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On τ -lifting Modules and τ -semiperfect Modules

Mustafa Alkan

Abstract

Motivated by [1], we study on τ -lifting modules (rings) and τ -semiperfect modules (rings) for a preradical

τ and give some equivalent conditions. We prove that; i) if M is a projective τ -lifting module with

τ(M) ⊆ δ(M), then M has the finite exchange property; ii) if R is a left hereditary ring and τ is a left

exact preradical, then every τ -semiperfect module is τ –lifting; iii) R is τ -lifting if and only if every finitely

generated free module is τ -lifting if and only if every finitely generated projective module is τ -lifting; iv)

if τ(R) ⊆ δ(R), then R is τ -semiperfect if and only if every finitely generated module is τ -semiperfect if

and only if every simple R–module is τ -semiperfect.
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1. Introduction

The concept of semiperfect rings was generalized to I -semiperfect ring for an ideal I of a ring by
Yousif and Zhou in [16]. Then Nicholson and Zhou defined the concept of strongly lifting and gave some

characterizations of I -semiperfect rings in [9]. A module theoretic version of I -semiperfect ring is studied in

[10] and [11] by considering any fully invariant submodule of a module. Let M be an R -module. Following

[10], M is said to be U –semiperfect if for any submodule N of M , there is a projective direct summand A

of M such that N = A ⊕ B and B ⊆ U for a fully invariant submodule U of M . Moreover, in [11], Özcan
and Aydogdu generalized the concept of strongly lifting ideals and gave some characterization of U -semiperfect
module. In [1], for a radical τ, Al-Takhman, Lomp and Wisbauer defined and studied the concept of τ -lifting,

τ -supplement and τ -semiperfect modules. Following [1], M is τ -lifting if any submodule N of M has a

decomposition N = A ⊕ (B ∩ N) such that M = A ⊕ B and B ∩ N ⊆ τ (B) and also they called that M

is τ -semiperfect if for any submodule N of M , M/N has a projective τ -cover. It is clear that if M is

projective, then the concepts of τ (M)-semiperfect and τ -lifting are coincide and if N is a submodule of M

with the decomposition in the definition of τ -lifting, then M/N has a projective τ -cover. Motivated by [1], we
study on τ -lifting module and the relations between a projective τ -cover and the decomposition for a preradical
τ . We also give some equivalent condition for a τ -semiperfect module and a τ -lifting module. The remainder
of our paper is organized as follows.
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In Section 2, we define the concept of quasi-strongly lifting (QSL). We call submodule U is called quasi

strongly lifting (QSL) in M if whenever (A+U)/U is a direct summand of M/U , M has a direct summand

P such that P ⊆ A and P + U = A + U . Then we prove that τ (L) is QSL in L if L is direct summand of M

and τ (M) is QSL in M . Also, we recall SDM submodule which is given in [3], and show that δ(M) is the sum
of all SDM submodule of M if M is a projective module.

In Section 3, we concern with τ -lifting modules and consider certain preradicals Soc, Z and δ . We show
that if M is τ -lifting, then M is refinable if and only if every submodule of τ (M) is DM in M if and only

if every submodule of τ (M) is QSL in M and we prove that M is δ -lifting and M has the finite exchange

property whenever M is a projective τ -lifting and τ (M) ⊆ δ(M). For two preradicals τ, ρ, we also study the
relation between a τ -lifting module and ρ-lifting module. We also prove that if M is a δ -lifting projective
module, M/Soc(M) is lifting, but we prove the converse if M/Soc(M) is projective. Moreover, we show that
if R is a left hereditary ring and τ is a left exact preradical, then every τ -semiperfect module is τ -lifting.
Finally, we give some equivalent statements for τ -semiperfect modules (rings) and τ -lifting modules (rings) as

well: i) R is τ -lifting if and only if every finitely generated free module is τ -lifting if and only if every finitely

generated projective module is τ -lifting; ii) if M is a finitely generated projective module with τ (M) ⊆ δ(M),

then M is τ -semiperfect if and only if every simple factor module of M has a projective τ -semiperfect; iii) if

τ (RR) ⊆ δ(RR), then R is τ -semiperfect if and only if every finitely generated module is τ -semiperfect if and
only if every simple R -module is τ -semiperfect.

A functor τ from the category of the left R -modules to itself is called a preradical if it satisfies the
following properties:

i) τ (M) is a submodule of an R -module M ,

ii) If f : M ′ → M is an R -module homomorphism, then f(τ (M ′)) ⊆ τ (M) and τ (f) is the restriction

of f to τ (M ′).

A preradical τ is called a left exact preradical if for any submodule K of M , τ (K) = τ (M) ∩ K . But

it is well known if K is a direct summand of M , then τ (K) = τ (M) ∩ K for a preradical. In this note, τ will
be a preradical unless otherwise stated.

Throughout this paper, R denotes an associative ring with an identity and modules are an unital left
R -modules. We write Rad(M), Soc(M) and Z(M) for Jacobson radical, the socle, the singular submodule,
respectively.

