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Stability of an Euler–Lagrange type Cubic Functional Equation

A. Najati and F. Moradlou

Abstract

In this paper, we will find out the general solution and investigate the generalized Hyers–Ulam–Rassias

stability problem for an Euler–Lagrange type cubic functional equation

2mf(x + my) + 2f(mx − y) = (m3 + m)[f(x + y) + f(x − y)] + 2(m4 − 1)f(y)

in Banach spaces and in left Banach modules over a unital Banach ∗-algebra for a fixed integer m with

m �= 0,±1.
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1. Introduction

The stability problem of functional equations originated from a question of Ulam [14] concerning the
stability of group homomorphisms: Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the metric
d(·, ·) . Given ε > 0 , does there exist a δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1 , then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1?

In other words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping is
almost a homomorphism, then there exists a true homomorphism near it. The case of approximately additive
mappings was solved by Hyers [2] under the assumption that G1 and G2 are Banach spaces. In 1978, a
generalized version of the theorem of Hyers for approximately linear mappings was given by Th.M. Rassias [11].
During the last decades, the stability problems of several functional equations have been extensively investigated
by a number of authors [1, 6, 9, 13]. The terminology ‘generalized Hyers–Ulam–Rassias stability’ originates from
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these historical backgrounds. These terminologies are also applied to the case of other functional equations.
For more detailed definitions of such terminologies, we can refer to [3, 4, 12].

Jun and Kim [5] introduced the functional equation

f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x), (1.1)

and they established the general solution and the generalized Hyers–Ulam–Rassias stability problem for the
functional equation (1.1).

It is easy to see that the function f(x) = cx3 is a solution of the above functional equation (1.1). Thus,
it is natural that (1.1) is called a cubic functional equation and every solution of the cubic functional equation
(1.1) is said to be a cubic mapping.

Jun et al. [7] introduced the Euler–Lagrange type cubic functional equation

f(ax + y) + f(ax − y) = af(x + y) + af(x − y) + 2a(a2 − 1)f(x) (1.2)

for a fixed integer a with a �= 0,±1, and they showed that the functional equation (1.1) is equivalent to the
functional equation (1.2) (also see [8]).

The first author and C. Park [10] introduced the cubic functional equation

2f(x + 2y) + f(2x − y) = 5f(x + y) + 5f(x − y) + 15f(y) (1.3)

and established the general solution and the generalized Hyers–Ulam–Rassias stability problem for the functional
equation (1.3).

In this paper, we deal with the following Euler–Lagrange type cubic functional equation

2mf(x + my) + 2f(mx − y) = (m3 + m)[f(x + y) + f(x − y)] + 2(m4 − 1)f(y) (1.4)

for a fixed integer m with m �= 0,±1, and we establish the general solution and the generalized Hyers–Ulam–
Rassias stability problem for the Euler–Lagrange type cubic functional equation (1.4).

Every solution of the functional equations (1.2) and (1.4) is said to be an Euler–Lagrange type cubic
mapping.

2. Solution of Eq. (1.4)

Let both E1 and E2 be real vector spaces. We here present the general solution of (1.4).

Theorem 2.1 [7, 10] Let f : E1 → E2 be a mapping. The following statements are equivalent:

(i) f satisfies the functional equation (1.1);

(ii) f satisfies the functional equation (1.2);

(iii) f satisfies the functional equation (1.3);

(iv) there exists a function B : E1 × E1 × E1 → E2 such that f(x) = B(x, x, x) for all x ∈ E1, and B is
symmetric for each fixed one variable and additive for each fixed two variables.
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Theorem 2.2 Let f : E1 → E2 be a mapping. The following statements are equivalent:

(i) f satisfies the functional equation (1.1);

(ii) f satisfies the functional equation (1.2);

(iii) f satisfies the functional equation (1.3);

(iv) f satisfies the functional equation (1.4);

(v) there exists a function B : E1 × E1 × E1 → E2 such that f(x) = B(x, x, x) for all x ∈ E1, and B is
symmetric for each fixed one variable and additive for each fixed two variables.

