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doi:10.3906/mat-0805-26

Perturbation of Closed Range Operators
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Abstract

Let T, A be operators with domains D(T ) ⊆ D(A) in a normed space X . The operator A is called

T -bounded if ‖Ax‖ ≤ a‖x‖+ b‖Tx‖ for some a, b ≥ 0 and all x ∈ D(T ) . If A has the Hyers–Ulam stability

then under some suitable assumptions we show that both T and S := A+T have the Hyers–Ulam stability.

We also discuss the best constant of Hyers–Ulam stability for the operator S . Thus we establish a link

between T -bounded operators and Hyers–Ulam stability.
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1. Introduction and preliminaries

Let X, Y be normed linear spaces and T be a (not necessarily linear) mapping from X into Y . Following
[5, 6] we say that T has the Hyers-Ulam stability if there exists a constant K > 0 with the property:

(i) For any y in the range R(T ) of T , ε > 0 and x ∈ X with ‖T (x) − y‖ ≤ ε , there exists a x0 ∈ X

such that T (x0) = y and ‖x − x0‖ ≤ Kε .

We call such K > 0 a Hyers-Ulam stability constant for T and denote by KT the infimum of all Hyers-Ulam
stability constants for T . If KT is a Hyers-Ulam stability constant for T , then KT called the Hyers-Ulam
stability constant for T .

If T is linear then condition (i) is equivalent to:

(ii) For any ε > 0 and x ∈ X with ‖Tx‖ ≤ ε , there exists a x0 ∈ X such that Tx0 = 0 and
‖x − x0‖ ≤ Kε .

If put N (T ) := {x ∈ X : Tx = 0} , condition (ii) is equivalent to

(iii) For any x ∈ X there exists a x0 ∈ N (T ) such that ‖x − x0‖ ≤ K‖Tx‖ .

We refer the interested reader for more results on the stability of various mappings to papers [10, 11, 12]
and references therein, and for a comprehensive accounts of the Hyers-Ulam-Rassias stability of functional
equations to the monographs [3, 8, 13].

In [6] the authors proved the following useful result.
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Theorem 1.1 Let T be a closed operator from the subspace D(T ) of a Hilbert space H into a Hilbert space
K . The following assertions are equivalent:

(i) T has the Hyers-Ulam stability;

(ii) T has closed range.

Moreover, if one of the conditions above is true, then KT = γ(T )−1 , where

γ(T ) = sup{γ > 0 : ‖Tx‖ ≥ γ‖x‖, x ∈ D(T ) ∩ (N (T ))⊥}.

(Here ⊥ denotes the orthogonal complement in Hilbert spaces.)

Let X be a Banach space and let M, N be closed linear subspaces of X . Following [9] we define the
quantity

δ(M, N) := inf{ dist(x, N)
dist(x, M ∩ N)

: x ∈ M, x /∈ N}(≤ 1)

If M ⊆ N , then we set δ(M, N) = 1. Obviously δ(M, N) = 1, if M ⊇ N . It is well know that δ(M, N) is not
symmetric with respect to (M, N). If δ(M, N) = δ(N, M), we say that the pair (M, N) is regular. It is known
that any pair (M, N) is regular if X is a Hilbert space [9].

Let A and T be operators with their domains in a normed space X such that D(T ) ⊆ D(A), and

‖Ax‖ ≤ a‖x‖ + b‖Tx‖ (x ∈ D(T )), (1.1)

where a, b are nonnegative constants. Then we say that A is relatively bounded with respect to T or simply
it is T -bounded [9].

A bounded operator A is clearly T -bounded for any T with D(T ) ⊆ D(A).

In this paper, we show that if a T -bounded operator A has the Hyers-Ulam stability then under some
suitable assumptions the operator T and the perturbation S := A + T have the Hyers-Ulam stability. We
also discuss the best constant of Hyers-Ulam stability for the operator S . Thus we establish a link between
T -bounded operators and the Hyers-Ulam stability.

2. Main Results

Throughout this section H and K denote Hilbert spaces and A and T are operators having their domains
in H and their images in K . We start our work with the following theorem.

