On Symmetric Monomial curves in \mathbb{P}^{3}

Mesut Şahin

Abstract

In this paper, we give an elementary proof of the fact that symmetric arithmetically Cohen-Macaulay monomial curves are set-theoretic complete intersections. The proof is constructive and provides the equations of the surfaces cutting out the monomial curve.

Key Words: Set-theoretic complete intersections, monomial curves

1. Introduction

Let K be an algebraically closed field and R be the polynomial ring $K\left[x_{0}, \ldots, x_{n}\right]$. To any irreducible curve C in \mathbb{P}^{n}, one can associate a prime ideal $I(C) \subset R$ to be the set of all polynomials vanishing on C. The arithmetical rank of C, denoted by $\mu(C)$, is the least positive integer r for which $I(C)=\operatorname{rad}\left(f_{1}, \ldots, f_{r}\right)$, for some polynomials f_{1}, \ldots, f_{r} or equivalently $C=H_{1} \bigcap \cdots \bigcap H_{r}$, where H_{1}, \ldots, H_{r} are the hypersurfaces defined by $f_{1}=0, \cdots, f_{r}=0$, respectively. We denote by $\mu(I(C))$ the minimal number r for which $I(C)=\left(f_{1}, \ldots, f_{r}\right)$, for some polynomials $f_{1}, \ldots, f_{r} \in R$. These invariants are known to be bounded below by the codimension of the curve (or height of its ideal). So, one has the following relation:

$$
n-1 \leq \mu(C) \leq \mu(I(C))
$$

Although $\mu(I(C))$ has no upper bound (see [1], for an example), an upper bound for $\mu(C)$ is provided to be n in [7] via commutative algebraic methods. Later in [2, 22] the equations of these n hypersurfaces that cut out the curve C were given explicitly by using elementary algebraic methods.

The curve C is called a complete intersection if $\mu(I(C))=n-1$. It is called an almost complete intersection, if instead, one has $\mu(I(C))=n$. When the arithmetical rank of C takes its lower bound, that is $\mu(C)=n-1$, the curve C is called a set-theoretic complete intersection, s.t.c.i. for short. It is clear that complete intersections are set-theoretic complete intersection. The corresponding question for almost complete intersection monomial curves is answered affirmatively in a series of papers by Eto [8, 9, 10].

Determining s.t.c.i. monomial curves is a classical and longstanding problem in algebraic geometry. Even more difficult is to give explicitly the equations of the hypersurfaces involved. It is known that all monomial

[^0]
SAHIN

curves are s.t.c.i. in the projective n-space over a field of positive characteristic $[3,12,14]$. On the other hand, nobody knows whether or not the same question has an affirmative answer in the characteristic zero case. However, there are many partial results in this case [11, 13, 15, 16, 17, 19, 20, 21]. In fact, even the case of symmetric monomial curves is still mysterious.

The purpose of this note is to give an alternative proof of the fact that symmetric monomial curves in \mathbb{P}^{3} which are arithmetically Cohen-Macaulay are s.t.c.i. by elementary algebraic methods inspired by [4]. The proof is constructive and provides the equations of the surfaces cutting out the curve.

2. Symmetric ACM Monomial Curves in \mathbb{P}^{3}

Let $p<q<r$ be some positive integers. A monomial curve $C(p, q, r)$ in \mathbb{P}^{3} is given parametrically by

$$
(w, x, y, z)=\left(u^{r}, u^{r-p} v^{p}, u^{r-q} v^{q}, v^{r}\right),
$$

where $(u, v) \in \mathbb{P}^{1}$.
We say that the monomial curve $C(p, q, r)$ is symmetric if $p+q=r$. In this case the parametric representation of the curve $C(p, q, p+q)$ becomes $\left(u^{p+q}, u^{q} v^{p}, u^{p} v^{q}, v^{p+q}\right)$.

It is known that all monomial curves are s.t.c.i. in \mathbb{P}^{3}, if the base field K is of positive characteristic [12]. But, no one knows whether even the symmetric monomial curves are s.t.c.i. in \mathbb{P}^{3} in the characteristic zero case. To address this case, we work with an algebraically closed field K of characteristic zero throughout the paper.