2. Strongly Lifting

Let U be a submodule of an R -module M . U is called strongly lifting in M if whenever M/U =

(A + U) /U ⊕(B + U) /U, then M has a decomposition M = P ⊕Q such that P ⊆ A , (A+U)/U = (P +U)/U

and (B + U)/U = (Q + U)/U in [11]. By removing the condition on B , we may extend the definition; the

submodule U is called quasi strongly lifting (QSL) in M if whenever (A + U)/U is a direct summand of

M/U , M has a direct summand P such that P ⊆ A and P + U = A + U .

Lemma 2.1 Let U be a submodule of a projective module M . If U is QSL then U is strongly lifting in M .
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Proof. Let M/U = (A + U) /U ⊕ (B + U) /U for submodules A, B of M . Then there is a decomposition

M = P⊕Q such that P +U = A+U and P ⊆ A . Then M = A+U+B = P +(U+B) and since M is projective,

M = P ⊕P ′ for a submodule P ′ ⊆ U +B . Then M/U = (P +U)/U ⊕ (P ′ +U)/U = (P + U) /U ⊕ (B + U) /U

and so (P ′ + U)/U = (B + U) /U . �

By using a similar proof of Theorem 2.3 in [11], we have the following lemma

Lemma 2.2 Let M be a module and A be a direct summand of M such that M/A is projective then A is
QSL in M .

Proof. Let M/A = (X1 +A)/A⊕ (X2 +A)/A for submodules X1 and X2 . Assume that M = A⊕B and α

is an isomorphism from B to M/A and so for submodules B1 and B2 of B , we have that α(Bi) = (Xi +A)/A

and so (Bi + A)/A = (Xi + A)/A for i = 1, 2. Then B1 ∩B2 ⊆ (B1 + A)∩ (B2 + A) = A and so B1 ∩B2 = 0.

Now we claim that B = B1 +B2 . Let b ∈ B and so b = b1 +b2 +a where bi ∈ Bi and a ∈ A for i = 1, 2.
Then since A ∩ B = 0, it follows that a = 0. Then M = A ⊕ B1⊕ B2 and so Bi are projective. On the
other hand, since A⊕Bi = A+Xi, we have A⊕Bi = A⊕Yi where Yi ⊆ Xi by [7, 4.47]. Then A is QSL in M . �

Proposition 2.3 Let M be a module such that τ (M) is QSL in M . If L is a direct summand of M , then

τ (L) is QSL in L.

Proof. Let M = L ⊕ K and L/τ(L) = [A + τ (L)] /τ (L) ⊕ B/τ(L) for submodules A, B of L . Then

[A + τ (M)] /τ (M)⊕ [B + K + τ (M)] /τ (M) = M/τ (M) and so there is a decomposition M = P ⊕Q such that

P ⊆ A , A + τ (M) = P + τ (M). Hence

A + τ (M) = (A + τ (L)) ⊕ τ (K) = (P + τ (L)) ⊕ τ (K)

and so A + τ (L) = P + τ (L). This completes the proof. �

Proposition 2.4 Let M be projective. Then the following are equivalent:

i) τ (M) is QSL in M,

ii) If M/τ (M) = (M1 + τ (M)/τ (M)) ⊕ . . . ⊕ (Mt + τ (M))/τ (M)) for any positive integer t , then

M = A1 ⊕ . . .⊕ At , where A1 ⊆ M1 and Ai + τ (M) = Mi + τ (M) for all i.

Proof. It is enough to show that i) =⇒ ii).

Let M/τ (M) = ([M1 + τ (M)]/τ (M)) ⊕ . . . ⊕ ([Mt + τ (M)]/τ (M)) for any positive integer t then

M/τ (M) = ([M1 + τ (M)]/τ (M))⊕ ([M2 + . . .+Mt + τ (M)]/τ (M)). There is a direct summand A1 of M such

that A1 ⊆ M1 and A1+τ (M) = M1+τ (M). Since M is projective, there is a decomposition M = A1⊕B such

that B ⊆ M2 + . . .+Mt + τ (M) and so B + τ (M) = M2 + . . .+Mt + τ (M). Then there are submodules Ni of

B such that Ni + τ (B)+ τ (A) = Mi + τ (M) and B/τ(B) = (N2 + τ (B)) /τ (B)⊕ . . .⊕ (Nt + τ (B)) /τ (B); and

since τ (B) is QSL in B , there is a decomposition B = A2 ⊕B2 such that A2 ⊆ N2, B2 ⊆ N3 + . . .+Nt + τ (B)
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and A2 + τ (B) = N2 + τ (B) and so A2 + τ (M) = N2 + τ (M). Then M = A1 ⊕B = A1 ⊕A2 ⊕B2 . And so af-

ter finite steps, we have the decomposition M = A1⊕ . . .⊕At where A1 ⊆ M1 and Ai +τ (M) = Mi +τ (M). �

Let K be a submodule of a module M . Following [15], K is called δ -small in M if K + L �= M

for any proper submodule L of M with M/L singular. Zhou also defined the fully invariant submodule

δ(M) = ∩{K ≤ M : M/K is singular simple in R -mod} =
∑{K : K is δ -small in M} .

In [3], it is called that a proper submodule N of M is SDM (resp., DM ) in M if there is a direct

summand S of M such that S ⊆ N and M = S ⊕ X (resp., M = S + X) whenever N + X = M for a
submodule X of M .

It is clear that a δ -small submodule of a module and any direct summand of a module is DM, but there
is a SDM-submodule which is not δ -small (see Example 3.25).