Theorem 2.1 Suppose that A is a T -bounded operator with a T -bound smaller than 1 . If T is a closed
operator and S := T + A , then the following assertions are equivalent:

(i) S has the Hyers-Ulam stability;

(ii) S has closed range.

Moreover, if A is closed and the operators A and T have the Hyers-Ulam stability and R(S) = R(A) + R(T )
then conditions (i) and (ii) are equivalent with the following assertions:

(iii)δ(M, N) > 0 , where M = R(A) and N = R(T ) ;

(v) δ(M⊥, N⊥) > 0 , M = R(A) and N = R(T ) .
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Proof. The operator S is closed since the operator A is T -bounded with a T -bound smaller than 1 and T

is a closed operator (see [9, Theorem 1.1]). It follows from [6, Theorem 3.1] that operator S has the Hyers-Ulam
stability if and only if S has closed range. Hence (i) ⇐⇒ (ii).

Now, if R(S) = R(A) + R(T ) and A and T have the Hyers-Ulam stability then R(A) and R(T ) are closed
and Theorems 4.2 and 4.8 of [9] show that (ii) ⇐⇒ (iii) and (iii) ⇐⇒ (v). �

Remark 2.2 If A and T are closed operators as in the above theorem, the operators A and T have the Hyers-
Ulam stability, S := T +A , R(S) = R(A)+R(T ) and we have R(A) ⊆ R(T ) or R(T ) ⊆ R(A) then δ(R(A) ,
R(T )) > 0 . Hence the operator S has the Hyers-Ulam stability and therefore its range is closed.

Corollary 2.3 Suppose that A is a T -bounded operator with a T -bound smaller than 1 . Let A and T be
closed, S := A + T and let A and T have the Hyers-Ulam stability. Suppose that at least one of the spaces
R(A)or R(T ) is finite dimensional and assume that R(S) = R(A) + R(T ) . Then operator S has the Hyers-
Ulam stability and so it has closed range.

Proof. Without loss of generality assume that R(A) is finite dimensional. It is known that there exists
u ∈ R(T ) such that dist(u,R(A)) = ‖u‖ (see [2]). Hence

δ(R(A),R(T )) = δ(R(T ),R(A)) > 0.

Therefore operator S = T + A has the Hyers-Ualm stability. �

Corollary 2.4 Suppose that A is a T -bounded operator with a T -bound smaller than 1 . Let A and T be closed,
S := A+T and let A , T and S have the Hyers-Ulam stability. If R(A)∩R(T ) = {0}, then δ(R(T ),R(A)) = 1
and

KS ≤ min{ 1
γ(T )

,
1

γ(A)
}.

Proof. Each z ∈ R(S) has a unique expression as z = x + y in which y ∈ R(T ) and x ∈ R(A). Consider
the projection P of R(S) onto R(T ) along R(A). Now we have

1 = ‖P ‖ = sup
z∈R(S)

‖Pz‖
‖z‖ = sup

y∈R(T ),x∈R(A)

‖y‖
‖x + y‖ = sup

y∈R(T )

‖y‖
dist(y,R(A))

= δ(R(A),R(T ))−1.

By the definition of γ(T ), we have ‖Tv‖ ≥ γ(T )‖v‖ . Hence ‖P ‖‖Tv + Av‖ ≥ ‖P (Tv + Av)‖ ≥ γ(T )‖v‖ . So

‖Sv‖ ≥ γ(T )‖v‖ . Since γ(S) ≥ γ(T ), by [6, Theorem 3.1], we have KS ≤ 1
γ(T )

. We can analogously show that

KS ≤ 1
γ(A) . Thus KS ≤ min{ 1

γ(A) ,
1

γ(T )} . �

Recall that if x, y are elements of the Hilbert space H , then the bounded operator x ⊗ y defined on H
by (x⊗ y)(z) = 〈z, y〉x is rank one if x, y are not zero. Let x1, x2, y be elements of H such that ‖x1‖ ≤ ‖x2‖

2
.

If A = x1 ⊗ y, T = x2 ⊗ y and S = A + T , then N (A) = N (T ) and ‖Ax‖ ≤ ‖Tx‖
2 . It is clear that A , T and
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S have the Hyers-Ulam stability (note that they have closed range). This motivates us toward the following
theorem.