A minimal system of generators for the ideal of symmetric monomial curves in \mathbb{P}^{3} is given in [6] as follows:

$$
f=x y-w z \quad \text { and } \quad F_{i}=w^{q-p-i} y^{p+i}-x^{q-i} z^{i}, \quad \text { for all } \quad 0 \leq i \leq q-p
$$

Recall that a monomial curve $C(p, q, r) \subset \mathbb{P}^{3}$ is called Arithmetically Cohen-Macaulay (ACM) if its projective coordinate ring is Cohen-Macaulay. In the same article [6], it is also proven that a monomial curve in \mathbb{P}^{3} is ACM if and only if its ideal is generated by at most 3 polynomials. Now, if the ideal of a symmetric monomial curve $C(p, q, p+q)$ is generated by two polynomials it would follow that $p=q$. But, this contradicts with the assumption that $p<q<r$. So, the ideal of an ACM symmetric monomial curve $C(p, q, p+q)$ is generated by three polynomials and hence $p=q-1$, where necessarily $q>1$. Thus, all symmetric ACM monomial curves in \mathbb{P}^{3} are of the form $C(q-1, q, 2 q-1)$ and their defining ideals are generated minimally by the following three polynomials:

$$
\begin{aligned}
f & =x y-z w \\
g: & =-F_{1}=x^{q-1} z-y^{q} \\
h: & =-F_{0}=x^{q}-y^{q-1} w
\end{aligned}
$$

The fact that $C(q-1, q, 2 q-1)$ is a s.t.c.i. curve was shown in [17], but the equation of the second surface was not given. Here, we give an alternative proof that constructs the polynomial G such that the symmetric ACM monomial curve is the intersection of the surface $G=0$ and a binomial surface defined by one of f, g

SAHIN

and h. We construct G by adding $x^{q} g$ to the q-th power of f and dividing the sum by z. Hence we get the following theorem.

Theorem. Any symmetric Arithmetically Cohen-Macaulay monomial curve in \mathbb{P}^{3}, which is given by $C(q-$ $1, q, 2 q-1)$ for some $q>1$, is a set-theoretic complete intersection of the following two surfaces:

$$
\begin{gathered}
g=x^{q-1} z-y^{q}=0 \text { and } \\
G=x^{2 q-1}+\sum_{k=1}^{q}(-1)^{k} \frac{q!}{(q-k)!k!} x^{q-k} y^{q-k} z^{k-1} w^{k}=0 .
\end{gathered}
$$

Proof. Note first that $z G=f^{q}+x^{q} g$. Take a point $\left(w_{0}, x_{0}, y_{0}, z_{0}\right)$ from $Z(f, g, h)$. Then, by $z_{0} G\left(w_{0}, x_{0}, y_{0}, z_{0}\right)$ $=f^{q}\left(w_{0}, x_{0}, y_{0}, z_{0}\right)+x_{0}^{q} g\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$ we observe that either $G\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$ or $z_{0}=0$.

If $G\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$ then $\left(w_{0}, x_{0}, y_{0}, z_{0}\right) \in Z(g, G)$. If $z_{0}=0$ then by $g\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$ we get $y_{0}=0$, and by $h\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$ we get $x_{0}=0$. Thus $\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=(1,0,0,0)$ which is in $Z(g, G)$.

Let us now take a point $\left(w_{0}, x_{0}, y_{0}, z_{0}\right) \in Z(g, G)$. Then either $z_{0}=0$ or we can assume $z_{0}=1$. If $z_{0}=0$ then by $g\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$ we get $y_{0}=0$, and by $G\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$ we obtain $x_{0}=0$ in this case. Thus $\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=(1,0,0,0)$ which is in $Z(f, g, h)$. On the other hand, if $z_{0}=1$ then by $G=f^{q}+x_{0}^{q} g$ we see that $f\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$. Moreover, we have $x_{0} y_{0}=w_{0}$ and $x_{0}^{q-1}=y_{0}^{q}$ in this case. Hence we obtain the following $x_{0}^{q}=x_{0} x_{0}^{q-1}=x_{0} y_{0}^{q}=x_{0} y_{0} y_{0}^{q-1}=w_{0} y_{0}^{q-1}$, meaning that $h\left(w_{0}, x_{0}, y_{0}, z_{0}\right)=0$.

