as in the proof of [11], the cubic mapping $T_{m}: X \rightarrow Y$ satisfies $T_{m}(t x)=t^{3} T_{m}(x)$ for all $t \in \mathbb{R}$.

NAJATI, MORADLOU

Theorem 3.3 Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\begin{gather*}
\widetilde{\varphi}(x):=\sum_{n=1}^{\infty}|m|^{3 n} \varphi\left(\frac{x}{m^{n}}, 0\right)<\infty \tag{3.9}\\
\lim _{n \rightarrow \infty}|m|^{3 n} \varphi\left(\frac{x}{m^{n}}, \frac{y}{m^{n}}\right)=0 \tag{3.10}
\end{gather*}
$$

for all $x, y \in X$. Suppose that a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|D_{m} f(x, y)\right\|_{Y} \leq \varphi(x, y) \tag{3.11}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $T_{m}: X \rightarrow Y$ which satisfies the inequality

$$
\begin{equation*}
\left\|f(x)-T_{m}(x)\right\|_{Y} \leq \frac{1}{2|m|^{3}} \widetilde{\varphi}(x) \tag{3.12}
\end{equation*}
$$

for all $x \in X$. The mapping $T_{m}: X \rightarrow Y$ is given by

$$
\begin{equation*}
T_{m}(x)=\lim _{n \rightarrow \infty} m^{3 n} f\left(\frac{x}{m^{n}}\right) \tag{3.13}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (3.9) that $\varphi(0,0)=0$, and therefore (3.11) implies that $f(0)=0$.
Putting $y=0$ in (3.11), we have

$$
\begin{equation*}
\left\|f(m x)-m^{3} f(x)\right\|_{Y} \leq \frac{1}{2} \varphi(x, 0) \tag{3.14}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{m^{n+1}}$ in (3.14) and multiplying both sides of (3.14) to $|m|^{3 n}$, we get

$$
\begin{equation*}
\left\|m^{3(n+1)} f\left(\frac{x}{m^{n+1}}\right)-m^{3 n} f\left(\frac{x}{m^{n}}\right)\right\|_{Y} \leq \frac{1}{2}|m|^{3 n} \varphi\left(\frac{x}{m^{n+1}}, 0\right) \tag{3.15}
\end{equation*}
$$

for all $x \in X$ and all $n \in \mathbb{N}$. Therefore we have

$$
\begin{align*}
\left\|m^{3(n+1)} f\left(\frac{x}{m^{n+1}}\right)-m^{3 k} f\left(\frac{x}{m^{k}}\right)\right\|_{Y} & =\left\|\sum_{i=k}^{n}\left[m^{3(i+1)} f\left(\frac{x}{m^{i+1}}\right)-m^{3 i} f\left(\frac{x}{m^{i}}\right)\right]\right\|_{Y} \\
& \leq \sum_{i=k}^{n}\left\|m^{3(i+1)} f\left(\frac{x}{m^{i+1}}\right)-m^{3 i} f\left(\frac{x}{m^{i}}\right)\right\|_{Y} \tag{3.16}\\
& \leq \frac{1}{2|m|^{3}} \sum_{i=k+1}^{n}|m|^{3 i} \varphi\left(\frac{x}{m^{i}}, 0\right)
\end{align*}
$$

for all $x \in X$ and all integers $n \geq k \geq 0$. It follows from (3.9) and (3.16) that the sequence $\left\{m^{3 n} f\left(\frac{x}{m^{n}}\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{m^{3 n} f\left(\frac{x}{m^{n}}\right)\right\}$ converges in Y for all $x \in X$. So one can define the mapping $T_{m}: X \rightarrow Y$ by (3.13).

The rest of the proof is similar to the proof of Theorem 3.1.

NAJATI, MORADLOU

Corollary 3.4 Let δ, ϵ, p, q be non-negative real numbers such that $p, q>3$. Suppose that a mapping $f: X \rightarrow Y$ satisfies

$$
\left\|D_{m} f(x, y)\right\|_{Y} \leq \epsilon\|x\|_{X}^{p}+\delta\|y\|_{X}^{q}
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $T_{m}: X \rightarrow Y$ which satisfies the inequality

$$
\left\|f(x)-T_{m}(x)\right\|_{Y} \leq \frac{\epsilon}{2\left(|m|^{p}-|m|^{3}\right)}\|x\|_{X}^{p}
$$

for all $x \in X$. Also, if for each fixed $x \in X$ the mapping $t \mapsto f(t x)$ from \mathbb{R} to Y is continuous, then $T_{m}(t x)=t^{3} T_{m}(x)$ for all $t \in \mathbb{R}$.
Proof. Define $\varphi: X \times X \rightarrow[0, \infty)$ by $\varphi(x, y)=\epsilon\|x\|_{X}^{p}+\delta\|y\|_{X}^{q}$ for all $x, y \in X$. It is clear that $f(0)=0$. So the result follows from Theorem 3.3. Under the assumption that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$, by the same reasoning as in the proof of [11], the cubic mapping $T_{m}: X \rightarrow Y$ satisfies $T_{m}(t x)=t^{3} T_{m}(x)$ for all $t \in \mathbb{R}$.