We note the following lemma.

Lemma 2.5 [15, Lemma 1.2] Let K be a submodule of a module M . Then K is δ -small if and only if
M = X ⊕ Y for a projective semisimple submodule Y with Y ≤ K whenever X + K = M .

Let S(M) denote the sum of all SDM submodules of a module M . It is clear that S(M) contains

Soc(M) and δ(M).

Lemma 2.6 Let A, B be SDM submodule of a module M. Then A + B is SDM in M .

Proof. Let A + B +K = M for a submodule K . Since A is SDM in M , there is a submodule S of A such
that S ⊕ (B + K) = M and so B + (S ⊕ K) = M . Then similarly M = Q ⊕ (S ⊕ K) for a submodule Q of
B . Then A + B is SDM in M . �

Theorem 2.7 Let M be a a projective module. Then
i) Rx is SDM in M where x ∈ S(M) .

ii) S(M) = δ(M) and every finitely generated SDM submodule of M is δ -small.

Proof. i) Let x ∈ S(M) and Rx+K = M for a submodule K . Then x ∈ ∑n
i=1 Ki where n ∈ Z and Ki is

SDM in M and
∑n

i=1 Ki is SDM in M . Then (
∑n

i=1 Ki) + K = M and so for a submodule S, we have that

S ⊕ K = M . Then since M is projective and K is a direct summand , we have M = A ⊕ K for a submodule
A of Rx . Hence Rx is SDM in M .

ii) Since M is projective, δ(RM) is the intersection of all essential maximal submodules of M . Take

x ∈ S(M) and assume that x /∈ L for an essential maximal submodule L . Since x ∈ S(M), we get that

S ⊕ L = M for a submodule S of Rx , a contradiction. Hence S(M) = δ(M). �

3. τ -lifting

We concern with τ -lifting modules and consider certain preradicals Soc, Z and δ . We state [1,

Proposition 2.8] for a preradical τ .
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Proposition 3.1 For a submodule S of a module M , the following are equivalent:
i) there is a decomposition M = X ⊕ X′ such that X ⊆ S and X′ ∩ S ⊆ τ (X′) ,

ii) there is a decomposition S = A ⊕ T with A ⊆⊕ M and T ⊆ τ (M) ,

iii) there exists a direct summand A of M such that A ⊆ S and S/A ⊆ τ (M/A) ,

iv) there exists an idempotent homomorphism γ from M to M such that (1 − γ)(S) ⊆ τ (M) and

γ(M) ⊆ S .

For a submodule S of a module M, in [1], Al-Takhman, Lomp and Wisbauer say that S contains a
τ -dense direct summand if S satisfies one of the conditions of Proposition 3.1 and also M is called τ -lifting
if every submodule of M contains a τ -dense direct summand. In [11], τ -dense direct summand is named as

τ (M) respects S .

Following [1], (i) a submodule K ⊆ M is called a τ -supplement provided there exists some U ⊆ M

such that U + K = M and U ∩ K ⊆ τ (K); (ii) M is said to be τ -supplemented if every submodule K ⊆ M

has a τ -supplement in M ; (iii) it is called amply τ -supplemented if for any submodules K, V ⊆ M such
that M = K + V , there is a τ -supplement U for K with U ⊆ V . It is clear that a τ -lifting module is
τ -supplemented.

Lemma 3.2 Let M be a projective τ -supplemented module and assume that every τ -supplement submodule is
a direct summand of M . Then M is τ -lifting.

Proof. Let U be a submodule of M . Then there is a submodule K of M such that U ∩ K ⊆ τ (K) and
M = K + U . Hence K is a direct summand of M and since M = K + U and M is projective, it follows that
M = K ⊕ A such that A ⊆ U . Then U = A ⊕ (K ∩ U) and U is a τ -dense direct summand. �

Now we give relations between a τ -lifting module and an amply τ -supplemented module.

Lemma 3.3 Let M be an amply τ -supplemented module and assume that every τ -supplement submodule is a
direct summand of M . Then M is τ -lifting.

Proof. By hypothesis, a submodule A of M has a τ -supplement B and so B has a τ -supplement submod-

ule B
′

such that B
′ ⊆ A and M = B′ ⊕ B′′ for some B′′ . Then M = B′ +B and so A = B′ + (A ∩ B) =

B′ ⊕ (A ∩B′′). Let π denote the projection map from M to B′′ . Then A ∩B′′ = π(A) = π(A ∩B). Since B

is a τ -supplement of A , it follows that A ∩ B ⊆ τ (B) and so A ∩ B′′ ⊆ τ (B′′). �

Lemma 3.4 Let τ be a left exact preradical and M be a τ -lifting module. Then M is an amply τ -supplemented
module.

Proof. Let X and S be submodules of M such that M = X +S . We show that S contains a τ -supplement

of X . By assumption, write S = Y ⊕ T where M = Y ⊕ Y
′

for submodules Y
′
, Y and T = S ∩ Y ′ ⊆ τ (Y ′).

