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Local Fourier Bases and Ultramodulation Spaces

Salti Samarah, Fady Hasan

Abstract

It was proved that local Fourier bases are unconditional bases for modulation spaces Mw
p.q . We prove that

the local Fourier bases are unconditional bases for ultramodulation spaces M
wγ
p = M

wγ
p.p , where 0 < p < ∞

and wγ = es|x|γ , s > 0, γ ∈ (0, 1), x ∈ �.

1. Introduction

Modulation spaces, denoted by Mw
p.q , where 0 < p, q ≤ ∞ and w is a weight function, are very interesting

spaces in functional analysis. They have so many applications in physics, signal analysis and psuedodifferential
operators theory.

These spaces were invented in 1983 by Feichtinger. He developed his theory in terms of the behavior of
the short time Fourier transform.

The local Fourier bases are bases of the form{√
2

Δk
bk(x) sin

lπ

Δk
(x − αk)

}
, k ∈ Z, l = 1, 2, . . . ,

where αk < αk+1 < · · · , Δk = αk+1 − αk is a partition of R and bk(x) is a smooth function called a “bell
function”.

Wilson bases represent a special case of local Fourier bases. They are defined by

ψl,k(x) =

⎧⎪⎨⎪⎩
√

2b(x − k
2 ) if k is even and l = 0;√

2b(x − k
2 ) cos 2πl(x + 1

4 ) if k is even and l ∈ N0;√
2b(x− k

2 ) sin 2πl(x − 1
4) if k is odd and l ∈ N0.

In 1992, Feichtinger, Gröchenig and Walnut [1] proved that Wilson bases of exponential decay are
unconditional bases for all modulation spaces.
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In [4], it was proved that the local Fourier bases are unconditional bases for modulation spaces Mw
p,q ,

where 0 < p, q ≤ ∞ and p = q . This work was extended for p �= q [9]. This means that the local Fourier bases
are unconditional bases for modulation spaces Mw

p,q for all 0 < p, q ≤ ∞ .

In this paper we prove that the local Fourier bases are unconditional base for ultramodulation spaces

(Mwγ
p,p ) where wγ = es|x|γ , s ∈ R

+ , γ ∈ (0, 1), x ∈ R and 0 < p < ∞ .

2. Tools from Time Frequency Analysis

In this section we give important definitions and lemmas which will be used in the next sections.

Throughout this paper the integrals are taken over R , unless otherwise indicated.

For f ∈ L1(R) the Fourier transform is defined by

f̂(w) =
∫

f(x)e−2πiwxdx.

The inner product of f, g ∈ L2(R) is defined by

〈f, g〉 =
∫

f(x)g(x)dx.

The Schwartz space S is the space of all smooth functions with rapid decay, and the dual space of S ,
denoted by S′ , can be considered as the space of all functions with slow growth. The elements of S′ are called
tempered distributions.

For x, y ∈ R the translation and modulation operators are defined respectively by:

Txf(t) = f(t − x) and Myf(t) = e2πiytf(t). (1)

The window function is a non-zero smooth cut-off a function in an interval.

The short time fourier transform (STFT) of f ∈ S′ with respect to the window g ∈ S is defined as

Sgf(x, y) = 〈f, MyTxg〉 =
∫

f(t)g(t − x)e−2πiytdt = (f.Txg)̂(y), (2)

for all x, y ∈ R .

We need the following definitions and inequalities.

• If a ≥ 0, and wa(x) = (1 + |x|)a, ∀x ∈ R , then a strictly positive and continuous function w on R
2 is

called moderate weight with respect to wa if

w(x + y) ≤ Cwa(x)w(y), x, y ∈ R
2, C : constant.

We say that the weight w is submultiplicative if w(x + y) ≤ w(x)w(y).

• If f ∈ L1(I) for every bounded subset I of a set G , we say that f is locally integrable on the set G and

we write f ∈ L1
loc(G).
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• The weighted Lp -space denoted by Lp
w is the space of all functions f satisfying the relation

{f : ||f ||Lp
w

= ||fw||p < ∞}.

• Modulation Spaces: Given 0 < p, q ≤ ∞ , 0 �= g ∈ S(R) arbitrary window, and a moderate weight w on

R
2 , we define the modulation space Mw

p,q to be the space of all tempered distribution f for which the
norm

||f ||Mw
p,q

=

(∫ (∫
|Sgf(x, y)|p(w(x, y))pdx

)q/p

dy

)1/q

(3)

is finite. In the case p = q = ∞ , we use the supremum. If p = q , we write Mw
p instead of Mw

p,q , and if

w is constant weight, then we write Mp,q instead of Mw
p,q .