Proof. We show that (v) ⇒ (iv) ⇒ (ii), and it proves the theorem.

If we assume that (v) holds, by a simple computation we get (iv).

Now, we assume that (iv) holds. Since m �= 1, by putting x = y = 0 in (1.4), we get that f(0) = 0.

Letting y = 0 and x = 0 in (1.4), respectively, we get that f(mx) = m3f(x) and f(−y) = −f(y), respectively,
for all x, y ∈ E1. So the mapping f is odd. Replacing x and y by −y and x in (1.4), respectively, and using
the oddness of f, we get

2mf(mx − y) − 2f(x + my) = (m3 + m)[f(x − y) − f(x + y)] + 2(m4 − 1)f(x) (2.1)

for all x, y ∈ E1. Multiplying both sides of (2.1) to m, and adding the obtained functional equation to (1.4),
we get

2(m2 + 1)f(mx − y) = (m3 + m)(m + 1)f(x − y) + (m3 + m)(1 − m)f(x + y)

+ 2m(m4 − 1)f(x) + 2(m4 − 1)f(y)
(2.2)

for all x, y ∈ E1. Replacing y by −y in (2.2) and using the oddness of f, we get

2(m2 + 1)f(mx + y) = (m3 + m)(m + 1)f(x + y) + (m3 + m)(1 − m)f(x − y)

+ 2m(m4 − 1)f(x) − 2(m4 − 1)f(y)
(2.3)

for all x, y ∈ E1. Adding (2.2) to (2.3), we infer

(m2 + 1)[f(mx + y) + f(mx − y)] = (m3 + m)[f(x + y) + f(x − y)] + 2m(m4 − 1)f(x) (2.4)

for all x, y ∈ E1. Dividing both sides of (2.4) by m2 + 1, we get (1.2). Therefore (ii) holds and the theorem is
proved. �

3. Generalized Hyers–Ulam–Rassias stability of Eq. (1.4)

From now on, let X and Y be a real normed space with norm ‖ · ‖X and a real Banach space with norm
‖ · ‖Y , respectively. In this section, using an idea of Găvruta [1], we prove the stability of Eq. (1.4) in the spirit
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of Hyers, Ulam and Th.M. Rassias. Thus we find some conditions that there exists a true cubic mapping near
a approximately cubic mapping. Throughout this paper, m is an integer with m �= 0,±1. For convenience, we
use the following abbreviation:

Dmf(x, y) : = 2mf(x + my) + 2f(mx − y)

− (m3 + m)[f(x + y) + f(x − y)] − 2(m4 − 1)f(y)

for all x, y ∈ X.

Theorem 3.1 Let ϕ : X × X → [0,∞) be a function such that

ϕ̃(x) :=
∞∑

n=0

1
|m|3n

ϕ(mnx, 0) < ∞, (3.1)

lim
n→∞

1
|m|3n

ϕ(mnx, mny) = 0 (3.2)

for all x, y ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

‖Dmf(x, y)‖Y ≤ ϕ(x, y) (3.3)

for all x, y ∈ X. Then there exists a unique cubic mapping Tm : X → Y which satisfies the inequality

∥∥∥Tm(x) − f(x) − m4 − 1
m3 − 1

f(0)
∥∥∥

Y
≤ 1

2|m|3 ϕ̃(x) (3.4)

for all x ∈ X. The mapping Tm : X → Y is given by

Tm(x) = lim
n→∞

1
m3n

f(mnx) (3.5)

for all x ∈ X.

Proof. Putting y = 0 in (3.3) and dividing both sides of (3.3) by 2|m|3, we have

∥∥∥f(mx)
m3

− f(x) − m4 − 1
m3

f(0)
∥∥∥

Y
≤ 1

2|m|3 ϕ(x, 0) (3.6)

for all x ∈ X. Replacing x by mnx in (3.6) and dividing both sides of (3.6) by |m|3n, we get

∥∥∥f(mn+1x)
m3(n+1)