Then M = X + Y + T and also there is a decomposition M = Y1 ⊕ Y ′
1 such that (X + T ) ∩ Y = Y1 ⊕ T1

and T1 = (X + T ) ∩ Y ∩ Y ′
1 ⊆ τ (Y ′

1) and so T1 ⊆ τ (Y ′
1) ∩ Y = τ (Y ′

1 ∩ Y ). Then Y = Y1 ⊕ (Y ′
1 ∩ Y ) and so

M = X + T + (Y ′
1 ∩ Y ). Let L = T + (Y ′

1 ∩ Y ) and so L ⊆ S .

X ∩ L ⊆ [T ∩ (X + (Y ′
1 ∩ Y ))] + [(Y ′

1 ∩ Y ) ∩ (T + X)] ⊆ T + τ (Y ′
1 ∩ Y )
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Since τ is left exact, we have T + τ (Y ′
1 ∩ Y ) ⊆ τ (T )+ τ (Y ′

1 ∩ Y ) ⊆ τ (T +(Y ′
1 ∩ Y )) and so L is a τ -supplement

submodule of X in S . This completes the proof. �

Lemma 3.5 Let M be a τ -lifting module. Then τ (M) is QSL in M .

Proof. Let M/τ (M) = [K + τ (M)/τ (M)] ⊕ L/τ(M) for submodules K, L . Since M is τ -lifting, there is

a decomposition M = A⊕B such that K = A⊕(B∩K) and B∩K ⊆ τ (M) and so A+τ (M) = K+τ (M). �

Proposition 3.6 Let M be a module. Then the following statements are equivalent:

i) M is τ -lifting,

ii) M is τ -supplemented and τ (M) is QSL,

iii) M/τ (M) is semisimple and τ (M) is QSL.

Proof. i) ⇒ ii) ⇒ iii) Obvious.

iii) ⇒ i) Let U be a submodule of M. Then we have that M/τ (M) = [U + τ (M)/τ (M)] ⊕ [K/τ (M)]

for a submodule K and so there is a decomposition M = A ⊕ B such that A ⊆ U , A + τ (M) = U + τ (M).

Since τ (M) = τ (A) ⊕ τ (B), it follows that U ∩ B ⊆ (U + τ (M)) ∩ (B + τ (M)) = (A + τ (M)) ∩ (B + τ (M)) =

[(A + τ (B)) ∩ B] + τ (A) = τ (M). Hence, U ∩ B ⊆ τ (M) ∩ B ⊆ τ (B) and so U contains a τ -dense direct
summand. �

A module M is called refinable if whenever M = A+B for submodules A, B, there is a direct summand
C of M such that C ⊆ A and M = C + B (see [6]). Then we have the following theorem

Theorem 3.7 Let M be a module. Consider the following conditions:

i) M is refinable,

ii) every submodule of τ (M) is QSL in M ,

iii) every submodule of τ (M) is DM in M .

Then i) =⇒ ii) =⇒ iii). If M is τ -lifting then iii) =⇒ i) .

Proof. i) =⇒ ii) Let N be a submodule of τ (M) and (L + N)/N ⊕ K/N = M/N for submodules L, K .
Then L + K = M and so there is a direct summand S of M such that S + K = M and S ⊆ L . Hence
(S + N)/N ⊕ K/N = (L + N)/N ⊕ K/N and so S + N = L + N .

ii) =⇒ iii) Let K be a submodule of τ (M) such that M = K +L for a submodule L and N := K ∩L .

Then K/N is a direct summand of M/N . Then there is a direct summand S of M such that S ⊆ K and
S + N = K . Then S + L = M and so K is DM in M .

iii) =⇒ i) Assume every submodule of τ (M) is DM. Let M = K + L for submodules L and K . Then

K = A ⊕ (K ∩ B) such that M = A ⊕ B and K ∩ B ⊆ τ (B). It follows that M = A + (K ∩ B) + L and so

B = (K ∩B) + [(A+L)∩B] . Since every submodule of τ (B) is DM in B by [3, Lemma 3.2], there is a direct

summand C of B such that B = [(A + L) ∩ B] + C and C ⊆ K ∩ B and so A ⊕ C is a direct summand of

M and M = (A + C) + L . Then K is DM in M . �
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A module M is said to have the exchange property if for any module X and a decomposition
X = M ′⊕Y = ⊕i∈IAi where M ′ ∼= M , there exist submodules A′

i of Ai for each i such that X = M ′⊕(⊕A′
i).

The module M is said to have the finite exchange property whenever this condition holds for a finite set.
Then in [8, Proposition 2.9], Nicholson proves that a projective module M has the finite exchange property if
and only if whenever M = A + B for a submodule A, B of M, there exists a direct summand P1 of M such
that P1 ⊆ A and M = P1 + B . Then, we have the following lemma.

Lemma 3.8 Let M be a projective module. If M has the finite exchange property, then δ(M) is δ -small.

Proof. Let U be a submodule of M such that U + δ(M) = M. Since M has the finite exchange property,

there is a direct summand A of M such that A ⊆ δ(M) and M = U + A . Then by [10, Proposition 2.13], A

is projective and semisimple and so M = U ⊕ S for a projective semisimple submodule S of A . Hence, δ(M)
is a δ -small in M by Lemma 2.5. �

In [15], a module M is called δ -semiperfect if for any submodule N of M, there is a decomposition

M = A ⊕ B such that N = A ⊕ (N ∩ B), A is projective and N ∩ B is δ -small in B . By the definitions,
a δ -semiperfect module is δ -lifting. In the following theorem, we prove that a projective δ -lifting module is
δ -semiperfect and give a characterization for the finite exchange property if M is projective.