Next, we mention a useful pointwise estimate of STFT. For this we recall the set of functions

C = C(M, K, N) = {g ∈ CN(R) : supp g ⊆ [−K, K], max
k=0,1,...,N

||g(k)||1 ≤ M}. (4)

Lemma 1 [7] Let ϕ ∈ C∞(R) , supp ϕ ⊆ [−L, L] , and C = K + L. Then

sup
g∈C

|Sϕg(x, y)| ≤ C0
1

(1 + |y|)N
X[−C,C](x), for all x, y ∈ R,

with a constant C0 > 0 depending on M, K, N .

3. Weights

The weights are strictly positive and continuous functions on R
2 , and we denote them by letters: v, w, . . . .

A weight v is submultiplicative if:

v(x + ξ, y + η) ≤ v(x, y)v(ξ, η), ∀x, y, ξ, η ∈ R.

A weight w is v -moderate if ∃C > 0 such that:

w(x + ξ, y + η) ≤ Cv(x, y)w(ξ, η), ∀x, y, ξ, η ∈ R,

If v is of the form (1 + |x|+ |y|)s, s ≥ 0, then w is called s-moderate weight.

We consider the weight function w satisfying Beurling-Domar’s non-quasi analyticity condition:

∞∑
n=1

n−2 log w(nx, ny) < ∞. x, y ∈ R. (5)

We exhibit some examples of weight functions satisfying condition (5).
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Example 1.

1. (1 + |x|+ |y|)s where x, y ∈ R, s ≥ 0.

2. es1|x|γ+s2|y|γ where x, y ∈ R, , s1, s2 ≥ 0, γ ∈ (0, 1).

Proof. 1.
∞∑

n=1

n−2 log(1 + |nx|+ |ny|)s =
∞∑

n=1

sn−2 log(1 + n(|x|+ |y|))

≤
∞∑

n=1

sn−2
√

n(|x|+ |y|) < ∞,

2.
∞∑

n=1

n−2 log es1|nx|γ+s2|ny|γ =
∞∑

n=1

n−2 ln(es1|nx|γ+s2|ny|γ)
ln 10

=
1

ln10

∞∑
n=1

s1|x|γn−2+γ +
1

ln 10

∞∑
n=1

s2|y|γn−2+γ

=
1

ln10
(s1|x|γ + s2|y|γ)

∞∑
n=1

n−2+γ < ∞

�

Definition 1 [6] A strictly positive and continuous function wγ on R×R, γ ∈ (0, 1), is said to be an exponential
type (exp-type) weight if there exist s ∈ R and C > 0 such that:

wγ(x + ξ, y + η) ≤ Ces(|x|γ+|y|γ)wγ(ξ, η), x, y, ξ, η ∈ R,

and
wγ(x, εy) = wγ(x, y), ε ∈ {−1, 1}.

Proposition 1 The condition of exp-type weights

wγ(x + ξ, y + η) ≤ Ces(|x|γ+|y|γ)wγ(ξ, η), x, y, ξ, η, s ∈ R,

is equivalent to:

wγ(x + ξ, y + η) ≤ CeS(|x|2+|y|2)γ/2
wγ(ξ, η), x, y, ξ, η, S ∈ R.

Proof.

wγ(x + ξ, y + η) ≤ Ces(|x|γ+|y|γ )wγ(ξ, η)

≤ Ce2s(|x|+|y|)γ

wγ(ξ, η)

≤ Ce2s(2(|x|2+|y|2))γ/2

wγ(ξ, η)

= Ce2γ/2+1s(|x|2+|y|2)γ/2
wγ(ξ, η) = CeS(|x|2+|y|2)γ/2

wγ(ξ, η),
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where S = 2γ/2+1s . �

From the definition of the weights of exponential type we see that wγ is a weight moderate with respect

to v(x, y) = es(|x|γ+|y|γ) .

Example 2 (Weights of Exp-Type).

1. wγ(x, y) = es1|x|γ+s2|y|γ , x, y ∈ R, γ ∈ (0, 1), s1, s2 ≥ 0.

2. w̃γ(x, y) = wγ(x, y)e−λ|x|γ−τ|y|γ , where wγ(x, y) is exp-type weight and x, y, λ, τ ∈ R, γ ∈ (0, 1).

4. Ultramodulation Spaces

In this section we introduce the class of modulation spaces called ultramodulation spaces defined by the
corresponding class of weights.