− f(mnx)
m3n

− m4 − 1
m3(n+1)

f(0)
∥∥∥

Y
≤ 1

2|m|3(n+1)
ϕ(mnx, 0) (3.7)

for all x ∈ X and all n ∈ N. Therefore, we have

∥∥∥∥∥
n∑

i=k

[f(mi+1x)
m3(i+1)

− f(mix)
m3i

− m4 − 1
m3(i+1)

f(0)
]∥∥∥∥∥

Y

≤
n∑

i=k

∥∥∥f(mi+1x)
m3(i+1)

− f(mix)
m3i

− m4 − 1
m3(i+1)

f(0)
∥∥∥

Y

≤ 1
2|m|3

n∑
i=k

1
|m|3i

ϕ(mix, 0)
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for all x ∈ X and all integers n ≥ k ≥ 0. Hence

∥∥∥f(mn+1x)
m3(n+1)

− f(mkx)
m3k

−
n∑

i=k

m4 − 1
m3(i+1)

f(0)
∥∥∥

Y
≤ 1

2|m|3
n∑

i=k

1
|m|3i

ϕ(mix, 0) (3.8)

for all x ∈ X and all integers n ≥ k ≥ 0. Since the series
∑∞

i=0
1

m3i is convergent, it follows from (3.1) and (3.8)

that the sequence { f(mnx)
m3n } is a Cauchy sequence in Y for all x ∈ X. Since Y is a Banach space, it follows

that the sequence { f(mnx)
m3n } converges. We define Tm : X → Y by (3.5). It follows from (3.2) and (3.3) that

‖DmTm(x, y)‖Y = lim
n→∞

1
|m|3n

∥∥Dmf(mnx, mny)
∥∥

Y
≤ lim

n→∞
1

|m|3n
ϕ(mnx, mny) = 0

for all x, y ∈ X. So Tm satisfies Eq. (1.4). Hence by Theorem 2.2, Tm is cubic.

Putting k = 0 and letting n → ∞ in (3.8), we get (3.4).

It remains to show that Tm is unique. Suppose that there exists another cubic mapping Q : X → Y

which satisfies (3.4). Since Q(mnx) = m3nQ(x) for all x ∈ X and all n ∈ N, we conclude from (3.1) and (3.4)
that

‖Q(x)− Tm(x)‖Y = lim
n→∞

1
|m|3n

∥∥Q(mnx) − f(mnx)
∥∥

Y

≤ lim
n→∞

1
|m|3n

∥∥∥Q(mnx) − f(mnx) − m4 − 1
m3 − 1

f(0)
∥∥∥

Y

≤ lim
n→∞

1
2|m|3n+3

ϕ̃(mnx) = 0

for all x ∈ X. Hence we have Q(x) = Tm(x) for all x ∈ X, which gives the conclusion. �

Corollary 3.2 Let θ, δ, ε, p, q be non-negative real numbers such that 0 < p, q < 3. Suppose that a mapping
f : X → Y satisfies f(0) = 0 and

‖Dmf(x, y)‖Y ≤ θ + ε‖x‖p
X + δ‖y‖q

X

for all x, y ∈ X. Then there exists a unique cubic mapping Tm : X → Y which satisfies the inequality

‖f(x) − Tm(x)‖Y ≤ 1
2

( θ

|m|3 − 1
+

ε

|m|3 − |m|p‖x‖
p
X

)

for all x ∈ X. Also, if for each fixed x ∈ X the mapping t �→ f(tx) from R to Y is continuous, then

Tm(tx) = t3Tm(x) for all t ∈ R.

Proof. Define ϕ : X × X → [0,∞) by ϕ(x, y) = θ + ε‖x‖p
X + δ‖y‖q

X for all x, y ∈ X. So the result follows
from Theorem 3.1. Under the assumption that f(tx) is continuous in t ∈ R for each fixed x ∈ X, by the same

reasoning as in the proof of [11], the cubic mapping Tm : X → Y satisfies Tm(tx) = t3Tm(x) for all t ∈ R. �
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Theorem 3.3 Let ϕ : X × X → [0,∞) be a function such that