Theorem 3.9 Let M be a projective τ -lifting module and τ (M) ⊆ δ(M) . Then we have:

i) δ(M) is δ -small and M is δ -semiperfect.

ii)M has the finite exchange property.

Proof. i) Let U be a submodule of M such that U + δ(M) = M. Then U = A ⊕ (B ∩ U) such that

M = A⊕B and B ∩U ⊆ τ (M). Then M = A + δ(M) and so M = A⊕C for a submodule C of δ(M). Then

by [10, Proposition 2.13], C is projective and semisimple. Since M = U + C , we get that M = U ⊕ K for

a projective semisimple submodule K of C . Hence, δ(M) is a δ -small in M by Lemma 2.5 and so B ∩ U is
δ -small in B . Hence, M is δ -semiperfect.

ii) Let X ⊆ τ (M). Then by i), X is δ -small in M and so X is DM in M . Therefore M has the
finite exchange property by Theorem 3.7. �

Corollary 3.10 Let M be a projective module and τ = Rad or τ = Z . Then M is τ -lifting if and only if
τ (M) = Rad(M) is small and M is lifting.

Proof. Let M be τ -lifting. If L+Z(M) = M , then L = A⊕(B∩L) where M = A⊕B and B∩L ⊆ Z(M).

Since M/A is singular, it follows that A is essential and so A = M = L . Hence Z(M) is small and since N is

a projective τ -lifting module with Rad(M) ⊆ τ (M), it follows that M is lifting and τ (M) = Rad(M). �

If M is a τ -lifting module, then by the same argument of [1, 2.2], there is a decomposition M = L ⊕ B

such that L is semisimple and τ (M) is an essential submodule of B . Then we have
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Lemma 3.11 Let M be a module. Then we have

i) If M is Soc-lifting, then Soc(M) is essential in M .

ii) If M is projective δ -lifting module, then Z(M) ⊆ Rad(M) ⊆ δ(M) and δ(M) is essential in M .

Proof. i) If M is Soc-lifting then by [1, 2.2], Soc(M) is essential in M .

ii) If M is a projective, then Soc(M) ⊆ δ(M) and so by [1, 2.2], δ(M) is essential in M .

Let x ∈ Z(M) and so Rx = A⊕ (B ∩Rx) where M = A ⊕B and B ∩Rx ⊆ δ(M). Then A is singular

and projective and so A = 0. Hence Z(M) ⊆ δ(M).

Let x ∈ Z(M) and let L be a submodule with Rx+L = M. Since Rx is δ -small in M, there is a semisim-

ple projective submodule S ⊆ Rx ⊆ Z(M) such that S ⊕L = M . Hence L = M and so Z(M) ⊆ Rad(M). �

Proposition 3.12 Let τ and ρ be preradicals and M be a τ -lifting module such that τ (M) + L = M and

τ (M)∩L ⊆ ρ(L) for a submodule L of M . Then there is a decomposition M = A⊕B such that A is ρ-lifting

and B ⊆ τ (M) .

Proof. Let M be τ -lifting. Then there is a decomposition M = A ⊕ B such that L = A ⊕ (B ∩ L) and

B ∩ L ⊆ τ (B) and so B ∩ L ⊆ τ (M) ∩ L ⊆ ρ(L).

Now we show that A is ρ-lifting and B ⊆ τ (M). Let K be a submodule of A . Since A is a direct
summand of M, it also τ -lifting. Then there is a decomposition A = X ⊕ Y such that K = X ⊕ Y ∩ K and
Y ∩ K ⊆ τ (Y ). Also Y ∩ K ⊆ τ (Y ) ∩ L ⊆ ρ(M) ∩ Y = ρ(Y ) since Y is a direct summand of M . Then A is
ρ-lifting.

Since τ (M) = τ (A) ⊕ τ (B), we get M = τ (M) + L = τ (A) + τ (B) + A + B ∩ L = A ⊕ τ (B) and so

τ (B) = B ⊆ τ (M). �

Corollary 3.13 Let M be a τ -lifting projective module such that τ (M) + L = M and τ (M)∩L ⊆ ρ(L) for a

submodule L of M where τ and ρ are elements of the set P = {δ, Soc, Z, Rad} . Then M is ρ-lifting.

Proof. By Proposition 3.12, there is a decomposition M = A ⊕ T such that A is ρ-lifting and T ⊆ τ (M).

If τ = Z , then T = 0. If τ ∈ {δ, Soc, Rad} , then by Proposition 3.9, τ (M) is δ -small in M and so does T .

Then T is semisimple and so T is ρ-lifting. Hence, by [10, Proposition 2.13], M is ρ-lifting. �

Let τ, ρ and σ be preradicals and M be a module. Then we say that M has ∗-property for {τ, ρ, σ}
if σ(N/ρ(N)) = τ (N)/ρ(N) for any direct summand N of M . For example, if M is a projective module, then

by [10, Proposition 2.13], Rad(M/Soc(M)) = δ(M)/Soc(M). Then we have the following proposition, which

is a generalization of [16, Theorem 1.4].