Definition 2 (Ultramodualtion Spaces) [10] Modulation spaces Mw
p,q defined by an exp-type weight wγ are

called ultramodulation spaces.

Here we take up a special case: w1 ⊗ w2(x, y) = w1(x)w2(y) , where:

w1(x) = es|x|γ , w2(y) = es|y|γ , x, y ∈ R, γ ∈ (0, 1), s ≥ 0,

the corresponding ultramodulation space, denoted by Mw1⊗w2
p,q , is defined by

Mw1⊗w2
p,q =

{
f ∈ S′ :

∫
R

(
∫

R

|〈f, MyTxg〉|peps(|x|γ+|y|γ)dx)q/pdy < ∞
}

. (6)

with norm

‖f‖M
wγ
p,q

=
(∫

R

(
∫

R

|〈f, MyTxg〉|peps(|x|γ+|y|γ)dx)q/pdy

)1/p

.

Proposition 2 The Fourier transform F :f �→ f̂ is an isomorphism between M1⊗w2
p,q and Mw1⊗1

p,q .

Proof. In the proof of this proposition we will use the following facts:

• |〈f, MyTxg〉| = |〈TxMyg, f〉|, where g ∈ S and f ∈ S′ .

• |〈MxTyg, f〉| = |〈TyMxg, f〉|, where g ∈ S and f ∈ S′ .

• 〈h, f̂〉 = 〈ĥ, f〉 , where h ∈ S and f ∈ S′.

• (TxMyg)̂ = M−xT−y ĝ, where g ∈ S .
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Now, ∫
R

(∫
R

|〈f̂ , MyTxg〉|peps|x|γ dx

)q/p

dy =
∫

R

(∫
R

|〈TxMyg, f̂〉|peps|x|γdx

)q/p

dy

=
∫

R

(∫
R

|〈M−xT−y ĝ, f〉|peps|x|γdx

)q/p

dy

=
∫

R

(∫
R

|〈T−yM−xg̃, f〉|peps|x|γdx

)q/p

dy

=
∫

R

(∫
R

|〈TxMy g̃, f〉|peps|y|γ dy

)q/p

dx,

where g̃ = ĝ , and we replace −x by y and −y by x in the last equality. Therefore, f̂ ∈ Mw1⊗1
p,q ⇐⇒ f ∈ M1⊗w2

p,q .
�

A special case for ultramodulation spaces (p = q = 2):

M1⊗w2
2,2 =

{
f ∈ S′ : ||f ||2

M
1⊗w2
2,2

=
∫

R

∫
R

|〈f, MyTxg〉|2e2s|y|γdxdy < ∞
}

=
{

f ∈ S′ : ||f ||2
M

1⊗w2
2,2

=
∫

R

∫
R

|Sgf(x, y)|2e2s|y|γdxdy < ∞
}

,

(7)

where 0 �= g ∈ S .

5. Unconditional Bases for Ultramodulation Spaces

It was proved that the local Fourier bases are unconditional bases for all modulation spaces defined via
weight functions satisfying the condition w(x + y) ≤ C(1 + |x|)aw(y), C, a ∈ R

+ and x, y ∈ R . In this section

we will show that the local Fourier bases are unconditional bases for ultramodulation spaces M
wγ
p = M

wγ
p.p

defined via an exp-type weight wγ = es|x|γ , where γ ∈ (0, 1), s > 0 and x ∈ R .

Theorem 1 Suppose that {ψkl, (k, l) ∈ Z × N} ⊆ CN (R) are the local Fourier bases whenever the underlying

partition satisfies 1
A ≤ αk+1 − αk ≤ A, A > 1 , and infk εk = ε > 0 . If wγ = es|x|γ , γ ∈ (0, 1) and s > 0, x ∈ R

is a weight of exponential type on R
2 for N > max(1, 1

p ) where 0 < p < ∞ and N was defined in lemma (1),

then {ψkl} are unconditional bases for M
wγ
p . Every distribution f ∈ M

wγ
p has a unique expansion

f =
∑

(k,l)∈Z×N

〈f, ψkl〉ψkl, (8)

with unconditional convergence in the norm of M
wγ
p . Moreover,

1
C
||f ||Mwγ

p
≤

⎛⎝ ∑
(k,l)∈(Z×N)

|〈f, ψkl〉|pwγ(αk)p

⎞⎠1/p

≤ C||f ||Mwγ
p

, (9)
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for some constant C > 0 .