Theorem 2.5 Suppose that A is a T -bounded operator with a T -bound b and a constant a and A has the
Hyers-Ulam stability.

If a = 0 and N (A) = N (T ) , then T has also the Hyers-Ulam stability.

Proof. There exists a constant K0 > 0 such that for every x ∈ D(A) there exists x0 ∈ N (A) = N (T ) such
that ‖x − x0‖ ≤ K0‖Ax‖ ≤ K0b‖Tx‖ . Thus operator T has the Hyers-Ulam stability. �

Now we show that conditions N (A) = N (T ) and a = 0 in Theorem 2.5 are necessary.

Example 2.6 Consider the operators A, T : �2 −→ �2 defined by

A(x1, x2, · · · ) = (x1, 0, 0, · · ·), (x1, x2, · · · ) ∈ �2

and

T (x1, x2, · · ·) = (x1,
x2

2
,
x3

3
, · · · ), (x1, x2, · · · ) ∈ �2.

It is clear that the operator A is T -bounded with constant a = 0 . Then R(A) is of finite dimension. Hence the
operator A has closed range. Hence A has the Hyers-Ulam stability and N (A) �= N (T ) . If we take an to be

an =

{
1 i ≤ n

0 i > n

then

(Tan)(i) =

{
1/i i ≤ n

0 i > n

and (Tan) converges to b = (1, 1
2 , 1

3 , · · · ) which does not belong to the range of T . Therefore R(T ) is not
closed, i.e, operator T does not have the Hyers-Ulam stability.

Example 2.7 Consider the operators A, T : �2 −→ �2 defined by

A(x1, x2, · · ·) = (0, x1, x2, · · · ), (x1, x2, · · · ) ∈ �2

and

T (x1, x2, · · ·) = (x1,
x2

2
,
x3

3
, · · · ), (x1, x2, · · · ) ∈ �2.

The operator A is T -bounded with a nonzero constant a . Since γ(A) > 0 , the operator A has closed range
and N (A) = N (T ) . The space R(T ) is not closed, i.e, operator T does not have the Hyers-Ulam stability.
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Let x1, x2, y be elements of H such that x1⊥x2 . If A = x1 ⊗ y, T = x2 ⊗ y and S = A + T , then
γ(A) = ‖x1‖‖y‖, γ(T ) = ‖x2‖‖y‖ and γ(S) = γ(A) + γ(T ), therefore KS = γ(S)−1 = 1

γ(A)+γ(T ) . This

motivates us toward the following result.

Corollary 2.8 Suppose that A is a T -bounded operator with a T -bound b smaller than 1 and constant a = 0 ,
N (A) = N (T ) and A has the Hyers-Ulam stability. Then S := T + A has the Hyers-Ulam stability, if

R(A)⊥R(T ) . Moreover, if T is a closed operator then R(S) is closed and KS = 1
γ(T )+γ(A) .

Proof. Suppose that K is a Hyers-Ulam stability constant for A . By Theorem 2.5, K′ = Kb is a Hyers-Ulam
stability constant for T . In fact, for each v ∈ D(T ) there exists v0 ∈ N (T ) such that

‖v − v0‖ ≤ (Kb)‖Tv‖ ≤ K‖Tv‖

since b is smaller than 1.

Hence for x ∈ D(S) = D(T ) there exists x0 ∈ N (T ) = N (A) such that

‖x− x0‖ ≤ K(‖Ax‖ + ‖Tx‖) = K‖Ax + Tx‖.

Now we show that N (S) = N (T ). If x ∈ N (S) − N (T ), then −Ax = Tx and so ‖Tx‖ = ‖Ax‖ ≤ b‖Tx‖ .
Hence b ≥ 1 which is a contradiction. Thus N (S) ⊆ N (T ) since N (A) = N (T ) and N (T ) ⊆ N (S). Therefore
N (S) = N (T ). Thus S has the Hyers-Ulam stability.

