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On Symmetric Monomial curves in P
3
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Abstract

In this paper, we give an elementary proof of the fact that symmetric arithmetically Cohen-Macaulay

monomial curves are set-theoretic complete intersections. The proof is constructive and provides the

equations of the surfaces cutting out the monomial curve.
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1. Introduction

Let K be an algebraically closed field and R be the polynomial ring K[x0, . . . , xn] . To any irreducible
curve C in P

n , one can associate a prime ideal I(C) ⊂ R to be the set of all polynomials vanishing on C . The
arithmetical rank of C , denoted by μ(C), is the least positive integer r for which I(C) = rad(f1, . . . , fr), for
some polynomials f1, . . . , fr or equivalently C = H1

⋂ · · ·⋂Hr , where H1, . . . , Hr are the hypersurfaces defined
by f1 = 0, · · · , fr = 0, respectively. We denote by μ(I(C)) the minimal number r for which I(C) = (f1, . . . , fr),
for some polynomials f1, . . . , fr ∈ R . These invariants are known to be bounded below by the codimension of
the curve (or height of its ideal). So, one has the following relation:

n − 1 ≤ μ(C) ≤ μ(I(C))

Although μ(I(C)) has no upper bound (see [1], for an example), an upper bound for μ(C) is provided
to be n in [7] via commutative algebraic methods. Later in [2, 22] the equations of these n hypersurfaces that
cut out the curve C were given explicitly by using elementary algebraic methods.

The curve C is called a complete intersection if μ(I(C)) = n − 1. It is called an almost complete
intersection, if instead, one has μ(I(C)) = n . When the arithmetical rank of C takes its lower bound, that
is μ(C) = n − 1, the curve C is called a set-theoretic complete intersection, s.t.c.i. for short. It is clear that
complete intersections are set-theoretic complete intersection. The corresponding question for almost complete
intersection monomial curves is answered affirmatively in a series of papers by Eto [8, 9, 10].

Determining s.t.c.i. monomial curves is a classical and longstanding problem in algebraic geometry. Even
more difficult is to give explicitly the equations of the hypersurfaces involved. It is known that all monomial
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curves are s.t.c.i. in the projective n-space over a field of positive characteristic [3, 12, 14]. On the other
hand, nobody knows whether or not the same question has an affirmative answer in the characteristic zero case.
However, there are many partial results in this case [11, 13, 15, 16, 17, 19, 20, 21]. In fact, even the case of
symmetric monomial curves is still mysterious.

The purpose of this note is to give an alternative proof of the fact that symmetric monomial curves in
P

3 which are arithmetically Cohen-Macaulay are s.t.c.i. by elementary algebraic methods inspired by [4]. The
proof is constructive and provides the equations of the surfaces cutting out the curve.

2. Symmetric ACM Monomial Curves in P
3

Let p < q < r be some positive integers. A monomial curve C(p, q, r) in P
3 is given parametrically by

(w, x, y, z) = (ur , ur−pvp, ur−qvq , vr),

where (u, v) ∈ P
1 .

We say that the monomial curve C(p, q, r) is symmetric if p + q = r . In this case the parametric
representation of the curve C(p, q, p + q) becomes (up+q , uqvp, upvq , vp+q).

It is known that all monomial curves are s.t.c.i. in P
3 , if the base field K is of positive characteristic

[12]. But, no one knows whether even the symmetric monomial curves are s.t.c.i. in P
3 in the characteristic

zero case. To address this case, we work with an algebraically closed field K of characteristic zero throughout
the paper.

A minimal system of generators for the ideal of symmetric monomial curves in P
3 is given in [6] as

follows:

f = xy − wz and Fi = wq−p−iyp+i − xq−izi, for all 0 ≤ i ≤ q − p.

Recall that a monomial curve C(p, q, r) ⊂ P
3 is called Arithmetically Cohen-Macaulay (ACM) if its

projective coordinate ring is Cohen-Macaulay. In the same article [6], it is also proven that a monomial curve

in P
3 is ACM if and only if its ideal is generated by at most 3 polynomials. Now, if the ideal of a symmetric

monomial curve C(p, q, p+ q) is generated by two polynomials it would follow that p = q . But, this contradicts
with the assumption that p < q < r . So, the ideal of an ACM symmetric monomial curve C(p, q, p + q) is
generated by three polynomials and hence p = q − 1, where necessarily q > 1. Thus, all symmetric ACM
monomial curves in P

3 are of the form C(q − 1, q, 2q− 1) and their defining ideals are generated minimally by
the following three polynomials:

f = xy − zw,

g : = −F1 = xq−1z − yq ,

h : = −F0 = xq − yq−1w.

The fact that C(q−1, q, 2q−1) is a s.t.c.i. curve was shown in [17], but the equation of the second surface
was not given. Here, we give an alternative proof that constructs the polynomial G such that the symmetric
ACM monomial curve is the intersection of the surface G = 0 and a binomial surface defined by one of f, g
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and h . We construct G by adding xqg to the q -th power of f and dividing the sum by z . Hence we get the
following theorem.

Theorem. Any symmetric Arithmetically Cohen-Macaulay monomial curve in P
3 , which is given by C(q −

1, q, 2q − 1) for some q > 1 , is a set-theoretic complete intersection of the following two surfaces:

g = xq−1z − yq = 0 and

G = x2q−1 +
q∑

k=1

(−1)k q!
(q − k)!k!

xq−kyq−kzk−1wk = 0.

Proof. Note first that zG = fq+xqg . Take a point (w0, x0, y0, z0) from Z(f, g, h). Then, by z0G(w0, x0, y0, z0)
= fq(w0, x0, y0, z0) + xq

0g(w0, x0, y0, z0) = 0 we observe that either G(w0, x0, y0, z0) = 0 or z0 = 0.

If G(w0, x0, y0, z0) = 0 then (w0, x0, y0, z0) ∈ Z(g, G). If z0 = 0 then by g(w0, x0, y0, z0) = 0 we get
y0 = 0, and by h(w0, x0, y0, z0) = 0 we get x0 = 0. Thus (w0, x0, y0, z0) = (1, 0, 0, 0) which is in Z(g, G).

Let us now take a point (w0, x0, y0, z0) ∈ Z(g, G). Then either z0 = 0 or we can assume z0 = 1. If
z0 = 0 then by g(w0, x0, y0, z0) = 0 we get y0 = 0, and by G(w0, x0, y0, z0) = 0 we obtain x0 = 0 in this case.
Thus (w0, x0, y0, z0) = (1, 0, 0, 0) which is in Z(f, g, h). On the other hand, if z0 = 1 then by G = fq + xq

0g

we see that f(w0 , x0, y0, z0) = 0. Moreover, we have x0y0 = w0 and xq−1
0 = yq

0 in this case. Hence we obtain

the following xq
0 = x0x

q−1
0 = x0y

q
0 = x0y0y

q−1
0 = w0y

q−1
0 , meaning that h(w0, x0, y0, z0) = 0. �

Remark. Note that the symmetric ACM monomial curves above are s.t.c.i. on the binomial surface g = 0.
This is not true for symmetric non-ACM monomial curves; that is, they can never be a s.t.c.i. on a binomial
surface [18, Theorem 5.1]. Thus it is very difficult to construct surfaces on which symmetric non-ACM monomial

curves in P
3 are s.t.c.i. with the simplest open case being the Macaulay’s quartic curve C(1, 3, 4).
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