Proposition 3.14 Let M be a module with ∗-property for {τ, ρ, σ} . If M is τ -lifting, then M/ρ(M) is
σ -lifting.

In particular, the converse holds whenever ρ(M) is QSL in M and M is projective.
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Proof. Let M denote M/ρ(M) and L denote L/ρ(M) for a submodule L of M .

Assume that M is τ -lifting and N is a submodule of M . Then N = A ⊕ (B ∩ N) where M = A ⊕ B

and B ∩ N ⊆ τ (B). On the other hand, we have

(A + ρ(M)) ∩ (B + ρ(M)) = (A + ρ(B)) ∩ (B + ρ(A))

= ρ(B) + [A ∩ (B + ρ(A))]

= ρ(A) + ρ(B)

Thus A ⊕ B = M and it is enough to show that B ∩ N ⊆ σ(B). Then we get that B ∩ N = B ∩ N and

by σ(B/ρ(B)) = τ (B)/ρ(B) [B ∩ N + ρ(M)]/ρ(M) ⊆ [τ (B) + ρ(M)]/ρ(M) ⊆ σ([B + ρ(M)] /ρ(M)). Hence

M/ρ(M) is σ -lifting.

For the converse, assume that L is a submodule of M . Then there is a decomposition M = C ⊕D such

that L = C ⊕D ∩L and D ∩L ⊆ σ(D). Since ρ(M) is QSL in M, there is a decomposition M = A⊕B such

that A ⊆ L , A = C and B = D . Then it is enough to show that L ∩B ⊆ τ (B) since L = A⊕ (B ∩L). Then

B ∩ L = B ∩ L = D ∩ L ⊆ σ(D) = σ(B) and so B ∩ L ⊆ ρ(M) ⊆ τ (M) and B ∩ L ⊆ τ (M) ∩ B = τ (B) since
B is direct summand. �

Proposition 3.15 Let M be a projective module. If M is δ -semiperfect, then M/Soc(M) is lifting.

In particular, the converse holds whenever M/Soc(M) is projective.

Proof. Let M denote M/Soc(M) and L denote L/Soc(M) for a submodule L of M .

Assume that M is δ -lifting and N is a submodule of M . Then N = A ⊕ (B ∩ N) where M = A ⊕ B

and B ∩ N is δ -small in B . Then it follows that B ∩ N is δ -small in B + Soc(M). On the other hand, we

have A ⊕ B = M and we get that B ∩ N = B ∩ N .

Now it is enough to show that B ∩ N is small in B . Let B ∩N + T = B for a submodule T/Soc(M).

Then B + Soc(M) = T + B ∩ N and so there is a projective semisimple submodule S such that S ⊕ T =

B + Soc(M) and so T = B + Soc(M). Then B ∩ N is small in B .

For the converse, assume that M and M are projective and L is a submodule of M . Then M/(L+SocM)

has a projective cover and so there is a decomposition M = A⊕B such that L+Soc(M) = A⊕[(L+Soc(M ))∩B]

and (L + Soc(M)) ∩ B is small in B . Then

M = Soc(M) + L + B = C ⊕ (L + B) for a submodule C of Soc(M). Since L + B is projective and B

is a direct summand of M , it follows that L + B = B ⊕ D for a submodule D of L and so we get that
L = D ⊕ (L ∩ (C + B)). Therefore, M is δ -semiperfect. �

In [1], it is said that a module M has a projective τ -cover if there is an epimorphism f from a

projective module P to M such that Kerf ⊆ τ (P ) and an R -module M is called τ -semiperfect if every
factor module of M has a projective τ -cover. Now we give some properties of a τ -semiperfect module.

Lemma 3.16 Let M be a τ -semiperfect module. Then we have that
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i) Rad(M) ⊆ τ (M) and M/τ (M) is semisimple.

ii) if τ (M) contains all projective semisimple direct summands, then δ(M) ⊆ τ (M) .

iii) if τ = Soc, then δ(M) ⊆ Soc(M) .

iv) if M is projective and τ = Soc, then Z(M) ⊆ Rad(M) ⊆ Soc(M) = δ(M) .

v) if M is projective and U is DM in M, then U is a τ -dense direct summand submodule.

Proof. First, we observe the following for an element x of M. Let f be an epimorphism from a projective
module P to M/Rx such that Kerf ⊆ τ (P ). Let π : M → M/Rx be a canonical epimorphism. Since P is

projective, it follows that there is a homomorphism α from P to M such that πα = f . Hence M = α(P )+Rx .

Let K := α(P ) and take y ∈ K ∩ Rx . Then y = α(t) for some t ∈ P and f(t) = πα(t) = π(y) = 0 and so

t ∈ Kerf ⊆ τ (P ). Hence y ∈ τ (M) ∩ K .

i) If x ∈ Rad(M) then K = M and so K ∩ Rx = Rx and τ (M) ∩ K = τ (M). This means x ∈ τ (M).