Since the Wilson bases is a special case of the local Fourier bases, we have the following corollary

Corollary 1 The Wilson bases of exponential decay are unconditional bases for M
wγ
p , 0 < p < ∞ .

We use the same techniques in [7] to prove Theorem 1. First we define the analysis operator τ : L2(R) →
l2(R),

τf = 〈f, ψk,l〉(k,l)∈I ,

where I is the index set.

The synthesis operator defined by τ� : l2(R) → L2(R), is

τ�((ckl)k,l) =
∑

(k,l)∈I

cklψkl.

We write: ηkl = (αk, l
2Δk

), (k, l) ∈ Z
2 ; and for a given weight function w we denote its restriction to

the discrete set {ηkl} by w′(k, l) = w(ηkl).

Lemma 2 [4] Using the notation of Lemma 1, set

G(x, y) = X[−C,C](x)
1

(1 + |y|)N
.

If {ψkl, (k, l) ∈ Z × N} ⊆ CN(R) are the local Fourier bases satisfying the assumptions of Theorem (2), then
there exists C1 > 0 , such that

|Sψψkl(x, y)| ≤ C1(TηklG(x, y) + Tηk,−lG(x, y)), for all x, y ∈ R.

Lemma 3 (Schur)[4] Suppose that w1(i), i ∈ I and w2(j), j ∈ J are two weight functions on the index sets
I, J respectively, and let A = (aji)j∈J,i∈I is an infinite matrix such that∑

i∈I

|aji|w1(i)−1 ≤ C0w2(j)−1 < ∞ ∀j ∈ J, (10)

and ∑
j∈J

|aji|w2(j) ≤ C1w1(i) < ∞ ∀i ∈ I. (11)

for some constants C0, C1 > 0 . Then the map A is bounded from lpw1
(I) into lpw2

(J) for 1 ≤ p < ∞ .

Lemma 4 (Schur) Suppose that w1(i), i ∈ I and w2(j), j ∈ J are two weight functions on the countable index
sets I, J respectively, and let A = (aji)j∈J,i∈I be an infinite matrix such that∑

j∈J

|aji|pw2(j)p ≤ C2w1(i)p < ∞ ∀i ∈ I, (12)

for some constant C2 > 0 . Then the map A is bounded from lpw1
(I) into lpw2

(J) for 0 < p < 1 .
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Proof. Let c = (ci)i∈I ∈ �p
w1

(I). Then

‖Ac‖p

p

w2
=

∑
j∈J

∣∣∣∣ ∑
i∈I

ajici

∣∣∣∣pw2(j)p

≤
∑

j

∑
i

|aji|p|ci|pw2(j)p (because p < 1)

=
∑

i

|ci|p
∑

j

|aji|pw2(j)p

= C0

∑
i

|ci|pw1(i)p = C0 ‖c‖p



p
w1

.

�

Theorem 2 [3] Given g ∈ S , 0 < p < ∞ , and a moderate weight w . Let δ, β > 0 be such that for some

integer M ≥ 1 , δβ ≤ 1/M . Suppose that MδnTβmg, k, n ∈ Z generates a frame for L2 . Then given any
f ∈ Mw

p , we can write

f =
∑
m,n

〈f, MδnTβmS−1g〉MδnTβmg.

The sum converges in the norm topology of Mw
p . Moreover, there exists C = C(δ, β, g) > 0 such that for all

f ∈ Mw
p

1
C
||f ||Mw

p
≤

(∑
m,n

|〈f, MδnTβmg〉|pw(βm, δn)p

)1/p

≤ C||f ||Mw
p
,

where S is the Gabor frame operator

Sf =
∑
m,n

〈f, MδnTβmg〉MδnTβmg.

Proposition 3 Suppose that wγ(x) = es|x|γ is an exp-type weight, where γ ∈ (0, 1) and x, s ∈ R , then:

1. wγ(x) ≤ wγ(βm)es|x−βm|γ , where β > 0 , m ∈ Z .

2. wγ(x + y) ≤ wγ(x)wγ(y) , where x, y ∈ R .

Proof.

1. wγ(αk) = es|αk|γ = es|αk−βm+βm|γ ≤ es(|αk−βm|+|βm|)γ ≤ es|αk−βm|γ es|βm|

= wγ(βm)es|αk−βm|γ .