ϕ̃(x) :=
∞∑

n=1

|m|3nϕ
( x

mn
, 0

)
< ∞, (3.9)

lim
n→∞

|m|3nϕ
( x

mn
,

y

mn

)
= 0 (3.10)

for all x, y ∈ X. Suppose that a mapping f : X → Y satisfies the inequality

‖Dmf(x, y)‖Y ≤ ϕ(x, y) (3.11)

for all x, y ∈ X. Then there exists a unique cubic mapping Tm : X → Y which satisfies the inequality

‖f(x) − Tm(x)‖Y ≤ 1
2|m|3 ϕ̃(x) (3.12)

for all x ∈ X. The mapping Tm : X → Y is given by

Tm(x) = lim
n→∞

m3nf
( x

mn

)
(3.13)

for all x ∈ X.

Proof. It follows from (3.9) that ϕ(0, 0) = 0, and therefore (3.11) implies that f(0) = 0.

Putting y = 0 in (3.11), we have

‖f(mx) − m3f(x)‖Y ≤ 1
2
ϕ(x, 0) (3.14)

for all x ∈ X. Replacing x by x
mn+1 in (3.14) and multiplying both sides of (3.14) to |m|3n, we get

∥∥∥m3(n+1)f
( x

mn+1

)
− m3nf

( x

mn

)∥∥∥
Y
≤ 1

2
|m|3nϕ

( x

mn+1
, 0

)
(3.15)

for all x ∈ X and all n ∈ N. Therefore we have

∥∥∥m3(n+1)f
( x

mn+1

)
− m3kf

( x

mk

)∥∥∥
Y

=
∥∥∥

n∑
i=k

[
m3(i+1)f

( x

mi+1

)
− m3if

( x

mi

)]∥∥∥
Y

≤
n∑

i=k

∥∥∥m3(i+1)f
( x

mi+1

)
− m3if

( x

mi

)∥∥∥
Y

≤ 1
2|m|3

n∑
i=k+1

|m|3iϕ
( x

mi
, 0

)
(3.16)

for all x ∈ X and all integers n ≥ k ≥ 0. It follows from (3.9) and (3.16) that the sequence {m3nf( x
mn )} is a

Cauchy sequence in Y for all x ∈ X. Since Y is complete, the sequence {m3nf( x
mn )} converges in Y for all

x ∈ X. So one can define the mapping Tm : X → Y by (3.13).

The rest of the proof is similar to the proof of Theorem 3.1. �
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Corollary 3.4 Let δ, ε, p, q be non-negative real numbers such that p, q > 3. Suppose that a mapping f : X → Y

satisfies

‖Dmf(x, y)‖Y ≤ ε‖x‖p
X + δ‖y‖q

X

for all x, y ∈ X. Then there exists a unique cubic mapping Tm : X → Y which satisfies the inequality

‖f(x) − Tm(x)‖Y ≤ ε

2(|m|p − |m|3)‖x‖
p
X

for all x ∈ X. Also, if for each fixed x ∈ X the mapping t �→ f(tx) from R to Y is continuous, then

Tm(tx) = t3Tm(x) for all t ∈ R.

Proof. Define ϕ : X × X → [0,∞) by ϕ(x, y) = ε‖x‖p
X + δ‖y‖q

X for all x, y ∈ X. It is clear that f(0) = 0.

So the result follows from Theorem 3.3. Under the assumption that f(tx) is continuous in t ∈ R for each fixed

x ∈ X, by the same reasoning as in the proof of [11], the cubic mapping Tm : X → Y satisfies Tm(tx) = t3Tm(x)
for all t ∈ R. �

4. Results in Banach modules over a unital Banach ∗-algebra

In this section, let B be a unital Banach ∗ -algebra with norm ‖ · ‖B , and let X and Y be left Banach

B -modules with norms ‖ · ‖X and ‖ · ‖Y, respectively. For a ∈ B, let b = a3, aa∗a, a∗aa∗ or (aa∗a + a∗aa∗)/2.

A cubic mapping T : X → Y is called B -cubic if T (ax) = bT (x) for all a ∈ B and all x ∈ X.