Take a submodule U/τ (M) of M/τ (M) to show that M/τ (M) is semisimple. Then M/U has a

projective τ -cover f from P to M/U such that Kerf ⊆ τ (P ). Let π be a canonical epimorphism from

M to M/U . Then πα = f for some α ∈ Hom(P, M) since P is projective and so M = U + α(P ). Let

u = α(p) ∈ U ∩ α(P ). Then f(p) = πα(p) = 0 and so p ∈ Kerf ⊆ τ (P ). Hence u = α(p) ∈ τ (M) and so,

U ∩ α(P ) ⊆ τ (M). Then U/τ (M) is a direct summand of M/τ (M).

ii) If x ∈ δ(M), then Rx is δ -small and so there is a semisimple projective submodule S of Rx such

that M = K ⊕ S and so Rx = (K ∩ Rx) ⊕ S . If S ⊆ τ (M), then Rx ⊆ τ (M).

iii) Clear.

iv) If M is projective, then Soc(M) ⊆ δ(M) and so by ii), Soc(M) = δ(M).

If M is Soc-semiperfect, then M is Soc-lifting and so by [2, Corollary 4.7], Z(M) ⊆ Rad(M) ⊆
Soc(M) = δ(M)

v) Let U be DM in M and f be an epimorphism from a projective module P to M/U such that

Kerf ⊆ τ (P ) and there is an homomorphism α from P to M such that πα = f where π is the canonical

epimorphism from M to M/U . Then M = U + α(P ) and so M = S + α(P ) for a direct summand S of M

in U . Since M is projective, M = S ⊕ Q for a submodule Q of α(P ). Take x ∈ α(P ) ∩ U and so x = α(t)

for some t ∈ P . Since f(t) = πα(t) = 0, it follows that t ∈ Kerf ⊆ τ (P ) and x ∈ τ (M). Therefore, U is a
τ -dense direct summand. �

By the argument of the proof of Lemma 3.16, we have the following corollary.

Corollary 3.17 Let M be a finitely generated module and assume that every simple factor module of M has
projective τ -cover. Then M/τ (M) is semisimple.

Observe that a projective τ -lifting module is τ -semiperfect. If τ = Soc , then a projective τ -semiperfect
is τ -lifting by [10, Lemma 2.22]. However, we don’t know whether or not a projective τ -semiperfect module is
τ -lifting. Now, under some conditions which are given below, we prove that a projective τ -semiperfect module
is τ -lifting.

Theorem 3.18 Let τ be a left exact preradical and R be a left hereditary ring. Then a projective τ -semiperfect
module is τ -lifting.
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Proof. Let M be a projective τ -semiperfect module and U be a submodule of M . Assume f is an epi-
morphism from a projective module Q to M/U such that Kerf ⊆ τ (Q). Let π be the canonical epimorphism

from M to M/U . Since M is projective, there is a homomorphism h from M to Q such that fh = π .

Let H := h(M) and so since R is a left hereditary ring, it follows that H is projective. Then there is a

homomorphism α from H to M such that hα = 1H and so M = Kerh ⊕ α(H). Let a ∈ Kerh and so

fh(a) = π(a) = 0 and so Kerh ⊆ U . On the other hand, if x ∈ α(H) ∩ U then x = α(t) for t ∈ H and so

f(t) = fhα(t) = πα(t) = 0. Then t ∈ Kerf ⊆ τ (Q) and so t ∈ τ (Q) ∩ H = τ (H) and so α(t) ∈ τ (α(H)).
Therefore, U is a τ -dense direct summand and so M is τ -lifting. �

Theorem 3.19 Let M be a finitely generated module. Consider the following statements:
i) M is τ -semiperfect and τ (M) is QSL.

ii) Every simple factor module of M has a projective τ -cover and τ (M) is QSL.

iii) M is τ -lifting.

Then we have i) =⇒ ii) =⇒ iii). If M is projective then iii) =⇒ i.

Proof. i) ⇒ ii) Obvious.

ii) ⇒ iii) Let L be a submodule of M . Since M/τ (M) is semisimple by Corollary 3.17, it follows that

M/ [τ (M) + L] = ⊕i∈KSi where Si is simple. Let fi : Pi → Si be a projective τ -cover of Si . Put P := ⊕i∈KPi

and f := ⊕i∈Kfi . Then f : P → M/ [τ (M) + L] is a projective τ -cover of M/ [τ (M) + L] by [1, 2.13]. Let π

be a canonical epimorphism from M to M/ [τ (M) + L] . Then there is a homomorphism α from P to M such

that πα = f and so M = α(P ) + [τ (M) + L] . Let X := α(P ).

Let x = α(p) ∈ [L + τ (M)] ∩ X for p ∈ P . Since f(p) = πα(p) = π(x) = 0 and Kerf ⊆ τ (P ), we have

x ∈ τ (M) and so (L + τ (M)) ∩ X ⊆ τ (M). Then

[X + τ (M)] ∩ [L + τ (M)] = ([X + τ (M)] ∩ L) + τ (M)

⊆ [(X + L) ∩ τ (M)] + [(τ (M) + L) ∩ X] + τ (M) ⊆ τ (M)

Hence M/τ (M) = [X + τ (M)] /τ (M) ⊕ [L + τ (M)] /τ (M) and by hypothesis, there is a decomposition M =

A⊕B such that A ⊆ L and A+τ (M) = L+τ (M). Then M/τ (M) = [A + τ (M)] /τ (M)⊕[B + τ (M)] /τ (M) =

[L + τ (M)] /τ (M) ⊕ [B + τ (M)] /τ (M) and so

(L+ τ (M))∩ (B + τ (M)) = τ (M). It follows that B ∩L ⊆ τ (M) and so B ∩L ⊆ τ (B). Therefore, L contains
a τ -dense direct summand.