Assume that T is a closed operator. Then so is S . Hence R(S) is closed. Since ‖Sx‖
‖x‖ = ‖Tx+Ax‖

‖x‖ = ‖Tx‖
‖x‖ + ‖Ax‖

‖x‖

and N (T ) = N (S) we have γ(S) = γ(T ) + γ(A). Hence, by [6, Theorem 3.1], KS = 1
γ(T )+γ(A) . �

The following result can be regarded as a special case of [1, Theorem 2.2] with a Hyers-Ulam stability
approach.

Theorem 2.9 Suppose that A is a T -bounded operator with a T -bound b smaller than 1 and constant a = 0 ,
and N (A) = N (T ) . Assume that A has the Hyers-Ulam stability and that T is a closed operator. Then
S := T + A is a closed operator, S has the Hyers-Ulam stability and

1
γ(A) + γ(T )

≤ KS ≤ 1
(1 − b)γ(T )

.

Proof. By Theorem 2.5 the operator T has the Hyers-Ulam stability. Hence it has closed range and so
γ(T ) > 0. Since the operator A is T -bounded with a T -bound smaller than 1 and since by [9, Theorem 1.1]
T is a closed operator, we deduce that the operator S is closed. In view of ‖Ax‖ ≤ b‖Tx‖ , we get

‖Tx‖ − ‖Sx‖ ≤ ‖Ax + Tx − Tx‖ ≤ b‖Tx‖ (x ∈ D(T )).

Hence (1 − b)‖Tx‖ ≤ ‖Sx‖ . Thus

(1 − b)
‖Tx‖
‖x‖ ≤ ‖Sx‖

‖x‖ x ∈ (D(T ) − {0}).

147



MOSLEHIAN, SADEGHI

Since N (T ) = N (S) we have 0 < (1 − b)γ(T ) ≤ γ(S), therefore S has closed range [9, Theorem 5.2]. Thus

S has the Hyers-Ulam stability and KS = γ(S)−1 ≤ 1
(1−b)γ(T ) . Clearly γ(S) ≤ γ(A) + γ(T ). Therefore

1
γ(A)+γ(T )

≤ KS . �

Recall that a closed operator A from H into K is called left semi-Fredholm if dimN (A) < ∞ and R(A) is
closed. It is called right semi-Fredholm if codimR(A) < ∞ and R(A) is closed. We say a closed operator A is
semi-Fredholm if it is left or right semi-Fredholm.

Remark 2.10 Suppose that A is a T -bounded operator with a T -bound b smaller than 1 and constant a = 0 ,
and N (A) = N (T ) . If T is a closed operator and has the Hyers-Ulam stability. Then, by Theorem 2.9, the
operator S := A + T is closed and has the Hyers-Ulam stability. So that R(S) is closed.

The conclusion that S is closed has already obtained in [4, Theorem V.3.6] under the different assumption that
the operator T is semi-Fredholm.

Corollary 2.11 Suppose that A is a left semi-Fredholm and T -bounded operator with constant a = 0 and a
T -bound b smaller than 1 , and T is a closed operator such that N (A) = N (T ) . Then S := T + A is a left
semi-Fredholm operator.

Theorem 2.12 Suppose that A is a T -bounded operator with a T -bound b smaller than 1 and constant a = 0 ,
and N (A) = N (T ) . If S = T +A has the Hyers-Ulam stability then T has the Hyers-Ulam stability. Moreover
if S is a closed operator then R(S) and R(T ) are closed.

Proof. The operator S has the Hyers-Ulam stability thus there exists a constant K > 0 with the following
property:

For any x ∈ D(S) = D(T ) there exists a x0 ∈ N (S) such that ‖x − x0‖ ≤ K‖Sx‖ .

Since A is a T -bounded operator and, by the proof of Corollary 2.8, N (T ) = N (S), we have

‖x − x0‖ ≤ K‖Sx‖ ≤ K(‖Ax‖ + ‖Tx‖) ≤ K(b + 1)‖Tx‖.

Therefore T has the Hyers-Ulam stability.

Now assume that S is a closed operator. Then so is T . In view of S and T having the Hyers-Ulam stability,
R(S) and R(T ) are closed. �
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