Theorem 4.1 Let ϕ : X× X → [0,∞) be a function satisfying (3.1) and (3.2) (respectively, (3.9) and (3.10))
for all x, y ∈ X. Suppose that a mapping f : X → Y satisfies

‖2mf(ax + may) + 2f(max − ay) − (m3 + m)[f(ax + ay) − f(ax − ay)] − 2(m4 − 1)bf(y)‖Y ≤ ϕ(x, y) (4.1)

for all a ∈ B (‖a‖B = 1) and all x, y ∈ X, and that for each fixed x ∈ X the mapping t �→ f(tx) from R to
Y is continuous. Then there exists a unique B -cubic mapping T : X → Y which satisfies the inequality (3.4)
(respectively, (3.12)) for all x ∈ X.

Proof. By Theorem 3.1 (respectively, Theorem 3.3), it follows from the inequality (4.1) for a = 1 that there
exists a unique cubic mapping T : X → Y satisfying the inequality (3.4) (respectively, (3.12)) for all x ∈ X.

The mapping T : X → Y is given by (3.5) (respectively, (3.13)) for all x ∈ X. Therefore, it follows from (4.1)
that

2mT (ax + may) + 2T (max − ay) = (m3 + m)[T (ax + ay) + T (ax − ay)] + 2(m4 − 1)bT (y) (4.2)

for all x, y ∈ X and all a ∈ B (‖a‖B = 1). Since T is cubic, by setting x = 0 in (4.2), we get

T (ay) = bT (y) (4.3)

for all y ∈ X and all a ∈ B (‖a‖B = 1). Under the assumption that f(tx) is continuous in t ∈ R for each fixed

x ∈ X, by the same reasoning as in the proof of [11], the cubic mapping T : X → Y satisfies T (tx) = t3T (x) for
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all t ∈ R. That is, T is R-cubic. It is clear that (4.3) is also true for a = 0. For each element a ∈ B (a �= 0),
a = ‖a‖B · a

‖a‖B
. Since T is R-cubic and T (ax) = bT (x) for all x ∈ X and all a ∈ B (‖a‖B = 1), we have

T (ax) = T
(
‖a‖B · a

‖a‖B
x
)

= ‖a‖3
BT

( a

‖a‖B
x
)

= ‖a‖3
B · b

‖a‖3
B

· T (x) = bT (x)

for all x ∈ X and all a ∈ B (a �= 0). So the unique R-cubic mapping T : X → Y is also B -cubic. This completes
the proof. �

Corollary 4.2 Let θ, δ, ε, p, q be non-negative real numbers such that 0 < p, q < 3. Suppose that a mapping
f : X → Y satisfies f(0) = 0 and

‖2mf(ax + may) + 2f(max − ay) − (m3 + m)[f(ax + ay) − f(ax − ay)]

− 2(m4 − 1)bf(y)‖Y ≤ θ + ε‖x‖p
X

+ δ‖y‖q
X

for all a ∈ B (‖a‖B = 1) and all x, y ∈ X, and that for each fixed x ∈ X the mapping t �→ f(tx) from R to Y

is continuous. Then there exists a unique B -cubic mapping T : X → Y which satisfies the inequality

‖f(x) − T (x)‖Y ≤ 1
2

( θ

|m|3 − 1
+

ε

|m|3 − |m|p ‖x‖
p
X

)

for all x ∈ X.

Corollary 4.3 Let δ, ε, p, q be non-negative real numbers such that p, q > 3. Suppose that a mapping f : X → Y

satisfies

‖2mf(ax + may) + 2f(max − ay) − (m3 + m)[f(ax + ay) − f(ax − ay)]

− 2(m4 − 1)bf(y)‖Y ≤ ε‖x‖p
X

+ δ‖y‖q
X

for all a ∈ B (‖a‖B = 1) and all x, y ∈ X, and that for each fixed x ∈ X the mapping t �→ f(tx) from R to Y

is continuous. Then there exists a unique B -cubic mapping T : X → Y which satisfies the inequality

‖f(x) − T (x)‖Y ≤ ε

2(|m|p − |m|3)‖x‖
p
X

for all x ∈ X.
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