iii) =⇒ i) If M is projective, then M is τ -semiperfect. Also by Lemma 3.5, τ (M) is QSL . �

Theorem 3.20 The following statements are equivalent for a ring R :
i) RR is τ -lifting,

ii) Every finitely generated free R -module is τ -lifting,

iii) Every finitely generated projective R -module is τ -lifting.

iv) If F is a finitely generated free R -module and N is a fully invariant submodule, then F/N is
τ -lifting.
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Proof. i) ⇒ ii) Let R be τ -lifting. Then by [10, Theorem 2.10], a finitely generated free module is τ -lifting.

ii) ⇒ iii) ⇒ i), iv) ⇒ i) It is clear.

ii) ⇒ iv) Let K/N be a submodule of F/N . Then there is a decomposition F = A ⊕ B such that

K = A ⊕ (B ∩ K) and B ∩ K ⊆ τ (B). Then F/N = (A + N)/N ⊕ (B + N)/N and (A + N)/N ⊆ K/N .

Moreover, (B + N)/N ∩ K/N = (B ∩K + N)/N ⊆ τ (B + N/N). Hence M is τ -lifting. �

Corollary 3.21 Let a ring R be τ -lifting. Then for a finitely generated projective module M, τ (M) is QSL.

Theorem 3.22 Let M be a finitely generated module with a δ -small submodule τ (M) . Then M is τ -
semiperfect if and only if every simple factor module of M has a projective τ -cover.

Proof. Let every simple factor module of M have projective τ -cover. Then M/τ (M) is semisimple by

Corollary 3.17. Let U be a submodule of M and so M/(U + τ (M)) is semisimple. Then there is a homo-

morphism f from a projective module P to M/(U + τ (M)) such that Kerf ⊆ τ (P ). Let π be a map from

M/U to M/(U + τ (M)) such that π(m + U) = m + (U + τ (M)). Then there is a homomorphism α from P

to M/U such that πα = f and so M/U = α(P ) + (U + τ (M))/U and Kerα ⊆ τ (P ). On the other hand,

(U + τ (M))/U is δ -small in M/U as τ (M) is δ -small. Hence, M/U = α(P ) ⊕ S for a semisimple projective

submodule S of (U + τ (M)/U). Then P ⊕ S is projective and also we define and epimorphism h from P ⊕ S

to M/U such that h(p, s) = α(p) + s . Take an element (p, s) ∈ Kerh and so h(p, s) = α(p) + s = 0. Then

(p, s) ∈ Kerα ⊕ 0 ⊆ τ (P ) ⊕ 0 ⊆ τ (P ⊕ S). Therefore, M/U has a projective τ -cover. �

Theorem 3.23 Let τ (RR) ⊆ δ(RR) then the following statements are equivalent for a ring R :

i) RR is τ -semiperfect,

ii) Every finitely generated R -module M is τ -semiperfect,

iii) Every simple R -module has a projective τ -cover.

Proof. i) ⇒ ii) Let M be a finitely generated module and L be a submodule of M . Then M/(L +

τ (RR)M) is a finitely generated R/τ (RR)-module. Since R/τ (RR) is semisimple by Lemma 3.16, we get that

M/(L + τ (RR)M) is a semisimple R/τ (RR)-module and so it is a semisimple R -module. Hence there are

simple R -modules Si such that M/(L + τ (RR)M) = S1 ⊕ ...⊕ Sn and so Si = Rai is isomorphic to R/I for

some left ideal I . Then Si has a projective τ -cover and so does M/(L + τ (RR)M). Let f be an epimorphism

from a projective module P to M/(L + τ (RR)M) with Kerf ⊆ τ (P ) and π be a natural map from M/L to

M/(L+ τ (RR)M). Since P is projective, there is an homomorphism g from P to M/L such that gπ = f and

so M/L = g(P ) + [(L + τ (RR)M)/L] . Then since (L + τ (RR)M)/L is δ -small in M/L and by Lemma 2.5,

it follows that M/L = g(P ) ⊕ K for a semisimple projective submodule K of M/L . Since g is a projective

τ -cover from P to g(P ), we get that M/L has a projective τ -cover. Hence M is τ -semiperfect.

ii) ⇒ iii) Clear.

iii) ⇒ i) By Corollary 3.17, R/τ (RR) is semisimple and so by the argument of i) ⇒ ii), R is τ -
semiperfect. �
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Since SocRR is strongly lifting, we have the following corollary.

Corollary 3.24 The following statements are equivalent for a ring R ;

(1) R is Soc-lifting,

(2) R is Soc-semiperfect,

(3) R/Soc(RR) is semisimple,

(4) R is Soc-supplemented.

Example 3.25 [3] Let R =

[
F F

0 F

]
be the ring of upper triangular matrices over a field F . Then N =

[
0 F

0 F

]
is a projective left ideal, L =

[
F F

0 0

]
is a maximal left ideal and I =

[
0 F

0 0

]
is an ideal

of R . Consider the R -module M = N ⊕R/L. Then Soc(RM) =

[
0 F

0 0

]
⊕R/L is SDM but not δ -small

because 0 ⊕ R/L is not δ -small in M .
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