4. Results in Banach modules over a unital Banach *-algebra

In this section, let B be a unital Banach $*$-algebra with norm $\|\cdot\|_{B}$, and let \mathbb{X} and \mathbb{Y} be left Banach B-modules with norms $\|\cdot\|_{\mathbb{X}}$ and $\|\cdot\|_{\mathbb{Y}}$, respectively. For $a \in B$, let $b=a^{3}, a a^{*} a, a^{*} a a^{*}$ or $\left(a a^{*} a+a^{*} a a^{*}\right) / 2$. A cubic mapping $T: \mathbb{X} \rightarrow \mathbb{Y}$ is called B-cubic if $T(a x)=b T(x)$ for all $a \in B$ and all $x \in \mathbb{X}$.

Theorem 4.1 Let $\varphi: \mathbb{X} \times \mathbb{X} \rightarrow[0, \infty)$ be a function satisfying (3.1) and (3.2) (respectively, (3.9) and (3.10)) for all $x, y \in X$. Suppose that a mapping $f: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies

$$
\begin{equation*}
\left\|2 m f(a x+m a y)+2 f(\max -a y)-\left(m^{3}+m\right)[f(a x+a y)-f(a x-a y)]-2\left(m^{4}-1\right) b f(y)\right\|_{\mathbb{Y}} \leq \varphi(x, y) \tag{4.1}
\end{equation*}
$$

for all $a \in B\left(\|a\|_{B}=1\right)$ and all $x, y \in \mathbb{X}$, and that for each fixed $x \in \mathbb{X}$ the mapping $t \mapsto f(t x)$ from \mathbb{R} to \mathbb{Y} is continuous. Then there exists a unique B-cubic mapping $T: \mathbb{X} \rightarrow \mathbb{Y}$ which satisfies the inequality (3.4) (respectively, (3.12)) for all $x \in \mathbb{X}$.
Proof. By Theorem 3.1 (respectively, Theorem 3.3), it follows from the inequality (4.1) for $a=1$ that there exists a unique cubic mapping $T: \mathbb{X} \rightarrow \mathbb{Y}$ satisfying the inequality (3.4) (respectively, (3.12)) for all $x \in \mathbb{X}$. The mapping $T: \mathbb{X} \rightarrow \mathbb{Y}$ is given by (3.5) (respectively, (3.13)) for all $x \in \mathbb{X}$. Therefore, it follows from (4.1) that

$$
\begin{equation*}
2 m T(a x+m a y)+2 T(\max -a y)=\left(m^{3}+m\right)[T(a x+a y)+T(a x-a y)]+2\left(m^{4}-1\right) b T(y) \tag{4.2}
\end{equation*}
$$

for all $x, y \in \mathbb{X}$ and all $a \in B\left(\|a\|_{B}=1\right)$. Since T is cubic, by setting $x=0$ in (4.2), we get

$$
\begin{equation*}
T(a y)=b T(y) \tag{4.3}
\end{equation*}
$$

for all $y \in \mathbb{X}$ and all $a \in B\left(\|a\|_{B}=1\right)$. Under the assumption that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathbb{X}$, by the same reasoning as in the proof of [11], the cubic mapping $T: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies $T(t x)=t^{3} T(x)$ for

NAJATI, MORADLOU

all $t \in \mathbb{R}$. That is, T is \mathbb{R}-cubic. It is clear that (4.3) is also true for $a=0$. For each element $a \in B(a \neq 0)$, $a=\|a\|_{B} \cdot \frac{a}{\|a\|_{B}}$. Since T is \mathbb{R}-cubic and $T(a x)=b T(x)$ for all $x \in \mathbb{X}$ and all $a \in B\left(\|a\|_{B}=1\right)$, we have

$$
T(a x)=T\left(\|a\|_{B} \cdot \frac{a}{\|a\|_{B}} x\right)=\|a\|_{B}^{3} T\left(\frac{a}{\|a\|_{B}} x\right)=\|a\|_{B}^{3} \cdot \frac{b}{\|a\|_{B}^{3}} \cdot T(x)=b T(x)
$$

for all $x \in \mathbb{X}$ and all $a \in B(a \neq 0)$. So the unique \mathbb{R}-cubic mapping $T: \mathbb{X} \rightarrow \mathbb{Y}$ is also B-cubic. This completes the proof.