2. wγ(x + y) = es|x+y|γ ≤ es(|x|+|y|)γ ≤ es(|x|γ+|y|γ) = es|x|γes|y|γ = wγ(x).wγ(y).
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�

Proposition 4 Let 0 < p < ∞ and let{ψkl, (k, l) ∈ Z × N} ⊆ CN(R) be the local Fourier bases whose

underlying partition satisfies 1
A ≤ αk+1 − αk ≤ A, A > 1 , and infk εk = ε > 0 . If wγ = es|x|γ , γ ∈ (0, 1), 0s >

0, x ∈ R is an exp-type weight, then for N > max(1, 1
p ) , then τ is a bounded operator from M

wγ
p into lpw′

γ
(I) .

Proof. The proof of this proposition is based on Lemmas 3, 4 and Theorem 2.

For the case 1 ≤ p < ∞ we follow the same steps as in [9, Proposition 1].

We use also Proposition 4 for the proof of this case.

For the case 0 < p < 1 . Since by Theorem 2

f ∈ Mw
p if and only if f =

∑
m,n∈Z

〈f, MδnTβm〉MδnTβmg

with

1
C
||f ||Mw

p
≤

⎛⎝ ∑
m,n∈Z

|〈f, MδnTβm〉|pw(βm, δn)p

⎞⎠1/p

≤ C||f ||Mw
p
.

(τf)kl = 〈f, ψk,l〉 =
∑

m,n∈Z

〈f, MδnTβm〉〈MδnTβmg, ψkl〉,

then to show ((τf)kl) ∈ lpw′
γ
, it is enough to show that the map

A(k,l),(m,n) = 〈MδnTβmg, ψkl〉,

maps the sequence (〈f, MδnTβm〉) ∈ lpw1
(Z2), w1(m) = wγ(βm) into lpw′

γ
(I). For this, it is sufficient to verify

Condition (12), i.e.

∑
k,l

|〈MδnTβmg, ψkl〉|pwγ(αk)p ≤ C2wγ(βm)p < ∞, ∀m, n ∈ Z.

By Lemma 2, Condition (12) becomes∑
k,l∈Z

|〈MδnTβmg, ψkl〉|pwγ(αk)p

≤ C2wγ(βm)p
∑

k,l∈Z

G(βm − αk, δn − ±l

2Δk
)peps|αk−βm|γ

≤ C2wγ(βm)p
∑

k,l∈Z

X[−C,C](βm − αk)
(

1 + | ±l

2Δk
− δn|

)−pN

eps|αk−βm|γ = (∗).
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Since 1
A ≤ αk+1 − αk ≤ A, A > 1, there are at most 2CA terms αk in every interval of length 2C .

(∗) ≤ C2wγ(βm)p2CAep.s.Cγ

sup
k∈Z

∑
l∈Z

(
1 + | ±l

2Δk
− δn|

)−pN

.

Since N > 1
p , the sum is finite with a bound independent of m and n . �

Proposition 5 τ� is a bounded operator from lpw′
γ

into M
wγ
p for 0 < p < ∞ .

Proof. For the case 1 ≤ p < ∞ the proof is similar to that in [4, Proposition 2 ].

For the case 0 < p < 1 the proof is similar to that in [7, Proposition 3]. �

Proof of Theorem (1).

Proof. Since τ and τ� are bounded operators on M
wγ
p and lpw′

γ
, the identity

f =
∑
k,l

〈f, ψkl〉ψkl = τ�τf,

extends from L2(R) to M
wγ
p , 0 < p < ∞ with unconditional convergence of the series above. Thus {ψkl}kl

spans a dense subspace in M
wγ
p . The norm in the theorem follows from:

‖f‖M
wγ
p

= ‖τ�(〈f, ψkl〉(k,l)∈I)‖M
wγ
p

≤ ‖τ�‖op‖〈f, ψkl〉(k,l)∈I‖lp
w′

γ

= ‖τ�‖op‖‖τ‖op‖f‖M
wγ
p

,

also, since the coefficients in f =
∑

k,l cklψkl are uniquely determined by

ckl = 〈f, ψkl〉 = (τf)kl,

we estimate

‖
∑
k,l

λklcklψkl||Mwγ
p

= ‖τ�(λklckl)(k,l)‖M
wγ
p

≤ ‖τ�‖op‖(λklckl)(k,l)‖lp
w′

γ

≤ ‖τ�‖op‖λ‖∞‖τ‖op‖f‖M
wγ
p

,

where λ = (λkl)(k,l)∈I , c = (ckl)(k,l)∈I . This completes the proof that {ψkl, (k, l) ∈ I} is an unconditional

bases for M
wγ
p . �
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