Remark. Note that the symmetric ACM monomial curves above are s.t.c.i. on the binomial surface $g=0$. This is not true for symmetric non-ACM monomial curves; that is, they can never be a s.t.c.i. on a binomial surface [18, Theorem 5.1]. Thus it is very difficult to construct surfaces on which symmetric non-ACM monomial curves in \mathbb{P}^{3} are s.t.c.i. with the simplest open case being the Macaulay's quartic curve $C(1,3,4)$.

Acknowledgement

The author would like to thank Ali Sinan Sertöz, for his extensive helps and invaluable comments.

References

[1] Arslan, F.: Cohen-Macaulayness of tangent cones, Proc. Amer. Math. Soc. 128, 2243-2251 (2000).
[2] Barile, M. and Morales, M.: On the equations defining projective monomial curves, Comm. Algebra 26, 1907-1912 (1998).
[3] Barile, M., Morales, M. and Thoma, A.: On simplicial toric varieties which are set-theoretic complete intersections, Journal of Algebra 226, 880-892 (2000).
[4] Bresinsky, H.: Monomial space curves in \mathbb{A}^{3} as set-theoretic complete intersection, Proc. Amer. Math. Soc. 75, 23-24 (1979).

ŞAhin

[5] Bresinsky, H.: Monomial Gorenstein curves in \mathbb{A}^{4} as set-theoretic complete intersection, Manuscripta Math. 27, 353-358 (1979).
[6] Bresinsky, H., Schenzel, P. and Vogel, W.: On liaison, arithmetical Buchsbaum curves and monomial curves in \mathbb{P}^{3}, Journal of Algebra 86, 283-301 (1984).
[7] Eisenbud, D. and Evans, E.G.: Every algebraic set in n-space is the intersection of n hypersurfaces, Inventiones Math. 19, 107-112 (1973).
[8] Eto, K.: Almost complete intersection monomial curves in \mathbb{A}^{4}, Comm. Algebra 22, 5325-5342 (1994).
[9] Eto, K.: Almost complete intersection monomial curves in \mathbb{A}^{5}, Gakujutsu Kenkyu (Academic Studies) Math. Waseda Univ. 43, 35-47 (1995).
[10] Eto, K.: Almost Complete Intersection Lattice Ideals, Report of researches 35(2), 237-248 (2005/9).
[11] Eto, K.: Set-theoretic complete intersection lattice ideals in monoid rings, Journal of Algebra 299, 689-706 (2006).
[12] Hartshorne, R.: Complete intersections in characteristic $p>0$, Amer. J. Math. 101, 380-383 (1979).
[13] Katsabekis, A.: Projection of cones and the arithmetical rank of toric varieties, J. Pure Appl. Algebra 199, 133-147 (2005).
[14] Moh, T.T.: Set-theoretic complete intersections, Proc. Amer. Math. Soc. 94, 217-220 (1985).
[15] Morales, M. and Thoma, A.: Complete intersection lattice ideals, Journal of Algebra 284, 755-770 (2005).
[16] Robbiano, L. and Valla, G.: On set-theoretic complete intersections in the projective space, Rend. Sem. Mat. Fis. Milano LIII, 333-346 (1983).
[17] Robbiano, L. and Valla, G.: Some curves in \mathbb{P}^{3} are set-theoretic complete intersections, in: Algebraic GeometryOpen problems, Proceedings Ravello 1982, Lecture Notes in Mathematics, Vol 997 (Springer, New York), 391-346 (1983).
[18] Thoma, A.: On the arithmetically Cohen-Macaulay property for monomial curves, Comm. Algebra 22(3), 805-821 (1994).
[19] Thoma, A.: On the set-theoretic complete intersection problem for monomial curves in \mathbb{A}^{n} and \mathbb{P}^{n}, J. Pure Appl. Algebra 104, 333-344 (1995).
[20] Thoma, A.: Affine semigroup rings and monomial varieties, Comm. Algebra 24(7), 2463-2471 (1996).
[21] Thoma, A.: Construction of set-theoretic complete intersections via semigroup gluing, Contributions to Algebra and Geometry 41(1), 195-198 (2000).
[22] Thoma, A.: On the binomial arithmetical rank, Arch. Math. 74, 22-25 (2000).

Mesut ŞAHİN
Received 25.12.2007
Department of Mathematics, Atılım University, 06836, Ankara-TURKEY
e-mail: mesut@atilim.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: Primary 14M10; Secondary 14H45.