Corollary 4.2 Let $\theta, \delta, \epsilon, p, q$ be non-negative real numbers such that $0<p, q<3$. Suppose that a mapping $f: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies $f(0)=0$ and

$$
\begin{aligned}
\| 2 m f(a x+m a y) & +2 f(\max -a y)-\left(m^{3}+m\right)[f(a x+a y)-f(a x-a y)] \\
& -2\left(m^{4}-1\right) b f(y)\left\|_{\mathbb{Y}} \leq \theta+\epsilon\right\| x\left\|_{\mathbb{X}}^{p}+\delta\right\| y \|_{\mathbb{X}}^{q}
\end{aligned}
$$

for all $a \in B\left(\|a\|_{B}=1\right)$ and all $x, y \in \mathbb{X}$, and that for each fixed $x \in \mathbb{X}$ the mapping $t \mapsto f(t x)$ from \mathbb{R} to \mathbb{Y} is continuous. Then there exists a unique B-cubic mapping $T: \mathbb{X} \rightarrow \mathbb{Y}$ which satisfies the inequality

$$
\|f(x)-T(x)\|_{\mathbb{Y}} \leq \frac{1}{2}\left(\frac{\theta}{|m|^{3}-1}+\frac{\epsilon}{|m|^{3}-|m|^{p}}\|x\|_{\mathbb{X}}^{p}\right)
$$

for all $x \in \mathbb{X}$.

Corollary 4.3 Let δ, ϵ, p, q be non-negative real numbers such that $p, q>3$. Suppose that a mapping $f: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies

$$
\begin{aligned}
\| 2 m f(a x+m a y) & +2 f(\max -a y)-\left(m^{3}+m\right)[f(a x+a y)-f(a x-a y)] \\
& -2\left(m^{4}-1\right) b f(y)\left\|_{\mathbb{Y}} \leq \epsilon\right\| x\left\|_{\mathbb{X}}^{p}+\delta\right\| y \|_{\mathbb{X}}^{q}
\end{aligned}
$$

for all $a \in B\left(\|a\|_{B}=1\right)$ and all $x, y \in \mathbb{X}$, and that for each fixed $x \in \mathbb{X}$ the mapping $t \mapsto f(t x)$ from \mathbb{R} to \mathbb{Y} is continuous. Then there exists a unique B-cubic mapping $T: \mathbb{X} \rightarrow \mathbb{Y}$ which satisfies the inequality

$$
\|f(x)-T(x)\|_{\mathbb{Y}} \leq \frac{\epsilon}{2\left(|m|^{p}-|m|^{3}\right)}\|x\|_{\mathbb{X}}^{p}
$$

for all $x \in \mathbb{X}$.

Acknowledgment

The authors would like to thank the referee(s) for a number of valuable suggestions regarding a previous version of this paper.

NAJATI, MORADLOU

References

[1] Găvruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431-436 (1994).
[2] Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci., 27, 222-224 (1941).
[3] Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[4] Hyers, D. H., Rassias, Th. M.: Approximate homomorphisms. Aequationes Math., 44, 125-153 (1992).
[5] Jun, K., Kim, H.: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl., 274, 867-878 (2002).
[6] Jun, K., Kim, H.: Stability problem for Jensen-type functional equations of cubic mappings. Acta Mathematica Sinica, English Series, 22 (6), 1781-1788 (2006).
[7] Jun, K., Kim, H., Chang, I.: On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation. J. Comput. Anal. Appl., 7, 21-33 (2005).
[8] Najati, A.: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. Turk. J. Math., 31, 395-408 (2007).
[9] Najati, A.: Hyers-Ulam-Rassias stability of a cubic functional equation. Bull. Korean Math. Soc., 4, 825-840 (2007).
[10] Najati, A., Park, C.: On the stability of a cubic functional equation. Acta Mathematica Sinica, English Series, (to appear).
[11] Rassias, Th. M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300 (1978).
[12] Rassias, Th. M.: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl., 251, 264-284 (2000).
[13] Sahoo, P. K.: A generalized cubic functional equation. Acta Mathematica Sinica, English Series, 21 (5), 1159-1166 (2005).
[14] Ulam, S. M.: A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
Abbas NAJATI
Received 13.02.2008
Department of Mathematics,
University of Mohaghegh Ardabili,
Ardabil-IRAN
e-mail: a.nejati@yahoo.com
Fridoun MORADLOU
Faculty of Mathematical Sciences,
University of Tabriz,
Tabriz-IRAN
e-mail: moradlou@tabrizu.ac.ir

[^0]: 2000 AMS Mathematics Subject Classification: Primary 39B52, 46L05, 47B48

